EP0375571B1 - Procédé d'obtention par "pulvérisation-dépôt" d'alliages d'Al de la série 7000 et de matériaux composites à renforts discontinus ayant pour matrice ces alliages à haute résistance mécanique et bonne ductilité - Google Patents

Procédé d'obtention par "pulvérisation-dépôt" d'alliages d'Al de la série 7000 et de matériaux composites à renforts discontinus ayant pour matrice ces alliages à haute résistance mécanique et bonne ductilité Download PDF

Info

Publication number
EP0375571B1
EP0375571B1 EP89420497A EP89420497A EP0375571B1 EP 0375571 B1 EP0375571 B1 EP 0375571B1 EP 89420497 A EP89420497 A EP 89420497A EP 89420497 A EP89420497 A EP 89420497A EP 0375571 B1 EP0375571 B1 EP 0375571B1
Authority
EP
European Patent Office
Prior art keywords
alloys
alloy
composition
series
following
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89420497A
Other languages
German (de)
English (en)
Other versions
EP0375571A1 (fr
Inventor
Jean-François Faure
Bruno Dubost
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pechiney Recherche GIE
Original Assignee
Pechiney Recherche GIE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9373316&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0375571(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pechiney Recherche GIE filed Critical Pechiney Recherche GIE
Priority to AT89420497T priority Critical patent/ATE90976T1/de
Publication of EP0375571A1 publication Critical patent/EP0375571A1/fr
Application granted granted Critical
Publication of EP0375571B1 publication Critical patent/EP0375571B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Definitions

  • the invention relates to a method for obtaining an Al alloy of the 7000 series (Al-Zn-Mg-Cu) with high mechanical strength and good ductility by "spray-deposition" (spray deposition). More specifically, the method aims to obtain Al alloys which have in the treated state (T6) a breaking load ⁇ 800 MPa with an elongation, at least in the long direction, greater than or equal to 5%.
  • the invention also relates to obtaining composite materials with very high strength, high rigidity and good ductility having as matrix the 7000 alloys described above with a particulate reinforcement of ceramics and obtained directly by "spray-deposition".
  • spray-deposition is meant a process in which the metal is molten, atomized by a jet of gas at high pressure in the form of fine liquid droplets which are then directed and agglomerated on a substrate so as to form a massive and coherent deposit, containing a low closed porosity.
  • This deposit can be in the form of billets, tubes or plates whose geometry is controlled.
  • a technique of this type is known as “Spray Deposition” by the Anglo-Saxons and is also called “OSPREY process”.
  • the volume fraction of precipitates at the base of the structural hardening of the alloy (essentially of the type ⁇ -Mg Zn2 or ⁇ '- (Mg, Zn, Al, Cu)) becomes insufficient and it is no longer possible to obtain the levels of high mechanical characteristics (such as breaking load ⁇ 800 MPa) which are the objective of the present invention.
  • the volume fraction of the second phase is too high and leads to a brittle material, with very low elongations at break, which prohibits its industrial use.
  • the copper and magnesium contents must be in proportions close to the stoichiometry of the hardening precipitates.
  • Mg ⁇ 2% or Cu ⁇ 0.5% the nature and the volume fraction of the precipitates formed are insufficient to achieve the targeted mechanical characteristics.
  • Mg is ⁇ 4% or Cu ⁇ 2.0%, these elements are present in excess in the alloy and weaken it considerably.
  • the content of main elements preferably obeys the following relationship, 5.5 ⁇ Mg + Cu + Zn 6 ⁇ 6.5
  • the hot transformation of the solid alloy obtained by spray-deposition generally takes place between 300 and 450 ° C, preferably by spinning, forging or rolling, in one or more successive operations; these operations can optionally be combined, for example spinning + rolling or spinning + forging / stamping.
  • the hot transformation operations can be supplemented by cold operations such as rolling, drawing, etc.
  • the solution is carried out between 440 and 520 ° C, between 2 and 8 hours depending on the size of the products; quenching is followed by tempering between 2 and 25 h between 90 and 150 ° C in one or more stages, the longest times being generally associated with the lowest temperatures (and vice-versa).
  • the product obtained by a spray-deposition process can optionally be homogenized before hot transformation between 450 and 520 ° C for 2 to 50 hours in one or more stages.
  • the invention also consists, using the alloys and the method described above, in obtaining composite materials with very high resistance (Rm ⁇ 800 MPa), high Young modulus (E ⁇ 80 GPa), with acceptable ductility by users (A ⁇ 3%), as well as good resistance to wear and friction.
  • These materials are characterized by an alloy matrix of the 7xxx series of composition indicated above and a dispersion of ceramic particles of SiC, Al2O3 or B4C type (these examples not being limiting) and are obtained directly by the spray-deposition technique.
  • the alloys n ° 1 to 4 according to the invention have a very high level of mechanical characteristics, with in particular a breaking load ⁇ 800 MPa as well as a correct level of ductility, with elongations at break ⁇ 5% .
  • Alloy 5 outside the analytical limits of the invention (Zn content too low) has much weaker mechanical characteristics than the alloys of the invention.
  • Alloy 8 is an alloy whose composition falls within the analytical field of the alloys of the invention but which has been developed according to a powder metallurgy process described below: the alloy is melted and then atomized with nitrogen in the form powders; these are collected and sieved to 100 ⁇ m. Powders smaller than 100 ⁇ m are put in 140 mm diameter aluminum containers fitted with an orifice tube and are then degassed hot under secondary vacuum (by pumping through the tube) at a temperature of 460 ° C for 100 h. The powder containers thus degassed are sealed and then hot pressed in a blind die spinning press in a 143 mm diameter container at 450 ° C so as to reach the theoretical density of the material.
  • the billets thus obtained are then machined in order to remove the material from the container and then spun under the same conditions as the billets of the previous examples.
  • the product obtained is heat treated according to a similar procedure (see solution temperature in Table 1) and is characterized under the same conditions.
  • the results reported in Table 1 show that the product obtained has very low ductility and plastic deviation despite a relatively high level of resistance.
  • An alloy of composition Al Al: 10% Zn; 3.0% Mg; 1.0% Cu; 0.1% Zr; 0.15% Cr; 0.15% Mn, rest Al was melted at 750 ° C and produced by spray-deposition in the form of 150 mm diameter billets with simultaneous coinjection of SiC particles of average size 10 ⁇ m, with a volume fraction of 15%.
  • the billets thus obtained are then peeled to ⁇ 140 mm, homogenized for 8 hours at 470 ° C, hot-spun at 400 ° C in the form of flats of section 50 x 22 mm (spinning ratio 14.6).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Forging (AREA)
  • Conductive Materials (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Description

