EP0414620B1 - Procédé d'obtention d'alliages de magnésium par pulvérisation-dépôt - Google Patents

Procédé d'obtention d'alliages de magnésium par pulvérisation-dépôt Download PDF

Info

Publication number
EP0414620B1
EP0414620B1 EP90420382A EP90420382A EP0414620B1 EP 0414620 B1 EP0414620 B1 EP 0414620B1 EP 90420382 A EP90420382 A EP 90420382A EP 90420382 A EP90420382 A EP 90420382A EP 0414620 B1 EP0414620 B1 EP 0414620B1
Authority
EP
European Patent Office
Prior art keywords
process according
magnesium
alloy
alloys
mechanical characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90420382A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0414620A1 (fr
Inventor
Jean-François Faure
Gilles Nussbaum
Gilles Regazzoni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pechiney Recherche GIE
Original Assignee
Pechiney Recherche GIE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pechiney Recherche GIE filed Critical Pechiney Recherche GIE
Publication of EP0414620A1 publication Critical patent/EP0414620A1/fr
Application granted granted Critical
Publication of EP0414620B1 publication Critical patent/EP0414620B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal

Definitions

  • the invention relates to an economical process for obtaining a magnesium alloy having mechanical characteristics (breaking strength greater than 290 MPa, the elongation at break generally being at least 5%) and properties relating to improved corrosion, and the alloy obtained by said process.
  • the applicant has specifically sought to use simpler means and therefore more economical methods, making it possible to significantly improve the properties, in particular the mechanical characteristics and the corrosion resistance, of the alloys, based on magnesium obtained by conventional casting.
  • the applicant has sought to develop an economical process for obtaining a magnesium-based alloy having improved mechanical characteristics, in particular a breaking strength greater than 290 MPa, but particularly of at least 330 MPa, while having an elongation at break of at least 5% and a very good resistance to corrosion.
  • Another object of the invention is the alloy obtained by the process according to the invention, an alloy characterized by a homogeneous matrix of magnesium whose grain size is between 3 and 25 ⁇ m, preferably between 5 and 15 ⁇ m, comprising particles of intermetallic compounds, preferably precipitated at the grain boundaries, of the Mg17Al12, Al2Ca, Mg-TR, Al-TR type with dimensions less than 5 ⁇ m. This structure remains unchanged after 24 hours at 350 ° C.
  • the alloy always contains calcium and aluminum.
  • TR Rare Earths especially Nd, Ce, La, Pr, Misch Metal (MM), but also Y. It is also possible to use a mixture of these elements.
  • the process consists in spraying the molten alloy using a neutral gas such as Ar, He or N2 at high pressure in the form of fine liquid droplets which are then directed and agglomerated on a cooled substrate, generally formed by the alloy solid itself, or by any other metal, for example stainless steel, so as to form a massive and coherent deposit, however containing a low closed porosity.
  • a neutral gas such as Ar, He or N2
  • the ingot obtained can be in the form of billets, tubes, plates, etc., the geometry of which is controlled.
  • a technique of this type is generally known as "Spray Deposition".
  • the solidification speed is faster than in conventional production processes (eg molding, conventional casting, etc.) where it is much less than 10K / second.
  • a solid product having an equiaxed structure with fine grains.
  • the ingot thus obtained is transformed by hot deformation between 200 and 350 ° C, preferably by spinning and / or forging, but also by HIP (Hot Isostatic Pressing). It is remarkable that such alloys can thus be transformed at such high temperatures, reaching 350 ° C., while retaining excellent mechanical characteristics.
  • Such thermal stability has many advantages, in particular the possibility of using a high spinning speed, high spinning ratios, while preserving the good mechanical characteristics obtained according to the invention.
  • the consolidated ingots can be subjected to heat treatments, either by dissolving followed by quenching and tempering (treatment T6), or directly tempering (treatment T5).
  • treatment T6 quenching and tempering
  • treatment T5 directly tempering
  • the alloys are dissolved by a heat treatment of at least 8 h at 400 ° C. It is followed by quenching with water or oil, then tempering for example 16 h at 200 ° C to obtain maximum hardness.
  • the alloys obtained according to the invention have a homogeneous structure preferably having a grain size between 3 and 25 ⁇ m and comprising particles of intermetallic compounds preferably precipitated at the grain boundaries.
