EP0059902A1 - Aus Nickelpulver heissgepresste hochporöse Elektrode für alkalische Wasserelektrolyseure - Google Patents

Aus Nickelpulver heissgepresste hochporöse Elektrode für alkalische Wasserelektrolyseure Download PDF

Info

Publication number
EP0059902A1
EP0059902A1 EP82101509A EP82101509A EP0059902A1 EP 0059902 A1 EP0059902 A1 EP 0059902A1 EP 82101509 A EP82101509 A EP 82101509A EP 82101509 A EP82101509 A EP 82101509A EP 0059902 A1 EP0059902 A1 EP 0059902A1
Authority
EP
European Patent Office
Prior art keywords
electrode
nickel powder
pressed
hot
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82101509A
Other languages
English (en)
French (fr)
Other versions
EP0059902B1 (de
Inventor
Henning Prof. Dr. Ewe
Eduard W. Prof. Dr. Justi
Peter Dr. Brennecke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schnapka Herbert Dr
Original Assignee
Schnapka Herbert Dr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schnapka Herbert Dr filed Critical Schnapka Herbert Dr
Priority to AT82101509T priority Critical patent/ATE14323T1/de
Publication of EP0059902A1 publication Critical patent/EP0059902A1/de
Application granted granted Critical
Publication of EP0059902B1 publication Critical patent/EP0059902B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound

Definitions

  • the invention relates to a highly porous electrode hot-pressed from nickel powder for alkaline water electrolysers, in particular an electrode which is covered on its inner and outer surface with a 0.0025-0.1 ⁇ m (10-100 molecular layer) layer with NiO.
  • the object of the invention is to provide an electrode of the type mentioned at the outset which has an improved ("doctorate”) catalytic effect and in which the H 2 and O 2 deposition take place even at high current densities with low polarizations.
  • the long-term stability is to be increased by reducing the oxidation of the nickel of the electrode body, since the oxidation continues slowly even when the surface is essentially made of NiO.
  • the surface layer consists of a Ni-Ti mixed oxide.
  • a nickel powder which is alloyed with 1-15% by weight of titanium can be used to produce such an electrode.
  • the total amount of titanium in the electrode should be about 2% by weight. If the surface of this electrode is oxidized, Ni-Ti mixed oxides are formed on the surface. The oxidation processes are described below.
  • Another method for producing the surface layer from a Ni-Ti mixed oxide provides that pure Ni powder is used as the starting material and the Ti catalyst additive is applied to the Ni surface in such an amount and / or concentration by means of a titanium salt solution that the The total proportion of titanium in the Ni-Ti mixed oxide layer is about 2 to 3% by weight. It is particularly expedient to apply the Ti catalyst additive in the form of an aqueous titanyl sulfate solution (TiO (SO 4 ) solution).
  • TiO (SO 4 ) solution aqueous titanyl sulfate solution
  • Such a solution can be used to impregnate the amount of Ni powder required to produce the Ni support structure.
  • the electrode is then cold-pressed from the impregnated and dried Ni powder, and the Ni-Ti mixed oxide layer is then formed during hot pressing or sintering.
  • Another possibility is to impregnate the electrode, which has been cold-pressed from pure Ni powder, with the titanyl sulfate solution.
  • the impregnated electrode is hot pressed and / or sintered after drying.
  • titanyl sulfate solution can also be added to the hot-pressed or sintered electrode by soaking. The electrode is then annealed or sintered again.
  • the Ti catalyst additive can also be applied with solutions of other titanium salts, the solvent need not be water.
  • the inner and outer surface of the Ni-Ti mixed oxide layer covering the electrode can be achieved by tempering the porous Ti-containing Ni electrodes in air or in a 0 2 atmosphere.
  • the temperature should be at least 150 ° C and at most 500 ° C.
  • the amount of O 2 required for the oxidation can also be provided by using nickel powder for the production of the electrode which has an air and / or oxygen loading sufficient for the Ni-Ti mixed oxide layer when the electrode is hot pressed or sintered training that are carried out at temperatures between 300 and 500 ° C.
  • the catalytically and stabilizing mixed oxide layer is already achieved by hot pressing or sintering in air, thus saving a subsequent work step.
  • the annealing time should be a minimum of 0.5 h.
  • the tempering time can be extended up to 20 h.
  • Ni-Ti mixed oxide layer can also be produced by other processes, for example by thermal decomposition at temperatures above 150 ° C. of a surface chemically or electrochemically applied Ni Ti x (OH) 2 layer.
  • the catalytically effective stabilizing and Ni-Ti mixed oxide layer should have a minimum ceiling 0.0025 to 0.1 microns (10 to 100 molecular layers) in order a density in any case, e- g to ensure closed coverage of the Ni supporting structure of the electrode.
  • the electrode according to the invention resists the strongest known oxidant, namely oxygen in statu nascendi, even in long-term operation, and is therefore superior to platinum, which cannot be used for electrodes for water electrolysis for economic reasons.
  • electrodes according to the invention are particularly well suited for use in newer electrolysers, such as the ELOFLUX water electrolysis cell. They can be used both as anodes and as cathodes.
  • the task of reducing the polarizations occurring in the H 2 and O 2 deposition and complicating the further oxidation of the nickel is achieved without the use of rare or expensive noble metals, such as platinum.
  • the impregnated carbonyl nickel powder After the impregnated carbonyl nickel powder has dried, it is mixed with 4 g of salt filler (Na 2 C0 3 ; grain size 50 - 75 ⁇ m) to achieve the necessary macro or volume porosity, smoothly coated into a die with an inner diameter of 40 mm, with 0.32 to / cm 2 cold pressed and after heating in air at 400 ° C with 0.8 to / cm 2 hot pressed to a disc-shaped electrode. After the pressing process, the added salt filler is dissolved out in hot distilled water.
  • salt filler Na 2 C0 3 ; grain size 50 - 75 ⁇ m
  • An electrode to be used as an anode is produced as in the first exemplary embodiment, but the hot pressing is carried out in a gas-tight steel mold without any appreciable air access. After the salt filler has been removed, the electrode is dried and heated in air at 200 ° C. for 10 hours. The electrode is hot-pressed with the exclusion of air, which results in a stronger welding of the Ni grains.
  • NiO x For the nickel oxide, which is normally given as NiO, the formula NiO x is used in the foregoing, since nickel oxide occurs in variable compositions. Nickel oxide is a non-stoichiometric compound. For x, i.e. the number of oxygen atoms that combine with a nickel atom, values between 1 and 1.5 have been demonstrated. The existence of connections with x to 2 is assumed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Powder Metallurgy (AREA)
  • Inert Electrodes (AREA)

Abstract

Die vorliegende Erfindung betrifft eine aus Nickelpulver unter Katalysatorzusatz heißgepreßte oder gesinterte hochporöse Elektrode von besonderem Aufbau und ein Verfahren zu ihrer Herstellung. Die erfindungsgemäße Elektrode zeichnet sich durch eine katalytische Promovierung und Langzeitstabilisierung durch einen Ti-Zusatz und/oder die Ausbildung einer Oberflächenschicht von stabilen Ni-Ti-Mischoxiden aus, so daß bei ihrem Einsatz in alkalischen Elektrolyten bei der Wasserelektrolyse die Elektrolysegasentwicklung selbst bei hohen Stromdichten bei geringsten Polarisationen erfolgt, und sie ihre katalytischen Eigenschaften auch bei hohen Elektrolyttemperaturen und langen Betriebszeiten beibehält. Aufgrund ihrer guten Eigenschaften ist der Einsatz der erfindungsgemäßen Elektrode nicht nur auf die Wasserelektrolysetechnik beschränkt, sondern auch in anderen technischen Anwendungsbereichen, wie beispielsweise der Chloralkalielektrolyse oder der Fetthärtung möglich. Die Elektrode ist sowohl als Anode als auch als Kathode verwendbar.

