EP0362086B1 - Procédé de fabrication de pièces en alliage d'aluminium gardant une bonne résistance à la fatigue après un maintien prolongé à chaud - Google Patents

Procédé de fabrication de pièces en alliage d'aluminium gardant une bonne résistance à la fatigue après un maintien prolongé à chaud Download PDF

Info

Publication number
EP0362086B1
EP0362086B1 EP89420361A EP89420361A EP0362086B1 EP 0362086 B1 EP0362086 B1 EP 0362086B1 EP 89420361 A EP89420361 A EP 89420361A EP 89420361 A EP89420361 A EP 89420361A EP 0362086 B1 EP0362086 B1 EP 0362086B1
Authority
EP
European Patent Office
Prior art keywords
alloy
zirconium
manganese
process according
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89420361A
Other languages
German (de)
English (en)
Other versions
EP0362086A1 (fr
Inventor
Jean-François Faure
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pechiney Recherche GIE
Original Assignee
Pechiney Recherche GIE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pechiney Recherche GIE filed Critical Pechiney Recherche GIE
Priority to AT89420361T priority Critical patent/ATE90397T1/de
Publication of EP0362086A1 publication Critical patent/EP0362086A1/fr
Application granted granted Critical
Publication of EP0362086B1 publication Critical patent/EP0362086B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Definitions

  • the present invention relates to a process for manufacturing parts made of aluminum alloy retaining good resistance to fatigue after prolonged hot keeping.
  • aluminum has the particular property of being three times lighter than steel and of having good corrosion resistance. By combining it with metals such as copper and magnesium, its mechanical resistance is greatly improved. Furthermore, the addition of silicon gives a product having good wear resistance. These alloys doped with other elements such as iron, nickel, cobalt, chromium and manganese, see their heat resistance improved. A compromise between these addition elements makes aluminum a material of choice for the manufacture of parts for automobiles such as engine block, piston, cylinder, etc.
  • EP 144898 teaches an aluminum alloy containing by weight 10 to 36% of silicon, 1 to 12% of copper, 0.1 to 3% of magnesium and 2 to 10% of at least one element chosen from the group Fe, Ni, Co, Cr and Mn.
  • This alloy is applicable to the manufacture of parts intended for both the aeronautical and automotive industries, said parts being obtained by the technique of powder metallurgy comprising, in addition to shaping by compacting and spinning, an intermediate processing step thermal between 250 and 550 ° C.
  • Document JP-A-6342344 is also known, which teaches an aluminum alloy with excellent mechanical properties at high temperature by powder metallurgy, characterized in that it consists of Si, Fe, Cu, Mg and Mn in the weight proportions. 12 ⁇ If ⁇ 28%, 2.0 ⁇ Fe ⁇ 10%, 0.8 ⁇ Cu ⁇ 5.0%, 0.3 ⁇ Mg ⁇ 3.5% and 0.5 ⁇ Mn ⁇ 5%, of one or more elements chosen from Zr, Hf, Ni, Ti, V, Cr , Mo, Nb and Ta in a proportion by weight of 0.02 - 2.0% and, for the rest, of aluminum and inevitable impurities. But here, as in the previous document, no mention is made of the fatigue resistance properties after being kept for 1000 hours at 150 ° C. and the range of manganese content is relatively wide.
  • the Applicant has noticed that if the zirconium brought a significant improvement from the point of view of the fatigue limit at 20 ° C, since it went from 150 to 185 MPa, on the other hand, after a maintenance of 1000 hours at 150 ° C (which roughly represents the working conditions of a connecting rod at mid-life of an engine), that limit dropped to 143 Mpa, a reduction of more than 22%.
  • the present invention which consists of a process for manufacturing aluminum alloy parts obtained from the alloy in the state melted by a means of rapid solidification, retaining a suitable resistance to fatigue after prolonged keeping hot which contain by weight 11 to 26% of silicon, 2 to 5% of iron, 0.5 to 5% of copper, 0, 1% to 2% magnesium, zirconium, at least 0.5% manganese, optionally minor additions of nickel and / or cobalt and the aluminum balance, characterized in that an alloy containing 0.1 to 0.4% of zirconium and up to 1.5% of manganese is used.
  • manganese has been substituted for part of the zirconium, which on the one hand allows savings on raw materials: manganese being cheaper than zirconium , on the other hand facilitates the melting conditions of the alloy since a binary alloy containing 1% of zirconium has a liquidus temperature of 875 ° C whereas if it is 1% of manganese this temperature remains close 660 ° C.
  • the invention is also characterized in that the alloy is subjected in the molten state to a rapid solidification means before putting it in the form of parts.
  • a rapid solidification means before putting it in the form of parts.
  • elements such as iron, zirconium and manganese are very little soluble in the alloy, it is essential to obtain parts meeting the desired characteristics to avoid a rough and heterogeneous precipitation of these elements what we achieves by cooling them as quickly as possible.
  • the alloy is preferably melted at a temperature above 700 ° C so as to avoid any phenomenon of premature precipitation.
  • the parts after being possibly subjected to machining, are heat treated between 490 and 520 ° for 1 to 10 hours, then quenched in water before undergoing a tempering treatment between 170 to 210 ° C for 2 to 32 hours, which improves their mechanical characteristics.
  • the combination of zirconium-manganese in limited quantities and the rapid solidification of the alloy obtained contribute to improving the resistance to fatigue, whether cold or hot, of parts liable to exhibit irregularities. surface like threads or connection curves and which find their application in the automobile industry, in particular in the confection of rods, axes of pistons and pistons.