  • L'invention concerne un procédé d'obtention d'un alliage d'Al de la série 7000 (Al-Zn-Mg-Cu) à haute résistance mécanique et bonne ductilité par "pulvérisation -dépôt" (spray déposition). De façon plus précise, le procédé vise à obtenir des alliages d'Al qui possèdent à l'état traité (T6) une charge de rupture ≧ 800 MPa avec un allongement, au moins dans le sens long, supérieur ou égal à 5%.
  • L'invention concerne également l'obtention de matériaux composites à très haute résistance, haute rigidité et bonne ductilité ayant pour matrice les alliages 7000 décrits ci-dessus avec un renfort particulaire de céramiques et obtenus directement par "pulvérisation-dépôt".
  • De nombreux travaux ont déjà été réalisés sur les alliages de la série 7000, chargés en éléments d'alliage en vue d'obtenir de hautes résistances mécaniques associés à une bonne ductilité, soit par métallurgie classique, soit par la métallurgie des poudres.
  • Ainsi, dans le premier cas, on connaît les brevets français FR 2517702 ou FR 2457908 dans lesquels sont présentés des alliages de la série 7000 ne dépassant pas une charge de rupture de 650-700 MPa environ, avec un allongement de l'ordre de 8-9% (dans le sens long).
  • On a aussi cherché à obtenir des alliages de la série 7000 à haute résistance par la métallurgie des poudres, c'est-à-dire par un procédé comportant la formation de particules (poudres, paillettes, ruban broyé, etc...) qui sont ensuite consolidés sous forme massive par diverses méthodes (compressions à froid, à chaud, isostatique, filage, etc...).
  • Cependant, ces alliages bien qu'atteignant de hautes ou très hautes résistances mécaniques, possèdent des allongements très faibles, qui en interdisent tout emploi industriel.
  • C'est ainsi que HAAR rapporte dans Alcoa Report n° 13-65-AP59-S- Contract n° DA-360-034-ORD-3559 RD (Frankfort Arsenal), mai 1966, des charges de rupture dépassant 800 MPa mais avec des allongements de l'ordre de 1%. De même, BOWER et al- Met. Trans. Vol. 1, janvier 1970, p.191 - rapporte, sur des alliages de la même famille, élaborés par "splat cooling" (technique marteau et enclume) des charges de rupture de 800 MPa, mais avec des allongements de 2%.
  • Les brevets US 3563814 et US 4732610 sont relatifs à des alliages de la même famille obtenus par métallurgie des poudres mais dont les caractéristiques mécaniques sont nettement inférieures aux objectifs visés (charge de rupture de l'ordre de 500 MPa à 600 MPa).
  • L'invention consiste donc :
    • 1. à former par pulvérisation-dépôt un alliage massif de composition pondérale suivante :
      Zn
      8,5 à 15,0 %
      Mg
      2,0 à 4,0 %
      Cu
      0,5 à 2,0 %
      au moins un des 3 éléments suivants :
      Zr
      de 0,05 à 0,8 %
      Mn
      de 0,05 à 1,0 %
      Cr
      de 0,05 à 0,8 %
         avec Zr + Mn + Cr ≦ 1,4%
      Fe
      jusqu'à 0,5 %
      Si
      jusqu'à 0,5 %
      Autres (impuretés)
      ≦0,05 % chacune
      ≦0,15 % au total
         reste Al.
    • 2. à transformer à chaud le corps ainsi obtenu entre 300 et 450°C et éventuellement à froid.
    • 3. à traiter thermiquement le produit obtenu par mise en solution, trempe et revenu.