Description

  • Aus Nickelpulver heißgepreßte hochporöse Elektrode für alkalische Wasserelektrolyseure
  • Die Erfindung bezieht sich auf eine aus Nickelpulver heißgepreßte hochporöse Elektrode für alkalische Wasserelektrolyseure, insbesondere eine Elektrode, die auf ihrer inneren und äußeren Oberfläche mit einer 0,0025 - 0,1 µm (10 - 100 Moleküllagen) starken Schicht mit NiO bedeckt ist.
  • Bei einer bekannten Elektrode der erwähnten Art wird durch die praktisch vollständig aus Ni0 bestehende Schicht eine hohe Korrosionsbeständigkeit in stark alkalischen Elektrolyten erzielt. Das Ni-Stützgerüst wird durch die NiO-Schicht insbesondere vor einer Oxidation zu voluminösen Oxiden oder Hydroxiden geschützt. Damit wird die Betriebslebensdauer der Elektrode wesentlich verlängert. Zudem wird von dieser Ni0-Schicht die 02-Abscheidung katalysiert (DE-OS 29 03 407).
  • Aufgabe der Erfindung ist es, eine Elektrode der eingangs erwähnten Art zu schaffen, die dieser gegenüber eine-verbesserte ("promovierte") katalytische Wirkung aufweist und bei der die H2- und 02-Abscheidung selbst bei hohen Stromdichten bei geringen Polarisationen erfolgen. Außerdem soll die Langzeitstabilität durch Herabsetzung der Oxidation des Nickels des Elektrödenkörpers heraufgesetzt werden, da die Oxidation selbst bei einer im wesentlichen aus Ni0 bestehenden Bedeckung der Oberfläche noch langsam weiterläuft.
  • Diese Aufgabe Wird gemäß der Erfindung dadurch gelöst, daß die Oberflächenschicht aus einem Ni-Ti-Mischoxid besteht. Für die Herstellung einer derartigen Elektrode kann ein Nickelpulver verwendet werden, das mit 1 - 15 Gew.% Titan legiert ist. Der Gesamtanteil des Titans in der Elektrode sollte etwa 2-Gew.% betragen. Wenn die Oberfläche dieser Elektrode oxidiert wird, entstehen auf der Oberfläche Ni-Ti-Mischoxide. Die Oxidationsverfahren werden weiter unten beschrieben.
  • Ein anderes Verfahren zur Erzeugung der Oberflächenschicht aus einem Ni-Ti-Mischoxid sieht vor, reines Ni-Pulver als Ausgangsmaterial zu verwenden und den Ti-Katalysatorzusatz mittels einer Titansalzlösung in einer solchen Menge und/oder Konzentration auf die Ni-Oberfläche aufzubringen, daß der Gesamtanteil des Titan in der Ni-Ti-Mischoxidschicht etwa 2 bis 3 Gew.% beträgt. Besonders zweckmäßig ist es, den Ti-Katalysatorzusatz in Form einer wässrigen Titanylsulfatlösung (TiO(SO4)-Lösung) aufzubringen.
  • Mit einer solchen Lösung kann die zur Herstellung des Ni-Stützgerüstes erforderliche Ni-Pulvermenge getränkt werden. Aus dem getränkten und getrockneten Ni-Pulver wird dann die Elektrode kalt vorgepreßt, und während des Heißpressens oder Sinterns wird dann die Ni-Ti-Mischoxidschicht ausgebildet.
  • Eine andere Möglichkeit ist, die aus reinem Ni-Pulver kalt vorgepreßte Elektrode mit der Titanylsulfatlösung zu tränken. Die getränkte Elektrode wird nach dem Trocknen heißgepreßt und/oder gesintert.
  • Schließlich kann die Titanylsulfatlösung auch der heißgepreßten oder gesinterten Elektrode durch Tränken zugesetzt werden. Die Elektrode wird anschließend erneut getempert oder gesintert. Der Ti-Katalysatorzusatz kann auch mit Lösungen anderer Titansalze aufgebracht werden, wobei das Lösungsmittel nicht Wasser zu sein braucht.