Description

  • La présente invention est relative à un procédé de fabrication de pièces en alliage d'aluminium gardant une bonne résistance à la fatigue après un maintien prolongé à chaud.
  • On sait que l'aluminium a notamment pour propriétés d'être trois fois plus léger que l'acier et d'avoir une bonne résistance à la corrosion. En l'alliant à des métaux tels que le cuivre et le magnésium, on améliore fortement sa résistance mécanique. Par ailleurs, l'ajout de silicium donne un produit ayant une bonne résistance à l'usure. Ces alliages dopés avec d'autres éléments tels que le fer, le nickel, le cobalt, le chrome et le manganèse, voient leur tenue à chaud améliorée. Un compromis entre ces éléments d'addition fait de l'aluminium un matériau de choix pour la fabrication de pièces pour automobiles telles que bloc-moteur, piston, cylindre, etc ...
  • C'est ainsi que l'EP 144898 enseigne une alliage d'aluminium contenant en poids 10 à 36% de silicium, 1 à 12% de cuivre, 0,1 à 3% de magnésium et 2 à 10% d'au moins un élément choisi dans le groupe Fe, Ni, Co, Cr et Mn.
  • Cet alliage est applicable à la confection de pièces destinées aussi bien à l'industrie aéronautique qu'automobile, lesdites pièces étant obtenues par la technique de la métallurgie des poudres comportant, outre la mise en forme par compactage et filage, une étape intermédiaire de traitement thermique entre 250 et 550°C.
  • Si ces pièces répondent bien aux différentes propriétés énoncées ci-dessus, il en est une qui n'a pas été prise en compte, à savoir la tenue à la fatigue.
  • On connait également le document JP-A-6342344 qui enseigne un alliage d'aluminium aux excellentes propriétés mécaniques à haute température par métallurgie des poudres caractérisé en ce qu'il se compose de Si, Fe, Cu, Mg et Mn dans les proportions pondérales 12≦Si≦28%, 2,0≦Fe≦10%, 0,8≦Cu≦5,0%, 0,3≦Mg≦3,5% et 0,5≦Mn≦5%, d'un ou plusieurs éléments choisis parmi Zr, Hf, Ni, Ti, V, Cr, Mo, Nb et Ta dans une proportion pondérale de 0,02 - 2,0% et, pour le reste, d'aluminium et d'inévitables impuretés. Mais ici comme dans le document précédent, il n'est pas fait mention des propriétés de tenue à la fatigue après un maintien de 1000 heures à 150°C et la fourchette de teneur en manganèse est relativement large.
  • Or, l'homme de l'art sait que la fatigue correspond à un changement permanent, localisé et progressif de la structure métallique qui se produit dans les matériaux soumis à une succession de contraintes discontinues et qui peut entraîner des fissures et même des ruptures des pièces après une application desdites contraintes suivant un nombre de cycles plus ou moins grand et ce alors que leur intensité est le plus souvent nettement inférieure à celle qu'il faut appliquer au matériau de façon continue pour obtenir une rupture par traction. C'est pourquoi les valeurs de module d'élasticité, de résistance à la traction, de dureté, du taux de retrait pas fluage énoncées dans les documents cités ne peuvent rendre compte de l'aptitude de l'alliage à la résistance à la fatigue.
  • Or, il est important pour des pièces telles que les bielles ou les axes de piston, par exemple, qui travaillent en dynamique et qui son soumises à des efforts périodiques, de présenter une bonne tenue à la fatigue.