  • Ca generally precipitates in the form of an intermetallic compound Al2Ca, that is to say a compound between two addition elements, and that even for the lowest Ca contents it is generally only very little present in solid solution in the Mg matrix and is not observed in the form of Mg Ca which is the compound normally expected in an Mg / Ca system.
  • alloys based on magnesium having excellent mechanical characteristics significantly higher than those obtained with the alloys of the prior art of conventional casting, and in particular a breaking strength greater than 330 MPa, the addition elements additionally providing better stability. temperature and improved corrosion resistance.
  • the weight loss observed with the alloys of the invention after soaking in an aqueous solution at 5% (weight) of NaCl, expressed in mcd (milligrams per cm2 and per day) does not exceed 0.8 mcd whereas for a conventional conventional spinning AZ91, it can reach 2 mcd.
  • the corrosion observed is perfectly homogeneous and uniform, and thus avoids the presence of pitting or preferential corrosion zones which can be the cause of preferential rupture zones.
  • the method according to the invention is, moreover, more economical, thanks inter alia to a higher productivity, and safer than the methods of quenching on a roller or atomizing because the handling of divided products is eliminated.
  • the products obtained do not contain oxides or hydrates capable of creating porosities or inclusions. This results in better metallurgical health which results in an improvement of the tolerance properties for damage (fatigue, toughness, ductility) compared to alloys or conventional or obtained by rapid solidification and / or powder metallurgy.
  • the gas flow rate is approximately 3.1 Nm3 / kg and the liquid flow rate is approximately 3 to 4 kg / minute; they are identical from one test to another.
  • the billets obtained are then consolidated by spinning at 300 ° C with a spinning ratio of 20 and a forward speed of the pestle of 1 mm / s.
  • TYS (0.2) represents the elastic limit measured at 0.2% elongation in tension; it is expressed in MPa.
  • UTS represents the breaking load; it is expressed in MPa.
  • e represents the elongation at break and is expressed in%
  • tests 1 to 5 illustrate the invention, while tests 6 and 7 give results outside the invention.
  • Test 6 relates to an alloy of the AZ91 type obtained by conventional casting and spinning, while test 7 relates to the same type of alloy obtained by spray-deposition and spinning. It can be noted that these alloys are close to AZ80 which is the standard wrought alloy (like the alloy ZK60 containing Zr), which is reputed to give the best mechanical characteristics after spinning, according to the prior art.
  • the alloys according to the invention give mechanical characteristics significantly superior to those of the alloys outside the invention, although the spinning took place at a temperature of 300 ° C less favorable than the 200 ° C of tests 6 and 7, for obtaining good mechanical characteristics. Furthermore, it should be noted that according to the invention, it is possible simultaneously to reduce the weight loss due to corrosion by a factor of 5 or 6 while having uniform corrosion (test 3), and that the use of TR allows an increase. mechanical characteristics with also uniform corrosion (tests 1, 4).
  • the first two alloys are produced according to the invention: they are alloys 3 and 4 in Table 1.
  • the third is a conventional AZ80 alloy.
  • the fourth has the composition of alloy 3, but was solidified quickly by quenching on a roller, then consolidated by spinning.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Extrusion Of Metal (AREA)
  • Forging (AREA)
  • Powder Metallurgy (AREA)
  • Coating By Spraying Or Casting (AREA)
EP90420382A 1989-08-24 1990-08-21 Procédé d'obtention d'alliages de magnésium par pulvérisation-dépôt Expired - Lifetime EP0414620B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8911356A FR2651244B1 (fr) 1989-08-24 1989-08-24 Procede d'obtention d'alliages de magnesium par pulverisation-depot.
FR8911356 1989-08-24

Publications (2)

Publication Number Publication Date
EP0414620A1 EP0414620A1 (fr) 1991-02-27
EP0414620B1 true EP0414620B1 (fr) 1994-01-26

Family

ID=9384978

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90420382A Expired - Lifetime EP0414620B1 (fr) 1989-08-24 1990-08-21 Procédé d'obtention d'alliages de magnésium par pulvérisation-dépôt

Country Status (7)

Country Link
US (1) US5073207A (no)
EP (1) EP0414620B1 (no)
JP (1) JPH0397824A (no)
CA (1) CA2023900A1 (no)
DE (1) DE69006293T2 (no)
FR (1) FR2651244B1 (no)
NO (1) NO176483C (no)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109097649A (zh) * 2012-06-26 2018-12-28 百多力股份公司 镁合金、其制造方法及其用途