  • Die innere und äußere Oberfläche der Elektrode bedeckende Ni-Ti-Mischoxidschicht kann durch Tempern der porösen Tihaltigen Ni-Elektroden an Luft oder in einer 02-Atmosphäre erreicht werden. Die Temperatur sollte mindestens 150° C und höchstens 500° C betragen.
  • Die für die Oxidation erforderliche 0 2-Menge kann auch dadurch bereitgestellt werden, daß für die Herstellung der Elektrode Nickelpulver verwendet wird, das eine Luft- und/oder Sauerstoffbeladung aufweist, die ausreicht, die Ni-Ti-Mischoxidschicht beim Heißpressen oder Sintern der Elektrode auszubilden, die bei Temperaturen zwischen 300 und 500° C durchgeführt werden. In diesem Fall wird die katalytisch und stabilisierend wirksame Mischoxidschicht bereits durch Heißpressen oder Sintern an Luft erreicht und damit ein nachfolgender Arbeitsgang erspart.
  • Beim Tempern sollte die Temperzeit minimal 0,5 h betragen. Abhängig von der Art des verwendeten Pulvers, der Temperatur und der Gasatmosphäre, in der die Temperung durchgeführt wird, kann die Temperzeit bis zu 20 h ausgedehnt werden.
  • Die Ni-Ti-Mischoxidschicht kann auch nach anderen Verfahren erzeugt werden, so z.B. durch thermische Zersetzung bei Temperaturen über 150° C einer oberflächlich chemisch oder elektrochemisch aufgebrachten Ni Tix(OH)2-Schicht..
  • Die katalytisch und stabilisierend wirksame Ni-Ti-Mischoxidschicht sollte eine Mindestdecke von 0,0025 - 0,1 µm (10 - 100 Moleküllagen) aufweisen, um auf jeden Fall eine dichte, ge-schlossene Bedeckung des Ni-Stützgerüstes der Elektrode zu gewährleisten.
  • Durch das als promovierender Katalysator wirksame Titan, das in den auf der Oberfläche erzeugten, feinverteilten Ni-Ti-Mischoxiden und/oder als Legierungskomponente des Ni vorliegt, wird insbesondere
    • - die Überspannung bei der H2-Abscheidung signifikant herabgesetzt;
    • - die weitergehende elektrochemische Oxidation des Ni-Metalls der 0 2-Anoden zu α- 3 Ni(OH)2. 2 H20 und/oder β- 4 NiOOH · 3 H20 deutlich erschwert.
  • Die erfindungsgemäße Elektrode widersteht dadurch auch im Langzeitbetrieb dem stärksten bekannten Oxidans, nämlich Sauerstoff in statu nascendi und ist damit dem für Elektroden für die Wasserelektrolyse auch aus wirtschaftlichen Gründen nicht einsetzbaren Platin überlegen.
  • Aufgrund der genannten Eigenschaften sind Elektroden gemäß der Erfindung speziell für den Einsatz in neueren Elektrolyseuren, wie beispielsweise der ELOFLUX-Wasserelektrolysezelle, besonders gut geeignet. Sie können dabei sowohl als Anoden als auch als Kathoden verwendet werden.
  • Die Aufgabe der Verminderung der bei der H2- und 02-Abscheidung auftretenden Polarisationen und die Erschwerung der weitergehenden Oxidation des Nickels wird erfindungsgemäß ohne die Verwendung von seltenen oder teuren Edelmetallen, wie beispielsweise Platin, gelöst.
  • Die Herstellung einer erfindungsgemäßen Elektrode wird im nachstehenden in Ausführungsbeispielen im einzelnen beschrieben.
  • Beispiel 1:
