EP0042984A1 - Edelmetallfreie Elektrode und Verfahren zu ihrer Herstellung - Google Patents
Edelmetallfreie Elektrode und Verfahren zu ihrer Herstellung Download PDFInfo
- Publication number
- EP0042984A1 EP0042984A1 EP81104207A EP81104207A EP0042984A1 EP 0042984 A1 EP0042984 A1 EP 0042984A1 EP 81104207 A EP81104207 A EP 81104207A EP 81104207 A EP81104207 A EP 81104207A EP 0042984 A1 EP0042984 A1 EP 0042984A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- spinel
- spinels
- cobalt
- iron
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 9
- 230000008569 process Effects 0.000 title claims abstract description 6
- 238000004519 manufacturing process Methods 0.000 title description 3
- 229910000510 noble metal Inorganic materials 0.000 title description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229910052596 spinel Inorganic materials 0.000 claims abstract description 19
- 239000011029 spinel Substances 0.000 claims abstract description 19
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052566 spinel group Inorganic materials 0.000 claims abstract description 14
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 10
- 239000010941 cobalt Substances 0.000 claims abstract description 10
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052742 iron Inorganic materials 0.000 claims abstract description 9
- 229910052786 argon Inorganic materials 0.000 claims abstract description 8
- 238000002347 injection Methods 0.000 claims abstract description 8
- 239000007924 injection Substances 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 239000007789 gas Substances 0.000 claims abstract description 6
- 238000007750 plasma spraying Methods 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 238000005868 electrolysis reaction Methods 0.000 abstract description 6
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 abstract description 4
- 239000000243 solution Substances 0.000 abstract description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 abstract description 2
- 239000001103 potassium chloride Substances 0.000 abstract description 2
- 235000011164 potassium chloride Nutrition 0.000 abstract description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Inorganic materials [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 abstract description 2
- 239000011780 sodium chloride Substances 0.000 abstract description 2
- 238000012421 spiking Methods 0.000 abstract 1
- 230000008021 deposition Effects 0.000 description 16
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 10
- 239000000460 chlorine Substances 0.000 description 10
- 229910052801 chlorine Inorganic materials 0.000 description 10
- 238000000926 separation method Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 239000002585 base Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 3
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- AZUYLZMQTIKGSC-UHFFFAOYSA-N 1-[6-[4-(5-chloro-6-methyl-1H-indazol-4-yl)-5-methyl-3-(1-methylindazol-5-yl)pyrazol-1-yl]-2-azaspiro[3.3]heptan-2-yl]prop-2-en-1-one Chemical compound ClC=1C(=C2C=NNC2=CC=1C)C=1C(=NN(C=1C)C1CC2(CN(C2)C(C=C)=O)C1)C=1C=C2C=NN(C2=CC=1)C AZUYLZMQTIKGSC-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- 229910052768 actinide Inorganic materials 0.000 description 1
- 150000001255 actinides Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001514 alkali metal chloride Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229940075397 calomel Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- FQMNUIZEFUVPNU-UHFFFAOYSA-N cobalt iron Chemical compound [Fe].[Co].[Co] FQMNUIZEFUVPNU-UHFFFAOYSA-N 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical compound Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011262 electrochemically active material Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
Definitions
- titanium anodes with active metal-containing active layers or graphite electrodes are generally used today. These so-called dimensionally stable titanium anodes have the advantage over the graphite electrodes that the external dimensions do not change during operation.
- the disadvantage of these anodes is the relatively high production costs due to the use of noble metal in the active layer.
- magnetite can be used as an anode material for the separation of chlorine, but this material has a very high overvoltage with regard to chlorine, so that its use has been discontinued for a long time due to the high energy consumption.
- an electrode consisting predominantly of trivalent iron oxide with additions of one or more metal oxides is described.
- an oxide mixture is obtained from an iron salt solution via a carrier precipitation, which is then pressed and sintered in an oxygen-containing atmosphere.
- Titanium dioxide, zirconium dioxide and / or tin dioxide are mentioned as additional oxides.
- this electrode has a deposition potential for Chlorine of 1.65 V GKE (measured against saturated K alomel electrodes), at a current density of 1 kA / m 2 , which corresponds to a chlorine separation voltage of 1.9 V based on the normal hydrogen potential. With increasing current density, the deposition potential increases considerably, so that this electrode achieves an impermissibly high deposition potential at the current densities of 1.5 to 2.0 kA / m 2 that are currently used in technical systems.