  • Par pulvérisation-dépôt, on entend un procédé dans lequel le métal est fondu, atomisé par un jet de gaz à haute pression sous forme de fines gouttelettes liquides qui sont ensuite dirigées et agglomérées sur un substrat de manière à former un dépôt massif et cohérent, contenant une faible porosité fermée. Ce dépôt peut se présenter sous la forme de billettes, tubes ou plaques dont la géométrie est contrôlée. Une technique de ce type est désignée sous le nom de "Spray Deposition" par les anglo-saxons et est également dénommée "procédé OSPREY".
    Ce dernier procédé est principalement décrit dans les demandes de brevets (ou brevets) suivants : GB-B-1379261; GB-B-1472939; GB-B-1548616; GB-B-1599392; GB-A-2172827; EP-A-225080; EP-A-225732; WO-A-87-03012.
  • Les meilleures caractéristiques mécaniques (Rm ≧ 800 MPa, A ≧ 5%) sont obtenues pour la composition donnée ci-dessus.
  • Si Zn ≦ 8,5% en poids, la fraction volumique de précipités à la base du durcissement structural de l'alliage (essentiellement du type η -Mg Zn₂ ou η'-(Mg,Zn,Al,Cu)) devient insuffisante et il n'est plus possible d'obtenir les niveaux de caractéristiques mécaniques élevés (tels que charge de rupture ≧ 800 MPa) qui sont l'objectif de la présente invention.
  • De même, si la teneur en Zn dépasse 15% en poids, la fraction volumique de seconde phase est trop élevée et conduit à un matériau fragile, avec des allongements à rupture très faibles, ce qui interdit son emploi industriel.
  • A l'intérieur de l'intervalle 8 à 15% en poids de zinc, les teneurs en cuivre et magnésium doivent se situer dans des proportions proches de la stoechiométrie des précipités durcissants. En pratique, on constate que lorsque Mg < 2% ou Cu < 0,5%, la nature et la fraction volumique des précipités formés sont insuffisantes pour atteindre les caractéristiques mécaniques visées. Lorsque, au contraire, Mg est ≧ 4% ou Cu ≧ 2,0%, ces éléments sont présents en excès dans l'alliage et le fragilisent considérablement.
    La présence de Cr, Zr, Mn, seuls ou en association, assure un durcissement supplémentaire soit par effet de fibrage en empêchant ou limitant la recristallisation pouvant intervenir lors du traitement thermique suivant les opérations de transformation par corroyage, soit par un mécanisme de durcissement par dispersion, vu que ces éléments forment en combinaison avec l'aluminium des phases dispersées fines et bien réparties (par exemple Al₃Zr, Al₆Mn, ou des phases ternaires Al₁₈Cr₂Mg₃ et (Al,Cr,Mn). Toutefois, leur teneur doit être limitée à 0,8% pour Cr et Zr et à 1,0% pour Mn et leur teneur globale (Zr+Cr+Mn) ≦ 1,4% car au-delà, les phases dispersées formées sont trop nombreuses et trop grossières et fragilisent par conséquent le matériau. De plus des teneurs en Cr,Zr et Mn supérieures aux limites indiquées ci-dessus conduisent à des températures de liquidus élevées des alliages, ce qui pose des problèmes d'élaboration liés en particulier à la sublimation du zinc ou du magnésium. Les teneurs en fer et silicium sont limitées supérieurement à 0,5%, car au-delà se forment des composés intermétalliques grossiers qui nuisent à la ductilité de l'alliage.
  • La composition préférentielle est :
  • Zn
    de 8,7 à 13,7%
    Mg
    de 2,2 à 3,8%
    Cu
    de 0,6 à 1,6%
    au moins un des 3 éléments suivants :
    Zr
    de 0,05 à 0,5%
    Mn
    de 0,05 à 0,8%
    Cr
    de 0,05 à 0,5%