  • 11,76 g Carbonylnickelpulver (Carbonylnickel T 255; Kornfraktion < 50 µm) werden mit einer wässrigen Titanylsulfatlösung derart getränkt, daß eine Ti-Katalysatormenge von 0,24 g (entsprechend 2 Gew.% bei einem Elektrodengesamtgewicht von 12 g) dem Carbonylnickelpulver zugegeben wird. Das Tränken des Carbonylnickelpulvers erfolgt unter ständigem Rühren, um eine gute Durchmischung von Nickelpulver und wässriger Titanylsulfatlösung zu erreichen. Nach der Trocknung des getränkten Carbonylnickelpulvers wird es zur Erzielung der notwendigen Makro- oder Volumenporosität mit 4 g Salzfiller (Na2C03; Kornfraktion 50 - 75 µm) vermischt, in eine Matrize von 40 mm Innendurchmesser glatt eingestrichen, mit 0,32 to/cm2 kalt vorgepreßt und nach Erhitzen an Luft auf 400° C mit 0,8 to/cm2 zu einer scheibenförmigen Elektrode heißgepreßt. Nach dem Preßvorgang wird der zugesetzte Salzfiller in heißem destillierten Wasser wieder herausgelöst.
  • Beispiel 2:
  • 11,76 g Carbonylnickelpulver (Carbonylnickel T 255; Kornfraktion <50 pm) werden mit 4 g Salzfiller (Na2C03; Kornfraktion 50 - 75 pm) vermischt, in eine Matrize von 40 mm Innendurchmesser glatt eingestrichen, mit 0,32 to/cm2 kalt vorgepreßt und nach Erhitzen an Luft auf 400° C mit 0,8 to/cm2 zu einer scheibenförmigen Elektrode simultan heißgepreßt. Nach dem Preßvorgang wird der zugesetzte Salzfiller in heißem Wasser wieder herausgelöst und die Elektrode getrocknet. Anschließend wird die poröse Ni-Elektrode mit einer wässrigen, 0,24 g Ti enthaltenden Titanylsulfatlösung versetzt, getrocknet und zur Ausbildung der Ni-Ti-Mischoxide auf der inneren Oberfläche bei 200° C 4 h lang getempert.
  • Beispiel 3:
  • Die Herstellung einer als Anode einzusetzenden Elektrode geschieht wie im 1. Ausführungsbeispiel, jedoch erfolgt das Heißpressen in einer gasdichten Stahlform ohne nennenswerten Luftzutritt. Nach dem Herauslösen des Salzfillers wird die Elektrode getrocknet und 10 h lang an Luft bei 200° C getempert., Durch das Heißpressen der Elektrode unter Luftabschluß wird eine stärkere Verschweißung der Ni-Körner erreicht.
  • In einem Versuch wurde mit einer als Kathode geschalteten Elektrode,die nach Beispiel 1 hergestellt wurde, in 6 n KOH Wasserstoff abgeschieden. Die bei Elektrolyttemperaturen von 25 und 80° C gemessenen stationären Kennlinien (mit T 255 TiO(S04) gekennzeichnet) sind in dem anliegenden Diagramm wiädergegeben. Zum Vergleich zeigt das Diagramm die an einer unter gleichen Bedingungen hergestellten Carbonylnickelelektrode ohne Ti-Zusatz (mit T 255 gekennzeichnet) gemessenen stationären Kennlinien. Bei 80° C und 150 mA/cm2 erfolgt die H2-Abscheidung an der reinen Carbonylnickelelektrode mit |η|= 159 mV, an der mit Ti katalytisch promovierten Elektrode mit |η|= 75 mV. Die Verwendung der als promovierter Katalysator wirkenden Ni-Ti-Mischoxidschicht führt demnach zu einer Verringerung der Oberspannung um 84 mV entsprechend 53 %.
  • In einem zweiten Versuch (Dauerversuch) wurde an einer als Anode geschalteten Elektrode,die nach Beispiel 1 hergestellt wurde, in 6 n KOH bei T = 80° C und i = 200 mA/cm2 Sauerstoff abgeschieden. Das Potential der Elektrode stieg über der Betriebszeit nur sehr wenig an. Es vergrößert sich während einer 1000- stündigen Belastung der 02-Anode bei der 02-Abscheidung lediglich um 0,26 mV/h.
  • Für das Nickeloxid, das normalerweise als NiO angegeben wird, ist im vorstehenden die Formel NiOx benutzt, da Nickeloxid in veränderlichen Zusammensetzungen auftritt. Nickeloxid ist eine nicht stöchiometrische Verbindung. So sind für x, also die Zahl der Sauerstoffätome, die sich mit einem Nickelatom verbindet, Werte zwischen 1 und 1,5 nachgewiesen. Die Existenz von Verbindungen mit x bis 2 wird vermutet.