- DE-OS 23 20 883 describes anodes which consist of sintered bodies with a spinel structure of the general formula MxFe3-x04 and are said to be suitable as chlorine anodes.
- M means a metal from the group consisting of manganese, nickel, cobalt, magnesium, copper, zinc and / or cadmium and x stands for 0.05 to 0.4.
- the present invention had for its object to provide the electrol, whose electrochemically active layer contains spinels, which are particularly suitable as anodes for the separation of chlorine in electrolysis cells and which, in addition to good corrosion resistance to the electrolyte and the electrolysis products, are associated with a high level Service life, have a low separation voltage for chlorine.
- the electrode according to the invention contains the two spinels as individual spinels and that they do not form a mixed spinel.
- the presence of the two substances next to one another can be proven in a known manner by means of an X-ray fine structure analysis.
- the active layer preferably has the two spinels in a weight ratio of Fe 3 O 4 : CO 3 O 4 of 40:60 to 70:30.
- the active layer can be on an electrically conductive support, e.g. a valve metal, graphite, magnetite.
- an electrically conductive support e.g. a valve metal, graphite, magnetite.
- the electrodes according to the invention are produced under conditions such that mixed spinel formation cannot take place, special conditions having to be observed since CO 3 O 4 tends to easily separate into two finished cobalt oxide and vice versa Fe 3 O 4 has the tendency to easily transition into trivalent iron oxide, with the formation of a cobalt-iron mixing spinel.
- a suitable method to achieve this goal is the plasma spraying process.
- the two powdered spinels are mixed thoroughly before processing. They should be useful grain sizes of 10 to 200 / um, to which preferably of ⁇ 125 /.
- the mixture is then placed in the storage container of a plasma spray gun, taking care to ensure that no segregation occurs both during metering and during transport.
- a conventional plasma spraying system can be used for the coating, with either argon alone or argon in a mixture with up to 10% by volume of hydrogen being considered as carrier gas. It is also essential that the plasma spraying system is operated in a low energy range, ie that values of 30 kW are not exceeded, with a minimum amount of 6 kW being adhered to for design reasons.
- the body to be coated should be degreased beforehand in a known manner and then the surface should be prepared by sandblasting, pickling and the like.
- the distance between the plasma flame and the body to be coated should suitably be 7 to 12 cm.
- the plasma flame is moved back and forth in front of the body to be coated until the spray layer has reached the desired thickness.
- the active layer is effective even with a relatively small thickness of 20 to 30 ⁇ m, although of course much thicker layers are permissible, up to electrodes which consist exclusively of the electrochemically active material.
- a powder of a valve metal can also be added to the spinel mixture to be sprayed.
- other substances can also be added if special properties are desired and if these other substances do not impair the electrochemical activity of the spinel layer.
- the electrodes according to the invention when used as anodes in the electrolysis of aqueous alkali metal chloride solutions, have a chlorine separation potential of 1395 mV at current densities of 0.15 kA / m 2 , based on the normal H2 electrode, ie the overvoltage is only approx . 35 mV. But even with the higher current densities of 1.5 kA / m 2 to 6 kA / m 2 , which are of particular technical interest, the electrodes are characterized by a low overvoltage, with the deposition potential at 1.5 kA / m 2 depending on the substrate between approx 1450 and a maximum of about 1600 mV.
- the electrodes according to the invention are notable for good chemical and mechanical resistance, and even if graphite is used as the substrate, practically no erosion can be ascertained even with longer standing times.
- the anodes produced in this way are subjected to a voltage test under the operating conditions of chlor-alkali electrolysis.
- the following deposition potentials are measured (against normal H 2 electrodes):
- An active layer of Fe 3 0 4 : C 03 0 4 (weight ratio 70:30) is applied to a base body made of electrographite with the dimensions of the electrode area of 20 x 15 x 10 mm.
- Argon serves as the carrier gas, the injection energy is 18 kW and the distance of the plasma flame from the electrographite base body is 9 cm.
- a comparison of these deposition voltages measured at 1.5 kA / m 2 with the Ab measured in Examples 1 to 4 cutting voltages in the electrodes according to the invention shows a difference of more than 250 mV.