       avec Zr + Mn + Cr ≦ 1,2%
    Fe
    jusqu'à 0,3%
    Si
    jusqu'à 0,2%
    autres (impuretés)
    ≦ 0,05% chacun
    ≦ 0,15% total

       reste Al.
  • En vue de l'obtention de meilleurs résultats, la teneur en éléments principaux obéit, de préférence, à la relation suivante, 5,5 ≦ Mg + Cu + Zn 6 ≦ 6,5
    Figure imgb0001
  • C'est en effet dans ce domaine de composition que la fraction volumique des phases durcissantes est maximale tout en permettant une mise en solution complète des éléments d'addition lors du traitement thermique.
  • Ainsi, un très haut niveau de résistance mécanique peut être atteint tout en conservant une bonne ductilité.
    En ce qui concerne l'effet des éléments formant des dispersoïdes (Zr, Cr, Mn), on s'est rendu compte qu'il était préférable de les utiliser tous les 3 en association plutôt que l'un ou l'autre séparément. En effet, pour une teneur globale en Zr + Cr + Mn donnée, on obtient une distribution de dispersoïdes plus fins et mieux répartis lorsque les 3 éléments sont présents simultanément plutôt que seulement 1 ou 2 des 3. Lorsque les 3 éléments sont associés, on a cependant intérêt à limiter leur teneur globale à 1,2%. Plus précisément, on constate que pour une teneur identique, Zr conduit à la formation de dispersoïdes (Al₃Zr) plus fins et mieux répartis que ceux formés à partir de Cr ou Mn; on est donc conduit, lorsque la ductilité et la ténacité de l'alliage doivent être maximisés à limiter la teneur en Mn + Cr à 0,6% maximum.
  • La transformation à chaud de l'alliage massif obtenu par pulvérisation-dépôt a généralement lieu entre 300 et 450°C, de préférence par filage, forgeage ou laminage, en une ou plusieurs opérations successives; ces opérations peuvent éventuellement être combinées par exemple filage + laminage ou filage + forgeage/matriçage.
    Les opérations de transformation à chaud peuvent être complétées par des opérations à froid telles que laminage, étirage, etc...
    La mise en solution est effectuée entre 440 et 520°C, entre 2 et 8h suivant la taille des produits; la trempe est suivie d'un revenu entre 2 et 25 h entre 90 et 150°C en un ou plusieurs paliers, les temps les plus longs étant généralement associés aux températures les moins élevées (et vice-versa).
    Le produit obtenu par un procédé de pulvérisation-dépôt peut éventuellement être homogénéisé avant transformation à chaud entre 450 et 520°C pendant 2 à 50h en un ou plusieurs paliers.
  • L'invention consiste également, en utilisant les alliages et la méthode décrits ci-dessus, à obtenir des matériaux composites à très haute résistance (Rm ≧ 800 MPa), haut module d'Young (E ≧ 80 GPa), avec une ductilité acceptable par les utilisateurs (A ≧ 3%), ainsi qu'une bonne résistance à l'usure et au frottement. Ces matériaux se caractérisent par une matrice en alliage de la série 7xxx de composition indiquée ci-dessus et d'une dispersion des particules céramiques de type SiC, Al₂O₃ ou B₄C (ces exemples n'étant pas limitatifs) et sont obtenus directement par la technique de pulvérisation-dépôt.
  • L'invention consiste donc:
    • 1/ A fondre et à pulvériser un alliage 7000 de composition décrite ci-dessus
    • 2/ A coinjecter, dans le jet de gouttelettes métalliques atomisées des particules céramiques de type SiC, Al₂O₃, B₄C ou autres carbures, nitrures ou oxydes ou combinaison de ceux-ci, de forme sensiblement équiaxe et de taille comprise entre 1 µm et 50 µm et en fraction volumique, relative au métal, comprise entre 3 et 28%. Par taille on entend la dimension hors tout maximale de la particule.
    • 3/ A agglomérer le jet de particules métalliques et céramiques sous la forme d'un métal massif par la technique de pulvérisation-dépôt.
    • 4/ A transformer et traiter thermiquement le dépôt ainsi obtenu par une procédure analogue à celle décrite pour les alliages 7000 ci-dessus non renforcés.
  • L'invention sera mieux comprise à l'aide des exemples suivants:
  • EXEMPLE 1
  • Différents alliages repérés 1 à 7 dont les compositions sont indiquées dans le tableau 1 ont été fondus et élaborés par pulvérisation-dépôt (procédé OSPREY) sous forme de billettes cylindriques de 150 mm de diamètre dans les conditions suivantes:
    • température de coulée: 750°C
    • distance atomiseur-dépôt: 600 mm, maintenue sensiblement constante pendant l'essai
    • collecteur en acier inxoydable animé d'un mouvement de rotation.
    • oscillation de l'atomiseur par rapport a l'axe de rotation du collecteur