Claims (14)

1. Aus Nickelpulver heißgepreßte hochporöse Elektrode für alkalische Wasserelektrolyseure, die auf ihrer inneren und äußeren Oberfläche mit einer 0,0025 - 0,1 µm (10 - 100 Moleküllagen) starken Schicht mit NiOx bedeckt ist, dadurch gekennzeichnet, daß die Oberflächenschicht aus einem Ni-Ti-Mischoxid besteht.
2. Elektrode nach Anspruch 1, dadurch gekennzeichnet, daß das Nickelpulver mit 1 - 15 Gew.% Titan legiert ist.
3. Elektrode nach Anspruch 2, dadurch gekennzeichnet, daß der Gesamtanteil des Titans in der Elektrode etwa 2 Gew.% beträgt.
4. Aus Nickelpulver heißgepreßte hochporöse Elektrode für alkalische Wasserelektrolyseure, dadurch gekennzeichnet, daß die Elektrode einen Zusatz von 1 - 15 Gew.%, vorzugsweise etwa 2 Gew.% Titan als Katalysator enthält.
5. Verfahren zur Herstellung einer Elektrode nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Ti-Katalysatorzusatz in Form einer Titansalzlösung in einer solchen Menge und/oder Konzentration auf die Ni-Oberfläche aufgebracht wird, daß der Anteil des Titan in der Ni-Ti-Mischoxidschicht etwa 2 - 3 Gew.% beträgt.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß eine wässrige Titanylsulfatlösung (TiO(S04)-Lösung)aufgebracht wird.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die Lösung mit dem Nickelpulver vor dem Verpressen gemischt wird.
8. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die aus Nickelpulver kalt vorgepreßte Elektrode mit der Lösung getränkt und dann heißgepreßt oder gesintert wird.
9. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die aus Nickelpulver heißgepreßte oder gesinterte Elektrode mit der Lösung getränkt und anschließend getempert oder gesintert wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Elektrode bei 150 bis 500° C an Luft getempert wird.
11. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Elektrode bei 150 bis 500° C in einer 02- Atmosphäre getempert wird.
12. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß die Ni-Ti-Mischoxidschicht durch Heißpressen oder Sintern der Elektrode bei 300 bis 500° C erzeugt wird.
13. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß für die Herstellung der Elektrode Nickelpulver verwendet wird, das eine Luft- und/oder Sauerstoffbeladung aufweist, die ausreicht, die Ni-Ti-Mischoxidschicht beim Heißpressen oder Sintern der Elektrode bei 300 bis 500° C auszubilden.
14. Verfahren zur Herstellung einer Elektrode nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß auf die innere und äußere Elektrodenoberfläche chemisch oder elektrochemisch eine Ni Tix(OH)2-Schicht aufgebracht und aus dieser durch thermische Zersetzung bei Temperaturen über 150°C eine Ni-Ti-Mischoxidschicht erzeugt wird.
EP82101509A 1981-03-11 1982-02-27 Aus Nickelpulver heissgepresste hochporöse Elektrode für alkalische Wasserelektrolyseure Expired EP0059902B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82101509T ATE14323T1 (de) 1981-03-11 1982-02-27 Aus nickelpulver heissgepresste hochporoese elektrode fuer alkalische wasserelektrolyseure.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3109183 1981-03-11
DE3109183A DE3109183C2 (de) 1981-03-11 1981-03-11 Aus Nickelpulver heißgepreßte hochporöse Elektrode für alkalische Wasserelektrolyseure

Publications (2)