- This electrode also has a deposition potential increased by approximately 200 mV at 1.5 kA / m 2 compared to the electrodes according to the invention .
- the anode is produced as described in Example 1, argon being used as the plasma gas at an injection energy of 32 kW.
- the weight ratio Fe 3 O 4 : CO 3 O 4 (grain size ⁇ 125 ⁇ m) is 70:30.
- the deposition potential is determined under the same conditions as in Examples 1 to 4. The following values are determined:
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Coating By Spraying Or Casting (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
Description
- Bei der Herstellung von Chlor oder Chlorverbindungen durch Elektrolyse wäßriger Natrium- bzw. Kaliumchloridlösungen werden heute im allgemeinen Titananoden mit edelmetallhaltigen Aktivschichten oder Graphitelektroden eingesetzt. Diese sogenannten dimensionsstabilen Titananoden haben gegenüber den Graphitelektroden den Vorteil, daß sich die äußeren Abmessungen während des Betriebs nicht ändern. Der Nachteil dieser Anoden liegt in den relativ hohen Herstellungskosten, bedingt durch die Verwendung von Edelmetall in der Aktivschicht.
- Es ist auch bekannt, daß man Magnetit als Anodenmaterial zur Abscheidung von Chlor einsetzen kann, jedoch besitzt dieses Material bezüglich Chlor eine sehr hohe Überspannung, so daß seine Verwendung aufgrund des hohen Energieverbrauchs bereits seit längerer Zeit eingestellt wurde.
- Es hat jedoch nicht an Versuchen gefehlt, auf der Basis des wesentlich preiswerteren Eisenoxids edelmetallfreie Elektroden bereitzustellen, die einerseits eine technisch und wirtschaftlich befriedigende niedrige Abscheidespannung aufweisen und andererseits gleichzeitig eine für Chlor ausreichende chemische Beständigkeit aufweisen.
- So wird in der DDR Patentschrift 98 838 eine vorwiegend aus dreiwertigem Eisenoxid mit Zusätzen von einem oder mehreren Metalloxiden bestehende Elektrode beschrieben. Zur Herstellung dieser Elektrode wird aus einer Eisensalzlösung über eine Trägerfällung ein Oxidgemisch erhalten, das anschließend verpreßt und in sauerstoffhaltiger Atmosphäre gesintert wird. Als Zusatzoxide werden Titandioxid, Zirkondioxid und/oder Zinndioxid genannt. Diese Elektrode besitzt jedoch ein Abscheidepotential für Chlor von 1,65 V GKE (Gemessen gegen gesättigte Kalomel Elektrode), bei einer Stromdichte von 1 kA/m2, was bezogen auf das Wasserstoffnormalpotential einer Chlorabscheidespannung von 1,9 V entspricht. Mit zunehmender Stromdichte erhöht sich das Abscheidepotential beträchtlich, so daß diese Elektrode bei den in technischen Anlagen derzeit üblicherweise angewandten Stromdichten von 1,5 bis 2,0 kA/m2 ein unzuläßig hohes Abscheidepotential erreicht.
- In der DE-OS 23 20 883 werden Anoden beschrieben, die aus gesinterten Körpern mit Spinellstruktur der allgemeinen Formel MxFe3-x04 bestehen und als Chloranoden geeignet sein sollen. In dieser Formel bedeutet M ein Metall aus der Gruppe Mangan, Nickel, Kobalt, Magnesium, Kupfer, Zink und/oder Cadmium und x steht für 0,05 bis 0,4. Bei diesen Elektroden wird besonders auf die verbesserte Korrosionsbeständigkeit im Vergleich zu herkömmlichen Magnetitelektroden hingewiesen, während auf die für die Beurteilung einer Elektrode wesentlichen Abscheidepotentiale nicht abgehoben wird. Wie eigene Untersuchungen (vgl. Vergleichsbeispiel 1) gezeigt haben, liegen diese Abscheidepotentiale bei technisch gebräuchlichen Stromdichten von 1,5 kA/m2, bei 1750 mV bis 2000 mV (gemessen gegen H2-Nor- malelektrode).