  • C'est pourquoi la demanderesse s'étant penchée sur ce problème a certes constaté que les pièces fabriquées à partir des alliages entrant dans le cadre du document sus-mentionné présentaient une résistance à la fatigue qui pouvait convenir à certaines applications mais, qu'il était possible d'améliorer notablement cette propriété en modifiant leur composition. C'est dans ce but qu'elle a mis au point des pièces en alliages d'aluminium contenant en poids 11 à 22% de silicium, 2 à 5% de fer, 0,5 à 4% de cuivre, 0,2 à 1,5% de magnésium caractérisées en ce qu'elles contiennent également 0,4 à 1,5% de zirconium.
  • Cette invention a d'ailleurs fait l'objet de la demande de brevet français n°87-17674.
  • Toutefois, la demanderesse s'est aperçue que si le zirconium apportait une amélioration sensible du point de vue de la limite de fatigue à 20°C, puisque celle-ci passait de 150 à 185 MPa, par contre, après un maintien de 1000 heures à 150°C (ce qui représente en gros les conditions de travail d'une bielle à mi-vie d'un moteur), celle limite chutait à 143 Mpa, soit une réduction de plus de 22%.
  • Poursuivant ses travaux, elle a trouvé qu'on pouvait remédier à cet inconvénient en combinant à l'action du zirconium celle du manganèse.
  • D'où la présente invention qui consiste en un procédé de fabrication de pièces en alliage d'aluminium obtenues à partir de l'alliage à l'état fondu par un moyen de solidification rapide, gardant une résistance convenable à la fatigue après un maintien prolongé à chaud qui contiennent en poids 11 à 26% de silicium, 2 à 5% de fer, 0,5 à 5% de cuivre, 0,1% à 2% de magnésium, du zirconium, au moins 0,5% de manganèse, éventuellement des additions mineures de nickel et/ou de cobalt et le solde en aluminium caractérisé en ce que l'on met en oeuvre un alliage contenant 0,1 à 0,4% de zirconium et jusqu'à 1,5% de manganèse.
  • Ces fourchettes encadrent les valeurs d'ajout de zirconium et de manganèse en dessous desquelles l'effet n'est pas significatif et au-dessus desquelles soit l'ajout du zirconium n'a plus d'influence déterminante, soit l'ajout de manganèse conduit à une fragilisation de la pièce et à une chute de la limite de fatigue d'une pièce entaillée, c'est à dire présentant des irrégularités de surface telles que pas de vis, rayons de raccordement, etc ...
  • Ainsi, par rapport à la composition décrite dans la demande de brevet sus-mentionnée, on a substitué le manganèse à une partie du zirconium, ce qui d'une part permet une économie sur les matières premières : le manganèse étant meilleur marché que le zirconium, d'autre part facilite les conditions de fusion de l'alliage puisqu'un alliage binaire contenant 1% de zirconium a une température de liquidus de 875°C alors que s'il s'agit de 1% de manganèse cette température reste voisine de 660°C.
  • Toutefois, outre la composition particulière de l'alliage mis en oeuvre, l'invention est également caractérisée en ce que l'on soumet l'alliage à l'état fondu à un moyen de solidification rapide avant de le mettre sous forme de pièces. En effet, comme les éléments tels que le fer, le zirconium et le manganèse sont très peu solubles dans l'alliage, il indispensable pour obtenir des pièces répondant aux caractéristiques souhaitées d'éviter une précipitation grossière et hétérogène de ces éléments ce qu'on réalise en les refroidissant le plus rapidement possible. En outre, l'alliage est de préférence fondu à une température supérieure à 700°C de manière à éviter tout phénomène de précipitation prématurée.
  • Il existe plusieurs façons d'opérer cette solidification rapide :
    • 1) On divise l'alliage fondu sous forme de fines gouttelettes
      • soit par atomisation du métal fondu à l'aide d'un gaz ou par atomisation mécanique suivie d'un refroidissement dans un gaz (air, hélium, argon).
      • soit par pulvérisation centrifuge ou autre procédé apparenté.