    Les débits gaz d'atomisation et débit métal utilisés pour chaque composition sont également indiqués au tableau 1.
    Après écroûtage à 140 mm, les billettes sont homogénéisées pendant 8 h à la température indiquée au tableau 1.
    Les ébauches sont ensuite filées à chaud à 400°C dans une presse dont le conteneur a un diamètre de 143 mm sous forme de méplats de section 50 x 22 mm, soit un rapport de filage de 14,6.
    Les méplats ainsi obtenus sont ensuite mis en solution à la température indiquée dans le tableau 1 pendant 2 h, trempés à l'eau froide puis revenus pendant 24 h à 120°C.
    Les caractéristiques mécaniques de traction en sens long, moyenne de 3 essais, sont reportées dans le tableau 2 (Ro,₂: limite élastique à 0,2% de déformation résiduelle, Rm: charge de rupture; A%: allongement de rupture).
  • On constate que les alliages n° 1 à 4 suivant l'invention présentent un très haut niveau de caractéristiques mécaniques, avec en particulier une charge de rupture ≧ 800 MPa ainsi qu'un niveau correct de ductilité, avec des allongements à rupture ≧ 5%.
  • L'alliage 5, hors des limites analytiques de l'invention (teneur en Zn trop faible) présente des caractéristiques mécaniques nettement plus faibles que les alliages de l'invention.
  • L'alliage 6, également hors des limites de l'invention du fait de sa trop forte teneur en Zn présente une ductilité (A%) et un écart plastique (Rm-R 0,2) très faibles.
  • L'alliage 7 se situe également hors du cadre de l'invention du fait de la teneur globale en Zr + Cr + Mn trop élevée. Ceci se traduit, malgré le bon niveau de caractéristiques mécaniques par une ductilité très faible (allongement à rupture = 2%).
    Il est donc clair qu'un ensemble de propriétés nettement supérieur est obtenu dans le cadre analytique de l'invention pour des alliages élaborés par la technique de pulvérisation-dépôt.
  • L'alliage 8 est un alliage dont la composition entre dans le domaine analytique des alliages de l'invention mais qui a été élaboré suivant une voie Métallurgie des Poudres décrite ci-après: l'alliage est fondu puis atomisé à l'azote sous forme de poudres; celles-ci sont récupérées et tamisées à 100 µm. Les poudres de taille inférieure à 100 µm sont mises dans des conteneurs en aluminium de diamètre 140 mm munies d'un tube orifice puis sont dégazées à chaud sous vide secondaire (par pompage à travers le tube) à la température de 460°C pendant 100 h. Les conteneurs de poudre ainsi dégazés sont soudés de manière étanche puis comprimés à chaud dans une presse à filer à matrice borgne dans un conteneur de diamètre 143 mm à 450°C de manière à atteindre la densité théorique du matériau. Les billettes ainsi obtenues sont alors usinées afin d'éliminer le matériau du conteneur puis filées dans les mêmes conditions que les billettes des exemples précédents. Le produit obtenu est traité thermiquement suivant une procédure analogue (voir température de mise en solution dans le tableau 1) et est caractérisé dans les mêmes conditions.
    Les résultats reportés tableau 1 montrent que le produit obtenu a une ductilité et un écart plastique très faibles malgré un niveau de résistance relativement élevé.
  • Le cas du dernier alliage illustre bien la supériorité de la méthode de l'invention pour obtenir des alliages ayant à la fois de très hautes résistances et une bonne ductilité.
  • EXEMPLE 2
  • Un alliage d'Al de composition:
    Al: 10%Zn; 3,0%Mg; 1,0%Cu; 0,1%Zr; 0,15%Cr; 0,15%Mn, reste Al
    a été fondu à 750°C et élaboré par pulvérisation-dépôt sous la forme de billettes de 150 mm de diamètre avec une coinjection simultanée de particules de SiC de taille moyenne 10 µm, avec une fraction volumique de 15%.
  • Les conditions de pulvérisation-dépôt étaient les suivantes:
    • débit métal : 5,8 kg/min.
    • débit gaz : 15 Nm3/min.
    • distance atomiseur-dépôt: 620 mm, maintenue sensiblement constante pendant l'essai
    • collecteur en acier inox animé d'un mouvement de rotation
    • oscillation de l'atomiseur par rapport à l'axe de rotation du collecteur
  • Les billettes ainsi obtenues sont ensuite écroûtées à Ø 140 mm, homogénéisées 8 h à 470°C, filées à chaud à 400°C sous forme de méplats de section 50 x 22 mm (rapport de filage 14,6).
  • Ces méplats sont traités thermiquement dans les conditions suivantes:
    • mise en solution 2 h à 470°C
    • trempe à l'eau froide
    • revenu 24 h à 120°C
  • Les caractéristiques de traction ainsi que le module d'Young (E) ont été mesurées sens long. Les résultats obtenus, moyenne de 3 essais, sont donnés ci-dessous:
    Ro,₂ = 798 MPa, Rm = 820 MPa, A = 4%, E = 95 GPa
  • Le procédé de pulvérisation-dépôt selon l'invention, outre le meilleur compromis de caractéristiques mécaniques obtenues, possède sur la métallurgie des poudres classique les avantages suivants :
    • on évite les opérations longues et coûteuses de dégazage et de compactage
    • la méthode est plus sûre, car il n'y a pas de manipulation de poudres réactives.
    Figure imgb0002
    Figure imgb0003

Claims (11)