- In den US-PSen 3 977 958 und 4 142 005 werden Elektroden beschrieben, die aus einem elektrisch leitenden Substrat bestehen, auf das ein Einzelmetall - spinell der Formel Co304 als elektrochemisch aktive Substanz aufgebracht ist, der zusätzlich modifizierende Oxide der Gruppen IIIB-VIIB, IIIA-VA, sowie der Lanthaniden oder Actiniden enthalten kann. Aber auch die Abscheidepotentiale dieser Elektroden genügen nicht den technischen Anforderungen.
- Der vorliegenden Erfindung lag die Aufgabe zugrunde, Elektrol den bereitzustellen, deren elektrochemisch aktive Schicht Spinelle enthält, die vor allem als Anoden für die Abscheidung von Chlor in Elektrolysezellen geeignet sind und die neben einer guten Korrosionsbeständigkeit gegenüber dem Elektrolyten und den Elektrolyseprodukten, verbunden mit einer hohen Standdauer, eine niedrige Abscheidespannung für Chlor aufweisen.
- Es wurde gefunden, daß diese Aufgabe durch eine spinellhaltige Elektrode gelöst wird, bei der die Spinelle aus einem Gemisch der Einzelspinelle des Eisens und Kobalts bestehen mit der Maßgabe, daß das Gewichtsverhältnis Eisenspinell Kobaltspinell von 30 : 70 bis 90 : 10 beträgt.
- Wesentlich ist, daß die erfindungsgemäße Elektrode die beiden Spinelle als Einzelspinelle enthält und diese keinen Mischspinell bilden. Das Vorliegen der beiden Substanzen nebeneinander kann auf bekannte Weise durch eine Röntgenfeinstrukturanalyse nachgewiesen werden.
- Vorzugsweise weist die aktive Schicht die beiden Spinelle in einem Gewichtsverhältnis von Fe3O4 : CO3O4 von 40 : 60 bis 70 : 30 auf.
- Die Aktivschicht kann auf einen elektrisch leitenden Träger, z.B. einem Ventilmetall, Graphit, Magnetit, aufgebracht sein. Es ist aber auch möglich, auf dieses Substrat ganz zu verzichten, d.h. daß die Elektrode in ihrer gesamten Stärke aus der Aktivschicht besteht.
- Die Herstellung der erfindungsgemäßen Elektroden erfolgt unter solchen Bedingungen, daß eine Mischspinellbildung nicht stattfinden kann, wobei besondere Bedingungen zu beachten sind, da CO3O4 die Tendenz hat, leicht in zwei- fertiges Kobaltoxid und umgekehrt Fe3O4 die Tendenz hat, leicht in dreiwertiges Eisenoxid, unter Bildung eines Kobalt-Eisen-Mischspinells überzugehen.
- Ein geeignetes Verfahren, um dieses Ziel zu erreichen, ist das Plasma-Spritzverfahren. Hierzu werden die beiden in Pulverform vorliegenden Spinelle vor der Verarbeitung gründlich gemischt. Sie sollten zweckmäßig Korngrößen von 10 bis 200/um, vorzugsweise von <125/um aufweisen. Die Mischung wird dann in den Vorratsbehälter einer Plasma-Spritzpistole eingegeben, wobei darauf zu achten ist, daß sowohl bei der Eindosierung als auch beim Transport keine Entmischung eintritt. Für die Beschichtung kann eine übliche Plasma-Spritzanlage verwendet werden, wobei als Trägergas entweder Argon allein oder Argon im Gemisch mit bis zu 10 Vol.-% Wasserstoff in Betracht kommen. Wesentlich ist ferner, daß die Plasma-Spritzanlage in einem niederen Energiebereich betrieben wird, d.h. daß Werte von 30 kW nicht überschritten werden, wobei aus konstruktiven Gründen ein Mindestbetrag von 6 kW eingehalten werden sollte.
- Der zu beschichtende Körper sollte in bekannter Weise vorher entfettet und anschließend die Oberfläche durch Sandstrahlen, Beizen und dgl. vorbereitet werden.
- Der Abstand zwischen Plasmaflamme und zu beschichtendem Körper sollte zweckmäßig 7 bis 12 cm betragen. Die Plasmaflamme wird vor dem zu beschichtenden Körper so lange hin und her bewegt, bis die Spritzschicht die gewünschte Dicke erreicht hat. Die Aktivschicht ist bereits bei einer relativ geringen Dicke von 20 bis 30 µm wirksam, wobei selbstverständlich auch wesentlich dickere Schichten zulässig sind, bis zu Elektroden die ausschließlich aus dem elektrochemisch aktiven Material bestehen.