      Cela conduit à des poudres de granulométrie inférieure à 400 µm qui sont ensuite, suivant les techniques bien connues de la métallurgie des poudres, mises en forme par compactage à froid ou à chaud dans une presse uniaxiale ou isostatique puis filage et/ou forgeage ;
    • 2) On projette l'alliage fondu contre une surface métallique refroidie, suivant par exemple les techniques désignées par les Anglo-Saxons sous l'expression "melt spinning" ou "planar flow casting" et dont on trouve des descriptions dans les brevets US 4389258 et EP 136508, ou encore "melt overflow" et les techniques apparentées. On génère ainsi des rubans d'épaisseur inférieure à 100 µm qui sont ensuite mis en forme comme ci-dessus ;
    • 3) On projette l'alliage fondu atomisé dans un courant de gaz contre un substrat, suivant par exemple les techniques encore appelées "spray déposition" ou "spray casting" dont une description est donnée dans le brevet GB 1379261 et qui conduit à un dépôt cohérent suffisamment malléable pour être mis en forme par forgeage, filage ou matriçage.
  • Cette liste est bien entendu non exhaustive.
  • Afin d'affiner davantage la structure de précipitation, les pièces après avoir été soumises éventuellement à un usinage sont traitées thermiquement entre 490 et 520° pendant 1 à 10 heures, puis trempées à l'eau avant de subir un traitement de revenu entre 170 à 210°C pendant 2 à 32 heures, ce qui améliore leurs caractéristiques mécaniques.
  • L'invention sera mieux comprise à l'aide des exemples d'application suivants : une masse d'alliage de base, contenant en poids 18% de silicium, 3% de fer, 1% de cuivre, 1% de magnésium, solde aluminium a été fondue vers 900°C puis partagée en 8 lots numérotés de 0 à 7.
  • Aux lots 1 à 7 on a ajouté différentes quantités de zirconium et de manganèse, le lot 0 servant de témoin.
    Puis ces lots ont été traités soit par la métallurgie des poudres, soit par spray déposition :
    • la gamme métallurgie des poudres (PM) comprend une atomisation dans une atmosphère d'azote de particules de granulométrie inférieure à 200 µm, puis un compactage sous 300 MPa dans une presse isostatique, suivi d'un filage sous forme de barres de diamètre 40 mm
    • la gamme spray déposition (SD) utilise la technique du GB 1379261 et permet d'obtenir un dépôt sous forme d'une billette cylindrique qui est ensuite transformée en barre de diamètre 40 mm par filage.
  • Ces pièces sont ensuite traitées pendant 2 heures entre 490 et 520°C puis trempées à l'eau et soumises pendant 8 heures à une température comprise entre 170 et 200°C.
    Sur des éprouvettes de chacune de ces pièces, on a mesuré suivant des techniques bien connues de l'homme de l'art les caractéristiques suivantes :
    • le module d'Young E en GPa
    • la limite élastique conventionnelle à 0,2% : R0,2 en MPa, la charge de rupture Rm en MPa, l'allongement A en %, ces mesures étant faites à 20°C puis à 150°C après 100 heures de maintien
    • la limite de fatigue à 20°C au bout de 10⁷ cycles, Lf en MPa, sur des éprouvettes lisses à l'état T6 suivant les normes de l'Aluminium Association et sollicitées par flexion rotative
    • la même mesure que précédemment mais après un maintien de l'éprouvette pendant 1000 heures à 150°C
    • le rapport d'endurance Lf/Rm à 20°C
    • la limite de fatigue à 20°C comme ci-dessus mais sur éprouvette entaillée avec Kt = 2,2
    • le coefficient de sensibilité à l'entaille q = Kf-1 Kt-1
      Figure imgb0001