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2511526B2 (ja) * 1989-07-13 1996-06-26 ワイケイケイ株式会社 高力マグネシウム基合金
US5071474A (en) * 1990-06-15 1991-12-10 Allied-Signal Inc. Method for forging rapidly solidified magnesium base metal alloy billet
JP2741642B2 (ja) * 1992-03-25 1998-04-22 三井金属鉱業株式会社 高強度マグネシウム合金
JP3240182B2 (ja) * 1992-04-28 2001-12-17 マツダ株式会社 マグネシウム合金製部材の製造方法
JP2730847B2 (ja) * 1993-06-28 1998-03-25 宇部興産株式会社 高温クリープ強度に優れた鋳物用マグネシウム合金
DE69423335T2 (de) * 1993-12-17 2000-11-30 Mazda Motor Plastisch-verformbarer Gusswerkstoff aus Magnesium-Legierung aus dieser Legierung hergestellte Werkstücke sowie Verfahren zur Herstellung
JPH07278717A (ja) * 1994-04-12 1995-10-24 Ube Ind Ltd 加圧部での耐へたり性に優れたマグネシウム合金製部材
WO1996004409A1 (en) * 1994-08-01 1996-02-15 Franz Hehmann Selected processing for non-equilibrium light alloys and products
JPH08134581A (ja) * 1994-11-14 1996-05-28 Mitsui Mining & Smelting Co Ltd マグネシウム合金の製造方法
JP3229954B2 (ja) * 1996-02-27 2001-11-19 本田技研工業株式会社 耐熱性マグネシウム合金
DE19915277A1 (de) * 1999-04-03 2000-10-05 Volkswagen Ag Magnesiumlegierungen hoher Duktilität, Verfahren zu deren Herstellung und deren Verwendung
NO312106B1 (no) * 1999-07-02 2002-03-18 Norsk Hydro As Fremgangsmåte for å forbedre korrosjonsmotstanden for magnesium-aluminium-silisiumlegeringer og magnesiumlegering medforbedret korrosjonsmotstand
AU7069200A (en) * 1999-08-24 2001-03-19 Smith & Nephew, Inc. Combination of processes for making wrought components
US6342180B1 (en) 2000-06-05 2002-01-29 Noranda, Inc. Magnesium-based casting alloys having improved elevated temperature properties
DE10053663A1 (de) * 2000-10-28 2002-05-08 Leybold Vakuum Gmbh Mechanische kinetische Vakuumpumpe mit Rotor und Welle
DE10053664A1 (de) * 2000-10-28 2002-05-08 Leybold Vakuum Gmbh Mechanische kinetische Vakuumpumpe
WO2003091465A1 (fr) * 2002-04-23 2003-11-06 Ahresty Corporation Alliage de magnesium destine au coulage sous pression
JP3592659B2 (ja) * 2001-08-23 2004-11-24 株式会社日本製鋼所 耐食性に優れたマグネシウム合金およびマグネシウム合金部材
AU2002950563A0 (en) * 2002-08-02 2002-09-12 Commonwealth Scientific And Industrial Research Organisation Age-Hardenable, Zinc-Containing Magnesium Alloys
JP2004162090A (ja) * 2002-11-11 2004-06-10 Toyota Industries Corp 耐熱性マグネシウム合金
US9101978B2 (en) * 2002-12-08 2015-08-11 Baker Hughes Incorporated Nanomatrix powder metal compact
US9079246B2 (en) 2009-12-08 2015-07-14 Baker Hughes Incorporated Method of making a nanomatrix powder metal compact
US9109429B2 (en) * 2002-12-08 2015-08-18 Baker Hughes Incorporated Engineered powder compact composite material
US9682425B2 (en) * 2009-12-08 2017-06-20 Baker Hughes Incorporated Coated metallic powder and method of making the same
US8403037B2 (en) 2009-12-08 2013-03-26 Baker Hughes Incorporated Dissolvable tool and method
JP4575645B2 (ja) * 2003-01-31 2010-11-04 株式会社豊田自動織機 鋳造用耐熱マグネシウム合金および耐熱マグネシウム合金鋳物
US8123877B2 (en) * 2003-01-31 2012-02-28 Kabushiki Kaisha Toyota Jidoshokki Heat-resistant magnesium alloy for casting heat-resistant magnesium alloy cast product, and process for producing heat-resistant magnesium alloy cast product
US7029626B2 (en) * 2003-11-25 2006-04-18 Daimlerchrysler Corporation Creep resistant magnesium alloy
PL1574590T3 (pl) * 2004-03-11 2007-09-28 Gkss Forschungszentrum Geesthacht Gmbh Sposób wytwarzania profili z materiału na bazie magnezu za pomocą wyciskania