- Zur Erhöhung der Auftragsleistung der Plasma-Spritzanlage kann man dem zu verspritzenden Spinell-Gemisch auch ein Pulver eines Ventilmetall zusetzen. Selbstverständlich können auch andere Substanzen zugesetzt werden, sofern besondere Eigenschaften gewünscht werden und sofern diese anderen Substanzen die elektrochemische Aktivität der Spinellschicht nicht beeinträchtigen.
- Die erfindungsgemäßen Elektroden zeigen, als Anoden bei der Elektrolyse von wäßrigen Alkalimetall-Chlorid-Lösungen eingesetzt, bei Stromdichten von 0,15 kA/m2 ein Chlorabscheidepotential von 1395 mV, bezogen auf die H2-Normal- elektrode, d.h. die Überspannung beträgt nur ca. 35 mV. Aber auch bei den technisch vor allem interessierenden höheren Stromdichten von 1,5 kA/m2 bis 6 kA/m2, sind die Elektroden durch eine niedrige Überspannung gekennzeichnet, wobei bei 1,5 kA/m2 die Abscheidepotentiale je nach Substrat zwischen ca. 1450 und maximal etwa 1600 mV liegen. Demgegenüber werden in der oben bereits zitierten DDR-Patentschrift 98 838 bei niedrigeren Stromdichten von 1,0 kA/m2 Abscheidepotentiale von 1650 bis 1730 mV, gemessen gegen Kalomel-Elektrode, genannt, was einem Potential gegen die H2-Normalelektrode von ca. 1900 bis 1980 mV entspricht.
- Zudem zeichnen sich die erfindungsgemäßen Elektroden durch eine gute chemische und mechanische Widerstandsfähigkeit aus und sogar bei Verwendung von Graphit als Substrat kann auch bei längeren Standzeiten praktisch kein Abtrag festgestellt werden.
-
- a) Auf ein Titan-Streckmetallgitter (11 x 6 x 2 x 1,5 mm) mit der geometrischen Fläche von ca. 20 cm2, welches mit einer zentralen elektrischen Ableitung aus Titan versehen ist, wird mit Hilfe eines Plasmabrenners ein Gemenge von Fe3O4 und CO3O4 im Gewichtsverhältnis 70 : 30 aufgebracht. Zur Verwendung kommen Pulver mit einer Korngröße im Bereich von <125 µm und Argon als Trägergas bei einer Spritzenergie von 18 kW. Nach Durchführung von 3 Spritzzyklen pro Seite im Abstand von 90 mm beträgt die Schichtdicke 30,um.
- b) Unter sonst gleichen Bedingungen wird ein Gemenge von Fe3O4 und CO3O4 im Gewichtsverhältnis von 50 : 50 und
- c) im Molgewichtsverhältnis von 30 : 70 aufgebracht.
-
-
- a) Die Anode wird wie in Beispiel 1 beschrieben hergestellt, wobei als Plasmagas ein Gemisch aus 90 Vol.% Ar, 10 Vol.-% H2 bei einer Spritzenergie von 17,2 kW verwendet wird. Das Gewichtsverhältnis Fe3O4 : CO3O4 (Korngröße <125/um) beträgt 90 : 10. Der Strom-Spannungstest zeigt folgende Ergebnisse:
- b) Bei Verwendung eines Plasmagases aus reinem Argon und einer Spritzenergie von 19,2 kW werden Anoden erhalten die folgende Potentiale zeigen:
- Auf einen Grundkörper aus Elektrographit mit den Abmessungen der Elektrodenfläche von 20 x 15 x 10 mm wird eine Aktivschicht aus Fe304 : C0304 (Gewichtsverhältnis 70:30) aufgebracht. Als Trägergas dient Argon, die Spritzenergie beträgt 18 kW und der Abstand der Plasmaflamme von dem Elektrographitgrundkörper 9 cm.