         ou Kf est le rapport de la limite de fatigue mesurée sur éprouvette lisse à la limite de fatigue sur éprouvette entaillée (l'alliage est d'autant plus sensible à l'entaille que q est élevé).
  • Tous les résultats de ces mesures figurent dans le tableau suivant.
    Figure imgb0002
  • De ces mesures, on déduit que si la limite de fatigue après maintien de 1000 heures à 150°C est de 120 MPa pour un alliage ne contenant ni zirconium, ni manganèse (N°=0), l'ajout de 1% de zirconium (N°=1) fait passer cette caractéristique à 148 MPa et l'ajout simultané de zirconium et de manganèse avec une quantité moindre de zirconium (N°=5) permet d'atteindre une valeur de 177 MPa.
  • De plus, la présence simultanée de zirconium et de manganèse permet d'atténuer fortement la dégradation de la limite de fatigue qui se produit après maintien à 150°C. En effet, avec l'alliage N°=1 sans manganèse, Lf passe de 185 à 143 MPa soit une dégradation de 42 MPa, alors qu'avec l'alliage N°=5 contenant 1,2% de manganèse, Lf passe de 193 à 177 MPa soit une dégradation de 16 MPa, valeur beaucoup plus faible que la précédente.
  • Ces mesures montrent également que ces éléments améliorent la limite de fatigue sur pièces entaillées mais que leur présence en trop grandes quantités contribue à dégrader cette caractéristique et à augmenter la fragilité. Ainsi, la valeur de cette limite passe de 100 MPa pour l'éprouvette N°=0 à 125 MPa pour l'éprouvette N°=3 (0,1% Zr - 0,6% Mn) mais chute à 105 MPa pour l'éprouvette N°=7 plus chargée en zirconium et en manganèse.
  • On constate ainsi que la présence simultanée de zirconium et de manganèse dans les proportions de l'invention (alliages n°5, 4, 3, 6) conduit à un coefficient de sensibilité à l'entaille plus faible (0,51-0,48-0,43-0,51) que pour les alliages de l'art antérieur où le coefficient avoisine 0,6 mis à part l'alliage n°=0 qui par ailleurs n'est pas utilisable en raison de sa trop faible résistance mécanique.
  • Ainsi suivant l'invention, la combinaison zirconium-manganèse en quantités limitées et la solidification rapide de l'alliage obtenu contribuent-t-elles à améliorer la tenue à la fatigue que ce soit à froid ou à chaud de pièces susceptibles de présenter des irrégularités de surface comme des pas de vis ou des courbes de raccordement et qui trouvent leur application dans l'industrie automobile, notamment dans la confection de bielles, d'axes de pistons et de pistons.

Claims (5)

  1. Procédé de fabrication de pièces en alliage d'aluminium obtenues à partir de l'alliage à l'état fondu par un moyen de solidification rapide, gardant une résistance convenable à la fatigue après un maintien prolongé à chaud et contenant en poids 11 à 26% de silicium, 2 à 5% de fer, 0,5 à 5% de cuivre, 0,1 à 2% de magnésium, du zirconium, au moins 0,5% de manganèse éventuellement des additions mineures de nickel et/ou de cobalt et le solde en aluminium caractérisé en ce que :
    - l'on met en oeuvre un alliage contenant 0,1 à 0,4% de zirconium et jusqu'à 1,5% de manganèse.
  2. Procédure selon la revendication 1 caractérisé en ce que le moyen de solidification rapide consiste à diviser l'alliage fondu sous forme de fines gouttelettes.
  3. Procédé selon la revendication 1 caractérisé en ce que le moyen de solidification rapide consiste en une projection de l'alliage fondu contre une surface métallique refroidie.
  4. Procédé selon la revendication 1 caractérisé en ce que le moyen de solidification rapide consiste en une projection de l'alliage atomisé dans un courant de gaz contre un substrat.
  5. Procédé selon la revendication 1 caractérisé en ce que l'on fait subir aux pièces une traitement thermique à une température comprise entre 490 et 520°C, une trempe à l'eau et un revenu entre 170 et 210°C.
EP89420361A 1988-09-26 1989-09-21 Procédé de fabrication de pièces en alliage d'aluminium gardant une bonne résistance à la fatigue après un maintien prolongé à chaud Expired - Lifetime EP0362086B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89420361T ATE90397T1 (de) 1988-09-26 1989-09-21 Verfahren zur herstellung von werkstuecken aus einer aluminium-legierung, welche bei einem laengeren verbleib auf hoeheren temperaturen eine gute ermuedungsbestaendigkeit beibehaelt.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8812982A FR2636974B1 (fr) 1988-09-26 1988-09-26 Pieces en alliage d'aluminium gardant une bonne resistance a la fatigue apres un maintien prolonge a chaud et procede de fabrication desdites pieces
FR8812982 1988-09-26