JP2006002184A (ja) * 2004-06-15 2006-01-05 Toudai Tlo Ltd 高強靭性マグネシウム基合金およびそれを用いた駆動系部品並びに高強靭性マグネシウム基合金素材の製造方法
JP4539572B2 (ja) * 2006-01-27 2010-09-08 株式会社豊田中央研究所 鋳造用マグネシウム合金および鋳物
DE102006015457A1 (de) * 2006-03-31 2007-10-04 Biotronik Vi Patent Ag Magnesiumlegierung und dazugehöriges Herstellungsverfahren
JP4856597B2 (ja) * 2006-08-22 2012-01-18 株式会社神戸製鋼所 高温での強度と伸びに優れたマグネシウム合金およびその製造方法
JP5035893B2 (ja) * 2006-09-01 2012-09-26 独立行政法人産業技術総合研究所 高強度高延性難燃性マグネシウム合金及びその製造方法
JP5300116B2 (ja) * 2006-12-25 2013-09-25 国立大学法人長岡技術科学大学 展伸用マグネシウム薄板の製造方法
CN100476002C (zh) * 2007-03-30 2009-04-08 闻喜云海金属有限公司 一种耐热铸造镁合金及其制备方法
US20110203706A1 (en) * 2008-10-22 2011-08-25 Yukihiro Oishi Formed product of magnesium alloy and magnesium alloy sheet
JP2010242146A (ja) * 2009-04-03 2010-10-28 Toyota Central R&D Labs Inc マグネシウム合金およびマグネシウム合金部材
JP5405392B2 (ja) 2009-06-17 2014-02-05 株式会社豊田中央研究所 再生マグネシウム合金とその製造方法およびマグネシウム合金
DE102009025511A1 (de) * 2009-06-19 2010-12-23 Qualimed Innovative Medizin-Produkte Gmbh Implantat mit einem vom Körper resorbierbaren metallischen Werkstoff
US9227243B2 (en) 2009-12-08 2016-01-05 Baker Hughes Incorporated Method of making a powder metal compact
US10240419B2 (en) 2009-12-08 2019-03-26 Baker Hughes, A Ge Company, Llc Downhole flow inhibition tool and method of unplugging a seat
US9127515B2 (en) 2010-10-27 2015-09-08 Baker Hughes Incorporated Nanomatrix carbon composite
US9243475B2 (en) 2009-12-08 2016-01-26 Baker Hughes Incorporated Extruded powder metal compact
US8528633B2 (en) 2009-12-08 2013-09-10 Baker Hughes Incorporated Dissolvable tool and method
US8776884B2 (en) 2010-08-09 2014-07-15 Baker Hughes Incorporated Formation treatment system and method
US9090955B2 (en) 2010-10-27 2015-07-28 Baker Hughes Incorporated Nanomatrix powder metal composite
KR101080164B1 (ko) * 2011-01-11 2011-11-07 한국기계연구원 발화저항성과 기계적 특성이 우수한 마그네슘 합금 및 그 제조방법
US8631876B2 (en) 2011-04-28 2014-01-21 Baker Hughes Incorporated Method of making and using a functionally gradient composite tool
US9080098B2 (en) 2011-04-28 2015-07-14 Baker Hughes Incorporated Functionally gradient composite article
US9139928B2 (en) 2011-06-17 2015-09-22 Baker Hughes Incorporated Corrodible downhole article and method of removing the article from downhole environment
US9707739B2 (en) 2011-07-22 2017-07-18 Baker Hughes Incorporated Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US8783365B2 (en) 2011-07-28 2014-07-22 Baker Hughes Incorporated Selective hydraulic fracturing tool and method thereof
US9643250B2 (en) * 2011-07-29 2017-05-09 Baker Hughes Incorporated Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9833838B2 (en) * 2011-07-29 2017-12-05 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9057242B2 (en) 2011-08-05 2015-06-16 Baker Hughes Incorporated Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate
US9033055B2 (en) 2011-08-17 2015-05-19 Baker Hughes Incorporated Selectively degradable passage restriction and method
US9109269B2 (en) 2011-08-30 2015-08-18 Baker Hughes Incorporated Magnesium alloy powder metal compact
US9090956B2 (en) 2011-08-30 2015-07-28 Baker Hughes Incorporated Aluminum alloy powder metal compact
US9856547B2 (en) 2011-08-30 2018-01-02 Bakers Hughes, A Ge Company, Llc Nanostructured powder metal compact
US9643144B2 (en) 2011-09-02 2017-05-09 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