Publication Number Publication Date
EP0059902A1 true EP0059902A1 (de) 1982-09-15
EP0059902B1 EP0059902B1 (de) 1985-07-17

Family

ID=6126884

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82101509A Expired EP0059902B1 (de) 1981-03-11 1982-02-27 Aus Nickelpulver heissgepresste hochporöse Elektrode für alkalische Wasserelektrolyseure

Country Status (13)

Country Link
US (1) US4447302A (de)
EP (1) EP0059902B1 (de)
JP (1) JPS57161078A (de)
AR (1) AR228643A1 (de)
AT (1) ATE14323T1 (de)
AU (1) AU547889B2 (de)
BR (1) BR8201247A (de)
CA (1) CA1191815A (de)
CS (1) CS241504B2 (de)
DD (1) DD201701A5 (de)
DE (1) DE3109183C2 (de)
ES (1) ES510290A0 (de)
HU (1) HU188056B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10007480A1 (de) * 2000-02-18 2001-08-23 Provera Ges Fuer Projektierung Bipolare Elektrode mit Halbleiterbeschichtung und damit verbundenes Verfahren zur elektrolytischen Wasserspaltung

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3318758C2 (de) * 1983-05-24 1985-06-13 Kernforschungsanlage Jülich GmbH, 5170 Jülich Diaphragma auf Nickeloxidbasis und Verfahren zur Herstellung desselben
US4648945A (en) * 1985-03-21 1987-03-10 Westinghouse Electric Corp. Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell
JPS6286187A (ja) * 1985-10-09 1987-04-20 Asahi Chem Ind Co Ltd 水素発生用の電極
US6666961B1 (en) * 1999-11-18 2003-12-23 Proton Energy Systems, Inc. High differential pressure electrochemical cell
WO2004015805A2 (en) * 2002-08-09 2004-02-19 Proton Energy Systems, Inc. Electrochemical cell support structure
KR100930790B1 (ko) * 2009-02-18 2009-12-09 황부성 수소산소 발생용 전극판 및 그를 제조하기 위한 제조방법
US20150287980A1 (en) * 2012-10-12 2015-10-08 Zhongwei Chen Method of producing porous electrodes for batteries and fuel cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3505118A (en) * 1966-12-05 1970-04-07 Du Pont Fuel cell and process for producing electric current using titanium dioxide catalyst
DE2737041A1 (de) * 1976-08-24 1978-03-09 Comp Generale Electricite Elektrolysiergeraet fuer basische loesungen und verfahren zu seiner herstellung
DE2903407A1 (de) * 1979-01-30 1980-08-14 Justi Eduard W Prof Dr Phil Heissgepresste poroese elektrode und verfahren zu ihrer herstellung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE290407C (de) *
DE1269213B (de) * 1963-09-27 1968-05-30 Asea Ab Verfahren zur Herstellung von poroesen Brennstoffelektroden fuer Brennstoffelemente
US3959014A (en) * 1971-12-14 1976-05-25 Varta Batterie Aktiengesellschaft Method to produce a protective oxide on the surface of positive nickel electrodes for galvanic cells
US4289650A (en) * 1979-03-29 1981-09-15 Olin Corporation Cathode for chlor-alkali cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3505118A (en) * 1966-12-05 1970-04-07 Du Pont Fuel cell and process for producing electric current using titanium dioxide catalyst
DE2737041A1 (de) * 1976-08-24 1978-03-09 Comp Generale Electricite Elektrolysiergeraet fuer basische loesungen und verfahren zu seiner herstellung
DE2903407A1 (de) * 1979-01-30 1980-08-14 Justi Eduard W Prof Dr Phil Heissgepresste poroese elektrode und verfahren zu ihrer herstellung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10007480A1 (de) * 2000-02-18 2001-08-23 Provera Ges Fuer Projektierung Bipolare Elektrode mit Halbleiterbeschichtung und damit verbundenes Verfahren zur elektrolytischen Wasserspaltung