Publications (2)

Publication Number Publication Date
EP0362086A1 EP0362086A1 (fr) 1990-04-04
EP0362086B1 true EP0362086B1 (fr) 1993-06-09

Family

ID=9370672

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89420361A Expired - Lifetime EP0362086B1 (fr) 1988-09-26 1989-09-21 Procédé de fabrication de pièces en alliage d'aluminium gardant une bonne résistance à la fatigue après un maintien prolongé à chaud

Country Status (16)

Country Link
US (2) US4963322A (fr)
EP (1) EP0362086B1 (fr)
JP (1) JPH0819496B2 (fr)
KR (1) KR930003602B1 (fr)
CN (1) CN1041399A (fr)
AT (1) ATE90397T1 (fr)
BR (1) BR8904844A (fr)
DD (1) DD284904A5 (fr)
DE (1) DE68906999T2 (fr)
DK (1) DK468489A (fr)
ES (1) ES2042048T3 (fr)
FI (1) FI894499A (fr)
FR (1) FR2636974B1 (fr)
HU (1) HUT53680A (fr)
IL (1) IL91738A0 (fr)
YU (1) YU185389A (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368629A (en) * 1991-04-03 1994-11-29 Sumitomo Electric Industries, Ltd. Rotor for oil pump made of aluminum alloy and method of manufacturing the same
US5372775A (en) * 1991-08-22 1994-12-13 Sumitomo Electric Industries, Ltd. Method of preparing particle composite alloy having an aluminum matrix
KR100219758B1 (ko) * 1992-06-29 1999-09-01 구라우치 노리타카 알루미늄 합금제 오일펌프
EP0657553A1 (fr) * 1993-11-10 1995-06-14 Sumitomo Electric Industries, Ltd. Alliage de métallurgie des poudres d'aluminium-silicium azoté
DE19523484C2 (de) * 1995-06-28 2002-11-14 Daimler Chrysler Ag Verfahren zum Herstellen einer Zylinderlaufbüchse aus einer übereutektischen Aluminium/Silizium-Legierung zum Eingießen in ein Kurbelgehäuse einer Hubkolbenmaschine und danach hergestellte Zylinderlaufbüchse
US6332906B1 (en) 1998-03-24 2001-12-25 California Consolidated Technology, Inc. Aluminum-silicon alloy formed from a metal powder
US5965829A (en) * 1998-04-14 1999-10-12 Reynolds Metals Company Radiation absorbing refractory composition
DE10053664A1 (de) * 2000-10-28 2002-05-08 Leybold Vakuum Gmbh Mechanische kinetische Vakuumpumpe
US6902699B2 (en) * 2002-10-02 2005-06-07 The Boeing Company Method for preparing cryomilled aluminum alloys and components extruded and forged therefrom
US7435306B2 (en) * 2003-01-22 2008-10-14 The Boeing Company Method for preparing rivets from cryomilled aluminum alloys and rivets produced thereby
JP4665413B2 (ja) * 2004-03-23 2011-04-06 日本軽金属株式会社 高剛性・低線膨張率を有する鋳造用アルミニウム合金
US7922841B2 (en) * 2005-03-03 2011-04-12 The Boeing Company Method for preparing high-temperature nanophase aluminum-alloy sheets and aluminum-alloy sheets prepared thereby
CN1317410C (zh) * 2005-03-09 2007-05-23 沈阳工业大学 一种耐磨、耐热高硅铝合金及其成型工艺
DE102008018850A1 (de) * 2007-11-30 2009-06-04 Andreas Borst Kolben und Verfahren zu dessen Herstellung
CN103031473B (zh) * 2009-03-03 2015-01-21 中国科学院苏州纳米技术与纳米仿生研究所 高韧性Al-Si系压铸铝合金的加工方法
CN107377973A (zh) * 2017-08-30 2017-11-24 广东美芝制冷设备有限公司 合金组件及其制备方法和应用
CN108265204A (zh) * 2018-01-24 2018-07-10 安徽浩丰实业有限公司 一种含钴的活塞材料及其制备方法
CN109826900B (zh) * 2019-02-13 2021-02-02 江苏汉苏机械股份有限公司 运行平稳的活塞杆组件