  1. Méthode d'obtention d'alliages d'Al de la série 7000, à haute résistance et bonne ductilité caractérisée en ce que :
    a) on forme par pulvérisation-dépôt un alliage massif de composition pondérale suivante :
    Zn   de 8,5 à 15,0%
    Mg   de 2,0 à 4,0%
    Cu   de 0,5 à 2,0%
    au moins un des 3 éléments suivants :
    Zr   de 0,05 à 0,8%
    Mn   de 0,05 à 1,0%
    Cr   de 0,05 à 0,8%
       avec Zr + Mn + Cr ≦ 1,4%
    Fe   jusqu'à 0,5%
    Si   jusqu'à 0,5%
    autres (impuretés)   ≦ 0,05% chacun
    ≦ 0,15% total
       reste Al.
    b) on transforme à chaud le corps ainsi obtenu entre 300 et 450°C, puis éventuellement à froid.
    c) on traite thermiquement le produit obtenu par mise en solution, trempe et revenu.
  2. Méthode selon la revendication 1 caractérisée en ce que la composition chimique est la suivante :
    Zn   de 8,7 à 13,7%
    Mg   de 2,2 à 3,8%
    Cu   de 0,6 à 1,6%
    au moins un des 3 éléments suivants :
    Zr   de 0,05 à 0,5%
    Mn   de 0,05 à 0,8%
    Cr   de 0,05 à 0,5%
    avec Zr + Mn + Cr ≦ 1,2%
    Fe   jusqu'à 0,3%
    Si   jusqu'à 0,2%
    autres (impuretés)   ≦ 0,05% chacun
    ≦ 0,15% total
       reste Al
  3. Méthode selon les revendications 1 et 2 caractérisée en ce que les teneurs en Mg, Cu et Zn exprimées en pourcentages pondéraux obéissent à la relation: 5,5 ≦ Mg + Cu + Zn 6 ≦6,5
    Figure imgb0004
  4. Méthode selon les revendications 1, 2 ou 3 caractérisée en ce que Cr, Zr et Mn sont présentés simultanément dans la composition de l'alliage, avec: Cr ≧ 0,05%, Mn ≧ 0,05%, Zr ≧ 0,05%
    Figure imgb0005
    et Mn + Cr + Zr ≦ 1,2%.
    Figure imgb0006
  5. Méthode selon la revendication 4 caractérisée en ce que la composition de l'alliage est telle que: Mn + Cr ≦ 0,6%.
    Figure imgb0007
  6. Méthode selon l'une des revendications 1 à 5 caractérisée en ce qu'une homogénéisation entre 450 et 520°C pendant 2 à 50 h est effectuée entre les étapes a) et b).
  7. Méthode selon l'une des revendications 1 à 6 caractérisée en ce que la transformation à chaud est effectuée par filage, laminage ou forgeage ou une combinaison de ces opérations.
  8. Méthode selon la revendication 7, caractérisée en ce que la transformation à chaud est complétée par une transformation à froid.
  9. Méthode selon l'une des revendications 1 à 8 caractérisée en ce que la mise en solution est effectuée entre 440 et 520°C pendant 2 à 8h.
  10. Méthode selon l'une des revendications 1 à 9 caractérisée en ce que le revenu est effectué entre 90 et 150°C pendant 2 à 25 h.
  11. Méthode d'obtention de matériaux composites à matrice métallique dans laquelle on obtient un alliage massif selon l'une des revendications 1 à 10 caractérisée en ce que l'on coinjecte pendant l'opération de pulvérisation-dépôt des particules céramiques de forme sensiblement équiaxe, de taille comprise entre 1 et 50 µm, et de fraction volumique (relative au métal) comprise entre 3 et 28%.
EP89420497A 1988-12-19 1989-12-18 Procédé d'obtention par "pulvérisation-dépôt" d'alliages d'Al de la série 7000 et de matériaux composites à renforts discontinus ayant pour matrice ces alliages à haute résistance mécanique et bonne ductilité Expired - Lifetime EP0375571B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89420497T ATE90976T1 (de) 1988-12-19 1989-12-18 Verfahren zur herstellung von aluminiumlegierungen der serie 7000 mittels spruehabscheidung und nichtkontinuierlich verstaerkten verbundwerkstoffen, deren matrix aus diesen legierungen mit hoher mechanischer festigkeit und guter duktilitaet besteht.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8817044 1988-12-19
FR8817044A FR2640644B1 (fr) 1988-12-19 1988-12-19 Procede d'obtention par " pulverisation-depot " d'alliages d'al de la serie 7000 et de materiaux composites a renforts discontinus ayant pour matrice ces alliages a haute resistance mecanique et bonne ductilite

Publications (2)

Publication Number Publication Date
EP0375571A1 EP0375571A1 (fr) 1990-06-27
EP0375571B1 true EP0375571B1 (fr) 1993-06-23

Family

ID=9373316

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89420497A Expired - Lifetime EP0375571B1 (fr) 1988-12-19 1989-12-18 Procédé d'obtention par "pulvérisation-dépôt" d'alliages d'Al de la série 7000 et de matériaux composites à renforts discontinus ayant pour matrice ces alliages à haute résistance mécanique et bonne ductilité

Country Status (14)

Country Link
US (1) US4995920A (fr)
EP (1) EP0375571B1 (fr)
JP (1) JPH02258935A (fr)
AT (1) ATE90976T1 (fr)
AU (1) AU615366B2 (fr)
BR (1) BR8906543A (fr)
CA (1) CA2005747C (fr)
DD (1) DD290024A5 (fr)
DE (1) DE68907331T2 (fr)
FR (1) FR2640644B1 (fr)
HU (1) HUT53681A (fr)
IL (1) IL92727A0 (fr)
NO (1) NO895100L (fr)
TR (1) TR24392A (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10301710B2 (en) 2005-01-19 2019-05-28 Otto Fuchs Kg Aluminum alloy that is not sensitive to quenching, as well as method for the production of a semi-finished product