Also Published As

Publication number Publication date
ATE14323T1 (de) 1985-08-15
AR228643A1 (es) 1983-03-30
DE3109183C2 (de) 1983-05-11
US4447302A (en) 1984-05-08
JPS57161078A (en) 1982-10-04
AU8079882A (en) 1982-09-16
DE3109183A1 (de) 1982-09-23
HU188056B (en) 1986-03-28
AU547889B2 (en) 1985-11-07
CS241504B2 (en) 1986-03-13
CA1191815A (en) 1985-08-13
ES8303547A1 (es) 1983-02-01
CS159882A2 (en) 1985-08-15
BR8201247A (pt) 1983-01-18
EP0059902B1 (de) 1985-07-17
ES510290A0 (es) 1983-02-01
DD201701A5 (de) 1983-08-03

Similar Documents

Publication Publication Date Title
DE3400022C2 (de)
DE2636447C2 (de) Mangandioxidelektroden
DE10007448B4 (de) Aktivierte Kathode und Verfahren zu ihrer Herstellung
DE3122786A1 (de) &#34;legierter edelmetallkatalysator fuer die katalytische redutkion von sauerstoff&#34;
DE3507071C2 (de) Elektrode für die Elektrolyse und Verfahren zu ihrer Herstellung
DE2328050C3 (de) Katalysator für Brennstoffelektroden von Brennstoffelementen
DE1928929C3 (de) Raney-Mischkatalysator
DE69805579T2 (de) CO-tolerante Pt-Zn Legierung für Brennstoffzellen
DE2113676A1 (de) Elektrode fuer elektrochemische Prozesse
EP0059902B1 (de) Aus Nickelpulver heissgepresste hochporöse Elektrode für alkalische Wasserelektrolyseure
DE102008063727A1 (de) Elektrochemisches Verfahren zur Reduktion molekularen Sauerstoffs
DE3004262A1 (de) Wirksame elektrode fuer elektrochemische zellen mit redox-systemen und verfahren zur herstellung der elektrode
DE2906821C2 (de)
DE3780075T2 (de) Niedrigueberspannungs-elektroden fuer alkalische elektrolyte.
DE2527386A1 (de) Kathodenoberflaechen mit niedrigen wasserstoffueberspannungen
EP0042984A1 (de) Edelmetallfreie Elektrode und Verfahren zu ihrer Herstellung
DE3110792A1 (de) Brennstoffzelle mit saurem elektrolyten
DE2737041A1 (de) Elektrolysiergeraet fuer basische loesungen und verfahren zu seiner herstellung
DE3515742C2 (de)
DE1571743A1 (de) Elektroden und Verfahren zu ihrer Herstellung
DE4224290A1 (de) Verfahren zur Herstellung einer lithiumoxidhaltigen Nickeloxid-Kathode für eine Schmelzcarbonatbrennstoffzelle
DE2046354C3 (de) Elektrokatalysator für die Sauerstoffkathode in elektrochemischen Zellen
DE2903407C2 (de) Verwendung einer aus Nickelpulver heißgepreßten oder gesinterten porösen Elektrode
DE3333650C2 (de) Elektrochemische Redoxzelle
DE1952155A1 (de) Nickelanoden fuer Hochtemperaturbrennstoffzellen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19821027

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHNAPKA, HERBERT, DR.

ITF It: translation for a ep patent filed
RBV Designated contracting states (corrected)

Designated state(s): AT BE CH FR GB IT LI LU NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 14323

Country of ref document: AT

Date of ref document: 19850815

Kind code of ref document: T

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910214

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910221

Year of fee payment: 10

Ref country code: GB

Payment date: 19910221

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910225

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19910227

Year of fee payment: 10

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910228

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910305

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910320

Year of fee payment: 10

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920227

Ref country code: GB

Effective date: 19920227

Ref country code: AT

Effective date: 19920227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920228

Ref country code: BE

Effective date: 19920228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920229

Ref country code: CH

Effective date: 19920229

BERE Be: lapsed

Owner name: SCHNAPKA HERBERT

Effective date: 19920228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920901

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19921030

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 82101509.6

Effective date: 19920904