US9133695B2 (en) 2011-09-03 2015-09-15 Baker Hughes Incorporated Degradable shaped charge and perforating gun system
US9187990B2 (en) 2011-09-03 2015-11-17 Baker Hughes Incorporated Method of using a degradable shaped charge and perforating gun system
US9347119B2 (en) 2011-09-03 2016-05-24 Baker Hughes Incorporated Degradable high shock impedance material
US9010416B2 (en) 2012-01-25 2015-04-21 Baker Hughes Incorporated Tubular anchoring system and a seat for use in the same
US9068428B2 (en) 2012-02-13 2015-06-30 Baker Hughes Incorporated Selectively corrodible downhole article and method of use
US9605508B2 (en) 2012-05-08 2017-03-28 Baker Hughes Incorporated Disintegrable and conformable metallic seal, and method of making the same
EP2956180B1 (en) * 2013-02-15 2018-08-01 Boston Scientific Scimed, Inc. Bioerodible magnesium alloy microstructures for endoprostheses
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
JP2017501756A (ja) 2013-10-29 2017-01-19 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 体内プロテーゼ用の生侵食性マグネシウム合金マイクロ構造
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US10865465B2 (en) 2017-07-27 2020-12-15 Terves, Llc Degradable metal matrix composite
CA2936851A1 (en) 2014-02-21 2015-08-27 Terves, Inc. Fluid activated disintegrating metal system
US9910026B2 (en) 2015-01-21 2018-03-06 Baker Hughes, A Ge Company, Llc High temperature tracers for downhole detection of produced water
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
WO2016145368A1 (en) 2015-03-11 2016-09-15 Boston Scientific Scimed, Inc. Bioerodible magnesium alloy microstructures for endoprostheses
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
CN105779836B (zh) * 2016-05-03 2018-01-30 贵州航天风华精密设备有限公司 一种耐腐蚀的镁合金及其制备方法
CN109321793B (zh) * 2018-10-31 2021-01-19 江苏理工学院 Al2Y颗粒和碳纳米管混杂增强超轻镁锂基复合材料及制备方法
CN109321794B (zh) * 2018-10-31 2021-01-19 江苏理工学院 Al2Ca颗粒和碳纳米管混杂增强超轻镁锂基复合材料及制备方法
CN109750198A (zh) * 2019-03-07 2019-05-14 洛阳理工学院 一种含Eu镁合金阳极材料及其制备方法与应用
CN110066948B (zh) * 2019-04-29 2020-09-11 东北大学 高强高塑性Mg-Ca-Al-Zn-Mn-Ce变形镁合金及其制备方法
CN110629089A (zh) * 2019-10-11 2019-12-31 江苏中科亚美新材料股份有限公司 一种高流动高耐蚀镁合金材料及其制备方法
WO2020054880A2 (ja) * 2019-12-18 2020-03-19 一般社団法人日本マグネシウム協会 難燃高靭性マグネシウム合金
CN111519074A (zh) * 2020-05-21 2020-08-11 东北大学 一种含轻稀土元素镧的高强度Mg-Ca-Mn-Al-Zn系变形镁合金及其制备方法
CN112522561A (zh) * 2020-12-03 2021-03-19 广东省科学院材料与加工研究所 一种压铸镁合金及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2630623A (en) * 1948-11-12 1953-03-10 Dow Chemical Co Method of making a die-expressed article of a magnesium-base alloy
GB690853A (en) * 1950-08-16 1953-04-29 Dow Chemical Co Improvements in making alloy extruded forms by powder metallurgy
GB847992A (en) * 1958-02-11 1960-09-14 Hans Joachim Fuchs Magnesium alloys having a high resistance to permanent creep deformation at elevated temperatures
DE1259578B (de) * 1959-05-01 1968-01-25 Dow Chemical Co Verfahren zur pulvermetallurgischen Herstellung einer dispersionsverfestigten Magnesiumlegierung
GB1163200A (en) * 1967-01-30 1969-09-04 Norsk Hydro Elektrisk Improvements in or relating to Magnesium Base Alloys
BE790453A (fr) * 1971-10-26 1973-02-15 Brooks Reginald G Fabrication d'articles en metal
US4765954A (en) * 1985-09-30 1988-08-23 Allied Corporation Rapidly solidified high strength, corrosion resistant magnesium base metal alloys
FR2642439B2 (no) * 1988-02-26 1993-04-16 Pechiney Electrometallurgie