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2645546B1 (fr) * 1989-04-05 1994-03-25 Pechiney Recherche Alliage a base d'al a haut module et a resistance mecanique elevee et procede d'obtention
JP2538692B2 (ja) * 1990-03-06 1996-09-25 ワイケイケイ株式会社 高力、耐熱性アルミニウム基合金
US5223216A (en) * 1991-04-08 1993-06-29 Allied-Signal Inc. Toughness enhancement of al-li-cu-mg-zr alloys produced using the spray forming process
FR2675821B1 (fr) * 1991-04-26 1993-07-02 Pechiney Recherche Methode de preparation d'echantillons de reference pour analyse spectrographique.
KR100341541B1 (ko) * 1993-04-15 2002-11-29 엘지엘 1996 리미티드 중공본체의 제조방법
FR2838135B1 (fr) * 2002-04-05 2005-01-28 Pechiney Rhenalu PRODUITS CORROYES EN ALLIAGES A1-Zn-Mg-Cu A TRES HAUTES CARACTERISTIQUES MECANIQUES, ET ELEMENTS DE STRUCTURE D'AERONEF
DE102005032544B4 (de) * 2004-07-14 2011-01-20 Hitachi Powdered Metals Co., Ltd., Matsudo Abriebsresistente gesinterte Aluminiumlegierung mit hoher Festigkeit und Herstellugsverfahren hierfür
US7229700B2 (en) * 2004-10-26 2007-06-12 Basf Catalysts, Llc. Corrosion-resistant coating for metal substrate
US20060292392A1 (en) * 2004-10-26 2006-12-28 Froning Marc J Corrosion-resistant coating for metal substrate
US20070014277A1 (en) * 2005-07-14 2007-01-18 Yahoo! Inc. Content router repository
JP5059512B2 (ja) * 2007-02-28 2012-10-24 株式会社神戸製鋼所 高強度、高延性Al合金およびその製造方法
WO2008105303A1 (fr) * 2007-02-28 2008-09-04 Kabushiki Kaisha Kobe Seiko Sho Alliage d'al à haute résistance et à haute ductilité et son procédé de fabrication
CN104878262B (zh) * 2015-05-18 2017-01-18 广东省材料与加工研究所 一种高强度铝合金及其制备方法
DE102016001500A1 (de) * 2016-02-11 2017-08-17 Airbus Defence and Space GmbH Al-Mg-Zn-Legierung für den integralen Aufbau von ALM-Strukturen
US11603583B2 (en) 2016-07-05 2023-03-14 NanoAL LLC Ribbons and powders from high strength corrosion resistant aluminum alloys
CN112601830A (zh) * 2018-06-20 2021-04-02 纳诺尔有限责任公司 用于焊接和增材制造的高性能Al-Zn-Mg-Zr基铝合金
CN109055875A (zh) * 2018-10-27 2018-12-21 安徽创弘精密机械有限公司 一种提高铝合金型材强度的热处理工艺
CN110527882A (zh) * 2019-09-17 2019-12-03 苏州镁馨科技有限公司 一种高硬度铝合金材料
CN113088839A (zh) * 2020-01-08 2021-07-09 核工业理化工程研究院 喷射沉积超高强铝合金的致密化处理方法、应用及其致密化预成型坯
CN114107768B (zh) * 2020-08-26 2022-09-20 宝山钢铁股份有限公司 一种喷射铸轧7xxx铝合金薄带的制备方法
CN113005376B (zh) * 2021-02-10 2022-04-19 北京科技大学 一种超强高韧Al-Zn-Mg-Cu铝合金的固溶-时效热处理工艺
CN113481416B (zh) * 2021-07-08 2022-08-26 中南大学 一种高性能Al-Zn-Mg-Cu系合金
CN115961158A (zh) * 2022-04-25 2023-04-14 江苏大学 锶锆钛钇铈五元复合微合金化的780MPa超高强度超耐晶间腐蚀铝合金及制备方法
CN115961193A (zh) * 2022-04-25 2023-04-14 江苏大学 锶锆钛铒镧五元复合微合金化的790MPa超高强度超耐晶间腐蚀铝合金及制备方法
CN116121606A (zh) * 2022-04-25 2023-05-16 江苏大学 锶锆钛钇镧五元复合微合金化800MPa强度级铝合金及其制备方法
CN116121607A (zh) * 2022-04-25 2023-05-16 江苏大学 锶锆钛镧四元复合微合金化的740-780MPa超高强高塑性耐腐蚀铝合金及制备方法
CN115961194A (zh) * 2022-04-25 2023-04-14 江苏大学 锶锆钛铒四元复合微合金化的790MPa超高强度高塑性耐晶间腐蚀铝合金及制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3563814A (en) * 1968-04-08 1971-02-16 Aluminum Co Of America Corrosion-resistant aluminum-copper-magnesium-zinc powder metallurgy alloys
FR2457908A1 (fr) * 1979-06-01 1980-12-26 Gerzat Metallurg Procede de fabrication de corps creux en alliage d'aluminium et produits ainsi obtenus
DE3376076D1 (en) * 1982-09-03 1988-04-28 Alcan Int Ltd Aluminium alloys
GB8507675D0 (en) * 1985-03-25 1985-05-01 Atomic Energy Authority Uk Metal product fabrication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10301710B2 (en) 2005-01-19 2019-05-28 Otto Fuchs Kg Aluminum alloy that is not sensitive to quenching, as well as method for the production of a semi-finished product