-
-
- Auf ein Aluminiumblech der Größe 20 x 15 x 1,5 mm wird mit Hilfe einer Plasmaflamme mit Argon als Trägergas bei einer Spritzenergie von 17 kW, bei einem Abstand Plasmaflamme/ Grundkörper 10 cm eine Pulvermischung aus Fe3O4 : CO3O4 im Gewichtsverhältnis 66 2/3 : 33 1/3, der 70 Gew.-% Titanpulver zugesetzt war, aufgespritzt. Nach Erreichen einer Schichtdicke von 1,5 mm wird der Beschichtungsvorgang abgebrochen, die aufgespritzte Schicht vom Aluminium abgelöst und die so hergestellte Negativform als Elektrode vermessen. Dabei werden folgende Abscheidepotentiale festgestellt:
- Verbindungen des Typs MxFe3xO4 (A=CO0.3Fe2.7O4 und B = CO0.4Fe2.6O4, entsprechend der DE-OS 23 20 883) werden analog Beispiel 1 mit Hilfe einer Plasmaspritzpistole auf einen entsprechenden Anodengrundkörper aus Titan aufgetragen und unter den gleichen Bedingungen wie in Beispiel 1 bis 4 beschrieben die Abscheidepotentiale bestimmt.
-
- Ein Vergleich dieser bei 1,5 kA/m2 gemessenen Abscheidespannungen mit den in Beispielen 1 bis 4 gemessenen Abscheidespannungen bei den erfindungsgemäßen Elektroden zeigt eine Differenz von mehr als 250 mV.
-
- Auch diese Elektrode zeigt gegenüber den erfindungsgemäßen Elektroden ein um ca. 200 mV erhöhtes Abscheidepotential bei 1,5 kA/m 2 .
- Die Anode wird wie in Beispiel 1 beschrieben hergestellt, wobei als Plasmagas Argon bei einer Spritzenergie von 32 kW verwendet wird. Das Gewichtsverhältnis Fe3O4 : CO3O4 (Korngröße < 125 µm) beträgt 70 : 30. Die Bestimmung des Abscheidepotentials erfolgt unter den gleichen Bedingungen wie in Beispiel 1 bis 4. Dabei werden folgende Werte ermittelt:
- Ein Vergleich dieser Abscheidepotentiale mit den Abscheidepotentialen der Elektrode gemäß Beispiel 1a, deren aktive Schicht mit einer Spritzenergie von 18 kW hergestellt worden ist, ergibt, daß letztere ein um 90 bis 170 mV niedrigeres Abscheidepotential besitzt.
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3024611 | 1980-06-28 | ||
DE19803024611 DE3024611A1 (de) | 1980-06-28 | 1980-06-28 | Edelmetallfreie elektrode |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0042984A1 true EP0042984A1 (de) | 1982-01-06 |
EP0042984B1 EP0042984B1 (de) | 1983-08-17 |
Family
ID=6105944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81104207A Expired EP0042984B1 (de) | 1980-06-28 | 1981-06-02 | Edelmetallfreie Elektrode und Verfahren zu ihrer Herstellung |
Country Status (4)
Country | Link |
---|---|
US (1) | US4411761A (de) |
EP (1) | EP0042984B1 (de) |
JP (1) | JPS5739184A (de) |
DE (2) | DE3024611A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014001816A1 (de) | 2014-02-13 | 2015-08-13 | Jenabatteries GmbH | Redox-Flow-Zelle zur Speicherung elektrischer Energie und deren Verwendung |
DE102015010083A1 (de) | 2015-08-07 | 2017-02-09 | Friedrich-Schiller-Universität Jena | Redox-Flow-Zelle zur Speicherung elektrischer Energie und deren Verwendung |
DE102015014828A1 (de) | 2015-11-18 | 2017-05-18 | Friedrich-Schiller-Universität Jena | Hybrid-Flow-Zelle zur Speicherung elektrischer Energie und deren Verwendung |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4546058A (en) * | 1984-12-12 | 1985-10-08 | Energy Research Corporation | Nickel electrode for alkaline batteries |
US5356674A (en) * | 1989-05-04 | 1994-10-18 | Deutsche Forschungsanstalt Fuer Luft-Raumfahrt E.V. | Process for applying ceramic coatings using a plasma jet carrying a free form non-metallic element |
US7247229B2 (en) * | 1999-06-28 | 2007-07-24 | Eltech Systems Corporation | Coatings for the inhibition of undesirable oxidation in an electrochemical cell |
US7235161B2 (en) * | 2003-11-19 | 2007-06-26 | Alcoa Inc. | Stable anodes including iron oxide and use of such anodes in metal production cells |