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2357450A (en) * 1941-01-18 1944-09-05 Nat Smelting Co Aluminum alloy
GB563994A (en) * 1941-12-01 1944-09-08 Nat Smelting Co Improvements in or relating to aluminium base alloys
GB1431895A (en) * 1972-06-30 1976-04-14 Alcan Res & Dev Production of aluminium alloy products
GB1583019A (en) * 1978-05-31 1981-01-21 Ass Eng Italia Aluminium alloys and combination of a piston and cylinder
AU536976B2 (en) * 1980-09-10 1984-05-31 Comalco Limited Aluminium-silicon alloys
US4347076A (en) * 1980-10-03 1982-08-31 Marko Materials, Inc. Aluminum-transition metal alloys made using rapidly solidified powers and method
US4647321A (en) * 1980-11-24 1987-03-03 United Technologies Corporation Dispersion strengthened aluminum alloys
US4419143A (en) * 1981-11-16 1983-12-06 Nippon Light Metal Company Limited Method for manufacture of aluminum alloy casting
JPS58204147A (ja) * 1982-05-14 1983-11-28 Nissan Motor Co Ltd 耐熱アルミニウム合金
FR2529909B1 (fr) * 1982-07-06 1986-12-12 Centre Nat Rech Scient Alliages amorphes ou microcristallins a base d'aluminium
US4435213A (en) * 1982-09-13 1984-03-06 Aluminum Company Of America Method for producing aluminum powder alloy products having improved strength properties
US4592781A (en) * 1983-01-24 1986-06-03 Gte Products Corporation Method for making ultrafine metal powder
EP0144898B1 (fr) * 1983-12-02 1990-02-07 Sumitomo Electric Industries Limited Alliages d'aluminium et procédé pour leur fabrication
JPS60131944A (ja) * 1983-12-19 1985-07-13 Sumitomo Electric Ind Ltd 超耐熱耐摩耗アルミニウム合金およびその製造用複合粉末
US4734130A (en) * 1984-08-10 1988-03-29 Allied Corporation Method of producing rapidly solidified aluminum-transition metal-silicon alloys
JPS6148551A (ja) * 1984-08-13 1986-03-10 Sumitomo Light Metal Ind Ltd 高温強度に優れたアルミニウム合金成形材
JPS61238947A (ja) * 1985-04-16 1986-10-24 Sumitomo Light Metal Ind Ltd Al−Si系合金素材の製造方法
US4732610A (en) * 1986-02-24 1988-03-22 Aluminum Company Of America Al-Zn-Mg-Cu powder metallurgy alloy
JPS6311642A (ja) * 1986-06-30 1988-01-19 Showa Alum Corp ヒ−トロ−ラ−用アルミニウム合金
US4847048A (en) * 1986-07-21 1989-07-11 Ryobi Limited Aluminum die-casting alloys
JPS6342344A (ja) * 1986-08-06 1988-02-23 Honda Motor Co Ltd 高温強度特性に優れた粉末冶金用Al合金
CH673242A5 (fr) * 1986-08-12 1990-02-28 Bbc Brown Boveri & Cie
US4729790A (en) * 1987-03-30 1988-03-08 Allied Corporation Rapidly solidified aluminum based alloys containing silicon for elevated temperature applications
FR2624137B1 (fr) * 1987-12-07 1990-06-15 Cegedur Pieces en alliage d'aluminium, telles que bielles notamment, ayant une resistance a la fatigue amelioree et procede de fabrication

Also Published As

Publication number Publication date
ATE90397T1 (de) 1993-06-15
US4963322A (en) 1990-10-16
US4992242A (en) 1991-02-12
HUT53680A (en) 1990-11-28
KR930003602B1 (ko) 1993-05-08
IL91738A0 (en) 1990-06-10
DE68906999T2 (de) 1993-09-16
FR2636974A1 (fr) 1990-03-30
CN1041399A (zh) 1990-04-18
FI894499A (fi) 1990-03-27
YU185389A (sh) 1992-12-21
BR8904844A (pt) 1990-05-08
KR900004951A (ko) 1990-04-13
DD284904A5 (de) 1990-11-28
JPH0819496B2 (ja) 1996-02-28
DK468489D0 (da) 1989-09-22
JPH02232324A (ja) 1990-09-14
FR2636974B1 (fr) 1992-07-24
EP0362086A1 (fr) 1990-04-04
FI894499A0 (fi) 1989-09-22
ES2042048T3 (es) 1993-12-01
DK468489A (da) 1990-03-27
DE68906999D1 (de) 1993-07-15