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109097649A (zh) * 2012-06-26 2018-12-28 百多力股份公司 镁合金、其制造方法及其用途

Also Published As

Publication number Publication date
NO903711D0 (no) 1990-08-23
JPH0397824A (ja) 1991-04-23
FR2651244A1 (fr) 1991-03-01
CA2023900A1 (fr) 1991-02-25
NO176483C (no) 1995-04-12
EP0414620A1 (fr) 1991-02-27
DE69006293T2 (de) 1994-05-26
US5073207A (en) 1991-12-17
JPH0534411B2 (no) 1993-05-24
DE69006293D1 (de) 1994-03-10
NO903711L (no) 1991-02-25
FR2651244B1 (fr) 1993-03-26
NO176483B (no) 1995-01-02

Similar Documents

Publication Publication Date Title
EP0414620B1 (fr) Procédé d'obtention d'alliages de magnésium par pulvérisation-dépôt
EP0465376B1 (fr) Alliage de magnésium à haute résistance mécanique contenant du strontium et procédé d'obtention par solidification rapide
EP0357743B1 (fr) Alliages de magnesium a haute resistance mecanique et procede d'obtention de ces alliages par solidification rapide
EP0419375B1 (fr) Alliages de magnésium à haute résistance mécanique et procédé d'obtention par solidification rapide
EP0375571B1 (fr) Procédé d'obtention par "pulvérisation-dépôt" d'alliages d'Al de la série 7000 et de matériaux composites à renforts discontinus ayant pour matrice ces alliages à haute résistance mécanique et bonne ductilité
JP2538692B2 (ja) 高力、耐熱性アルミニウム基合金
FR2573777A1 (fr) Alliage d'aluminium resistant a la chaleur, a haute resistance, et procede pour fabriquer un element porteur constitue de cet alliage
US20100282428A1 (en) Spray deposition of l12 aluminum alloys
EP1897963A1 (fr) Tole d'acier pour la fabrication de structures allegées et procédé de fabrication de cette tole
EP0362086B1 (fr) Procédé de fabrication de pièces en alliage d'aluminium gardant une bonne résistance à la fatigue après un maintien prolongé à chaud
CA2360673A1 (fr) Produit en alliage aluminium-silicium hypereutectique pour mise en forme a l'etat semi-solide
EP0775756B1 (fr) Acier pour la fabrication d'une pièce forgée ayant une structure bainitique et procédé de fabrication d'une pièce
JP4764094B2 (ja) 耐熱性Al基合金
FR2645546A1 (fr) Alliage a base d'al a haut module et a resistance mecanique elevee et procede d'obtention
JP3173452B2 (ja) 耐摩耗性被覆部材及びその製造方法
US5205986A (en) Aluminium-strontium master alloy and process of making the alloy
JP3358934B2 (ja) 高融点金属含有Al基合金鋳塊のスプレーフォーミング法による製造方法
EP0877658A1 (fr) Masse d'alliage metallique pour formage a l'etat semi-solide
EP0456591A1 (fr) Alliages de cuivre à décomposition spinodale et leur procédé d'obtention
FR2627780A1 (fr) Alliages de magnesium a haute resistance mecanique et procede d'obtention de ces alliages par solidification rapide
JPH0790463A (ja) 高比剛性、高比強度マグネシウム基合金及びその製造方法
FR2675821A1 (fr) Methode de preparation d'echantillons de reference pour analyse spectrographique.
FR2745304A1 (fr) Procede de preparation d'alliages quasicristallins al cu fe mb, les alliages obtenus et leurs applications
FR2523157A1 (en) Boron-contg. tool steels - produced by rapid solidification process, esp. melt spinning

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19910710

17Q First examination report despatched

Effective date: 19930505

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940125

REF Corresponds to:

Ref document number: 69006293

Country of ref document: DE

Date of ref document: 19940310

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 90420382.5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950705

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950717

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950722

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950724

Year of fee payment: 6

Ref country code: CH

Payment date: 19950724

Year of fee payment: 6

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960831

Ref country code: CH

Effective date: 19960831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960831

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970501

EUG Se: european patent has lapsed

Ref document number: 90420382.5

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050821