TWI433964B (zh) | 2010-10-08 | 2014-04-11 | Water Star Inc | 複數層之混合金屬氧化物電極及其製法 |
US11668017B2 (en) | 2018-07-30 | 2023-06-06 | Water Star, Inc. | Current reversal tolerant multilayer material, method of making the same, use as an electrode, and use in electrochemical processes |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2210043A1 (de) * | 1970-11-02 | 1972-09-14 | Ppg Industries Inc | Elektrode und Verfahren zu ihrer Her stellung |
DE2729272A1 (de) * | 1976-07-02 | 1978-02-09 | Dow Chemical Co | Anodenmaterial fuer elektrolytische zellen und verfahren zur herstellung von anoden |
GB1533758A (en) * | 1975-09-15 | 1978-11-29 | Diamond Shamrock Corp | Electrolysis cathodes |
DE2137632B2 (de) * | 1970-07-31 | 1979-05-10 | Ppg Industries Inc | Verfahren zum Behändem von Elektroden |
GB1552721A (en) * | 1976-08-06 | 1979-09-19 | Israel Mini Comm & Ind | Electrocatalyst |
GB1568894A (en) * | 1976-11-17 | 1980-06-11 | Uranit Gmbh | Method for forming an anti-corrosive oxide layer on steels |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD98838A1 (de) | 1972-01-06 | 1973-07-12 | ||
GB1433805A (en) | 1972-04-29 | 1976-04-28 | Tdk Electronics Co Ltd | Methods of electrolysis using complex iron oxide electrodes |
IT978528B (it) * | 1973-01-26 | 1974-09-20 | Oronzio De Nora Impianti | Elettrodi metallici e procedimen to per la loro attivazione |
US3977958A (en) * | 1973-12-17 | 1976-08-31 | The Dow Chemical Company | Insoluble electrode for electrolysis |
US4169028A (en) * | 1974-10-23 | 1979-09-25 | Tdk Electronics Co., Ltd. | Cathodic protection |
JPS5541815Y2 (de) * | 1975-02-18 | 1980-09-30 | ||
US4142005A (en) * | 1976-02-27 | 1979-02-27 | The Dow Chemical Company | Process for preparing an electrode for electrolytic cell having a coating of a single metal spinel, Co3 O4 |
FR2434213A1 (fr) * | 1978-08-24 | 1980-03-21 | Solvay | Procede pour la production electrolytique d'hydrogene en milieu alcalin |
-
1980
- 1980-06-28 DE DE19803024611 patent/DE3024611A1/de not_active Withdrawn
-
1981
- 1981-06-02 DE DE8181104207T patent/DE3160766D1/de not_active Expired
- 1981-06-02 EP EP81104207A patent/EP0042984B1/de not_active Expired
- 1981-06-24 US US06/276,985 patent/US4411761A/en not_active Expired - Fee Related
- 1981-06-26 JP JP9849281A patent/JPS5739184A/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2137632B2 (de) * | 1970-07-31 | 1979-05-10 | Ppg Industries Inc | Verfahren zum Behändem von Elektroden |
DE2210043A1 (de) * | 1970-11-02 | 1972-09-14 | Ppg Industries Inc | Elektrode und Verfahren zu ihrer Her stellung |
GB1533758A (en) * | 1975-09-15 | 1978-11-29 | Diamond Shamrock Corp | Electrolysis cathodes |
DE2729272A1 (de) * | 1976-07-02 | 1978-02-09 | Dow Chemical Co | Anodenmaterial fuer elektrolytische zellen und verfahren zur herstellung von anoden |
GB1552721A (en) * | 1976-08-06 | 1979-09-19 | Israel Mini Comm & Ind | Electrocatalyst |
GB1568894A (en) * | 1976-11-17 | 1980-06-11 | Uranit Gmbh | Method for forming an anti-corrosive oxide layer on steels |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014001816A1 (de) | 2014-02-13 | 2015-08-13 | Jenabatteries GmbH | Redox-Flow-Zelle zur Speicherung elektrischer Energie und deren Verwendung |
WO2015120971A1 (de) | 2014-02-13 | 2015-08-20 | Jenabatteries GmbH | Redox-flow-zelle zur speicherung elektrischer energie und deren verwendung |
DE102015010083A1 (de) | 2015-08-07 | 2017-02-09 | Friedrich-Schiller-Universität Jena | Redox-Flow-Zelle zur Speicherung elektrischer Energie und deren Verwendung |
US11515557B2 (en) | 2015-08-07 | 2022-11-29 | Jenabatteries GmbH | Redox flow cell for storing electrical energy and use thereof |