Similar Documents

Publication Publication Date Title
EP0362086B1 (fr) Procédé de fabrication de pièces en alliage d'aluminium gardant une bonne résistance à la fatigue après un maintien prolongé à chaud
EP2475794B1 (fr) Coulée d'alliage d'aluminium et procédé de fabrication associé
JP4923498B2 (ja) 高強度・低比重アルミニウム合金
FR2573777A1 (fr) Alliage d'aluminium resistant a la chaleur, a haute resistance, et procede pour fabriquer un element porteur constitue de cet alliage
EP0265307B1 (fr) Procédé de fabrication de pièces en alliage d'aluminium hypersilicié obtenu à partir de poudres refroidies à très grande vitesse de refroidissement
RU2695852C2 (ru) α-β ТИТАНОВЫЙ СПЛАВ
JP4764094B2 (ja) 耐熱性Al基合金
FR2633942A1 (fr) Superalliage a base de nickel resistant aux pendillements par fatigue et son procede de fabrication
EP0320417B1 (fr) Pièces en alliage d'aluminium, telles que bielles notamment, ayant une résistance à la fatigue améliorée et procédé de fabrication
JPH03104832A (ja) クロムとケイ素で改変されたγ‐チタン‐アルミニウム合金
JP3173452B2 (ja) 耐摩耗性被覆部材及びその製造方法
CA2013270A1 (fr) Alliage a base d'al a haut module et resistance mecanique a elevee et procede d'obtention
EP0430754B1 (fr) Alliage inoxydable à mémoire de forme et procédé d'élaboration d'un tel alliage
JPH07197165A (ja) 高耐磨耗性快削アルミニウム合金とその製造方法
CA2444175C (fr) Acier a outils a tenacite renforcee, procede de fabrication de pieces dans cet acier et pieces obtenues
JPH0457738B2 (fr)
CN115233030A (zh) 一种焊接性能优异的铜合金及其制备方法
JPH02247348A (ja) 引張強度、延性および疲労強度にすぐれた耐熱性アルミニウム合金
JP4704720B2 (ja) 高温疲労特性に優れた耐熱性Al基合金
JPH11269592A (ja) 焼入れ感受性の低いAl−過共晶Si合金およびその製造方法
JP3245652B2 (ja) 高温用アルミニウム合金及びその製造方法
JPH02147195A (ja) コバルト・クロム基合金溶接材料の製造方法
JP2746390B2 (ja) 引張および疲労強度にすぐれたアルミニウム合金の製造方法
Reddy et al. Effect of cold rolling on the porosity, hardness properties of the spray deposited Al-18% Pb And Al-22% Pb Alloys
EP0092629A1 (fr) Procédé de fabrication de barres et de tubes en aciers à hautes caractéristiques mécaniques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19900420

17Q First examination report despatched

Effective date: 19920513

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19930609

Ref country code: AT

Effective date: 19930609

REF Corresponds to:

Ref document number: 90397

Country of ref document: AT

Date of ref document: 19930615

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930609

REF Corresponds to:

Ref document number: 68906999

Country of ref document: DE

Date of ref document: 19930715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930930

Ref country code: LI

Effective date: 19930930

Ref country code: CH

Effective date: 19930930

Ref country code: BE

Effective date: 19930930

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2042048

Country of ref document: ES

Kind code of ref document: T3

BERE Be: lapsed

Owner name: PECHINEY RECHERCHE

Effective date: 19930930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89420361.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970718

Year of fee payment: 9

Ref country code: GB

Payment date: 19970718

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970719

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970911

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970930

Year of fee payment: 9

Ref country code: ES

Payment date: 19970930

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980922

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19980922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980921

EUG Se: european patent has lapsed

Ref document number: 89420361.1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20001102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050921