Also Published As

Publication number Publication date
NO895100D0 (no) 1989-12-18
DD290024A5 (de) 1991-05-16
DE68907331D1 (de) 1993-07-29
NO895100L (no) 1990-06-20
HU896605D0 (en) 1990-02-28
AU615366B2 (en) 1991-09-26
BR8906543A (pt) 1990-09-04
CA2005747C (fr) 1996-04-09
CA2005747A1 (fr) 1990-06-19
JPH02258935A (ja) 1990-10-19
ATE90976T1 (de) 1993-07-15
HUT53681A (en) 1990-11-28
TR24392A (tr) 1991-09-01
US4995920A (en) 1991-02-26
FR2640644A1 (fr) 1990-06-22
IL92727A0 (en) 1990-09-17
EP0375571A1 (fr) 1990-06-27
DE68907331T2 (de) 1993-10-21
FR2640644B1 (fr) 1991-02-01
AU4681689A (en) 1990-06-21

Similar Documents

Publication Publication Date Title
EP0375571B1 (fr) Procédé d&#39;obtention par &#34;pulvérisation-dépôt&#34; d&#39;alliages d&#39;Al de la série 7000 et de matériaux composites à renforts discontinus ayant pour matrice ces alliages à haute résistance mécanique et bonne ductilité
EP0419375B1 (fr) Alliages de magnésium à haute résistance mécanique et procédé d&#39;obtention par solidification rapide
EP0465376B1 (fr) Alliage de magnésium à haute résistance mécanique contenant du strontium et procédé d&#39;obtention par solidification rapide
EP0357743B1 (fr) Alliages de magnesium a haute resistance mecanique et procede d&#39;obtention de ces alliages par solidification rapide
EP0414620B1 (fr) Procédé d&#39;obtention d&#39;alliages de magnésium par pulvérisation-dépôt
US4973522A (en) Aluminum alloy composites
EP0208631B1 (fr) Alliages d&#39;Al à hautes teneurs de Li et Si et un procédé de fabrication
EP0391815B1 (fr) Alliage à base d&#39;A1 à haut module et à resistance mécanique élevée et procédé d&#39;obtention
AU600030B2 (en) Particulate metal composites
EP0265307B1 (fr) Procédé de fabrication de pièces en alliage d&#39;aluminium hypersilicié obtenu à partir de poudres refroidies à très grande vitesse de refroidissement
CH626406A5 (fr)
FR2573777A1 (fr) Alliage d&#39;aluminium resistant a la chaleur, a haute resistance, et procede pour fabriquer un element porteur constitue de cet alliage
EP2325342B1 (fr) Compactage à chaud et extrusion d&#39;alliages d&#39;aluminium L12
EP0362086B1 (fr) Procédé de fabrication de pièces en alliage d&#39;aluminium gardant une bonne résistance à la fatigue après un maintien prolongé à chaud
CA2360673A1 (fr) Produit en alliage aluminium-silicium hypereutectique pour mise en forme a l&#39;etat semi-solide
FR2805828A1 (fr) Alliage a base d&#39;aluminium contenant du bore et son procede de fabrication
EP0320417B1 (fr) Pièces en alliage d&#39;aluminium, telles que bielles notamment, ayant une résistance à la fatigue améliorée et procédé de fabrication
FR2651245A2 (fr) Alliages de magnesium a haute resistance mecanique et procede d&#39;obtention par solidification rapide.
JPH11269592A (ja) 焼入れ感受性の低いAl−過共晶Si合金およびその製造方法
FR2627780A1 (fr) Alliages de magnesium a haute resistance mecanique et procede d&#39;obtention de ces alliages par solidification rapide
FR2688233A1 (fr) Alliages de magnesium elabores par solidification rapide possedant une haute resistance mecanique a chaud.
JPH10265918A (ja) アルミニウム合金
JPH0931583A (ja) 耐食性に優れた高強度アルミニウム合金およびその成形体

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19900716

17Q First examination report despatched

Effective date: 19921208

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930623

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19930623

Ref country code: AT

Effective date: 19930623

REF Corresponds to:

Ref document number: 90976

Country of ref document: AT

Date of ref document: 19930715

Kind code of ref document: T

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930630

REF Corresponds to:

Ref document number: 68907331

Country of ref document: DE

Date of ref document: 19930729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19931231

Ref country code: CH

Effective date: 19931231

Ref country code: BE

Effective date: 19931231

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: PEAK WERKSTOFF GMBH

Effective date: 19940321

BERE Be: lapsed

Owner name: PECHINEY RECHERCHE (GROUPEMENT D'INTERET ECONOMIQ

Effective date: 19931231

NLR1 Nl: opposition has been filed with the epo

Opponent name: PEAK WERKSTOFF GMBH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: CH

Ref legal event code: AUV

Free format text: LE BREVET CI-DESSUS EST TOMBE EN DECHEANCE, FAUTE DE PAIEMENT, DE LA 5E ANNUITE.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961114

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19961213

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19961231

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971124

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971218

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19990217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991001

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051218