DE102015014828A1 (de) | 2015-11-18 | 2017-05-18 | Friedrich-Schiller-Universität Jena | Hybrid-Flow-Zelle zur Speicherung elektrischer Energie und deren Verwendung |
US11283077B2 (en) | 2015-11-18 | 2022-03-22 | Jena Batteries, Gmbh | Hybrid flow battery for storing electrical energy and use thereof |
Also Published As
Publication number | Publication date |
---|---|
US4411761A (en) | 1983-10-25 |
DE3160766D1 (en) | 1983-09-22 |
JPS5739184A (en) | 1982-03-04 |
DE3024611A1 (de) | 1982-01-28 |
EP0042984B1 (de) | 1983-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2300422A1 (de) | Langzeitelektrode fuer elektrolytische prozesse | |
DE2630398A1 (de) | Kathode fuer die elektrolyse in alkalischem medium | |
DE3507071C2 (de) | Elektrode für die Elektrolyse und Verfahren zu ihrer Herstellung | |
DE2752875C2 (de) | Elektrode für elektrochemische Prozesse und Verfahren zu deren Herstellung | |
EP0121694B1 (de) | Katalysator zur Beschichtung von Anoden und Verfahren zu dessen Herstellung | |
EP0042984B1 (de) | Edelmetallfreie Elektrode und Verfahren zu ihrer Herstellung | |
DE2113676C2 (de) | Elektrode für elektrochemische Prozesse | |
DE3047636A1 (de) | Kathode, verfahren zu ihrer herstellung, ihre verwendung und elektrolysezelle | |
DE2723406C2 (de) | Titananode zur elektrolytischen Herstellung von Mangandioxid und Verfahren zu deren Herstellung | |
DE3322125C2 (de) | Kathode für die Elektrolyse von Säurelösungen und Verfahren zu ihrer Herstellung | |
DE3004080C2 (de) | Verfahren zum Beschichten einer porösen Elektrode | |
DE3780075T2 (de) | Niedrigueberspannungs-elektroden fuer alkalische elektrolyte. | |
DE2150039A1 (de) | Korrosions- und massbestaendige elektrode fuer elektrochemische prozesse | |
DE2852136A1 (de) | Verfahren zur herstellung einer unloeslichen elektrode | |
DE2844558A1 (de) | Elektrode fuer die verwendung in einem elektrolytischen verfahren | |
EP0080064B1 (de) | Galvanisches Primärelement mit stromlos verzinktem negativen Elektrodenableiter | |
EP0245201B1 (de) | Anode für Elektrolysen | |
DE3515742C2 (de) | ||
DE2714605A1 (de) | Elektrode fuer elektrochemische prozesse | |
EP0001778A2 (de) | Elektroden für Elektrolysezwecke | |
DE3346093A1 (de) | Aktivierte metallanoden sowie ein verfahren zu deren herstellung | |
EP0133468B1 (de) | Verfahren zur Herstellung einer Oberflächenschicht zur Herabsetzung der Überspannung an einer Elektrode einer elektrochemischen Zelle. | |
DE2233485B2 (de) | Überzugselektrode | |
DE2623739B2 (de) | Elektrode für die Elektrolyse | |
EP3222757A1 (de) | Verfahren und vorrichtung zum auflösen von zink |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19811021 |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB IT SE |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB IT SE |
|
REF | Corresponds to: |
Ref document number: 3160766 Country of ref document: DE Date of ref document: 19830922 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19910515 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19910516 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19910527 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19910603 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19910619 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19920602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19920603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19920623 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19920630 |
|
BERE | Be: lapsed |
Owner name: BASF A.G. Effective date: 19920630 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19920602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19930226 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
EUG | Se: european patent has lapsed |
Ref document number: 81104207.6 Effective date: 19930109 |