DE69810944T2 - Hydroperoxidzersetzungsverfahren - Google Patents
HydroperoxidzersetzungsverfahrenInfo
- Publication number
- DE69810944T2 DE69810944T2 DE69810944T DE69810944T DE69810944T2 DE 69810944 T2 DE69810944 T2 DE 69810944T2 DE 69810944 T DE69810944 T DE 69810944T DE 69810944 T DE69810944 T DE 69810944T DE 69810944 T2 DE69810944 T2 DE 69810944T2
- Authority
- DE
- Germany
- Prior art keywords
- chhp
- catalyst
- gold
- hydroperoxide
- decomposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- FGGJBCRKSVGDPO-UHFFFAOYSA-N hydroperoxycyclohexane Chemical group OOC1CCCCC1 FGGJBCRKSVGDPO-UHFFFAOYSA-N 0.000 claims description 54
- 238000000034 method Methods 0.000 claims description 46
- 239000003054 catalyst Substances 0.000 claims description 41
- 230000008569 process Effects 0.000 claims description 38
- 238000000354 decomposition reaction Methods 0.000 claims description 30
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 26
- 239000010931 gold Substances 0.000 claims description 23
- 229910052737 gold Inorganic materials 0.000 claims description 21
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 19
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 17
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 17
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 17
- 239000000377 silicon dioxide Substances 0.000 claims description 13
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 9
- 239000011541 reaction mixture Substances 0.000 claims description 9
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 230000003197 catalytic effect Effects 0.000 claims description 8
- 239000002638 heterogeneous catalyst Substances 0.000 claims description 8
- 235000012239 silicon dioxide Nutrition 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 229910052681 coesite Inorganic materials 0.000 claims description 6
- 229910052906 cristobalite Inorganic materials 0.000 claims description 6
- 230000006872 improvement Effects 0.000 claims description 6
- 229910052682 stishovite Inorganic materials 0.000 claims description 6
- 229910052905 tridymite Inorganic materials 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052593 corundum Inorganic materials 0.000 claims description 5
- 150000002576 ketones Chemical class 0.000 claims description 5
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 claims 1
- 239000001301 oxygen Substances 0.000 claims 1
- 239000000243 solution Substances 0.000 description 27
- 239000007787 solid Substances 0.000 description 20
- 239000000203 mixture Substances 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- PBKONEOXTCPAFI-UHFFFAOYSA-N TCB Natural products ClC1=CC=C(Cl)C(Cl)=C1 PBKONEOXTCPAFI-UHFFFAOYSA-N 0.000 description 16
- 239000002002 slurry Substances 0.000 description 14
- 238000002474 experimental method Methods 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 12
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 11
- 229910003803 Gold(III) chloride Inorganic materials 0.000 description 9
- RJHLTVSLYWWTEF-UHFFFAOYSA-K gold trichloride Chemical compound Cl[Au](Cl)Cl RJHLTVSLYWWTEF-UHFFFAOYSA-K 0.000 description 9
- 229940076131 gold trichloride Drugs 0.000 description 9
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 8
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 6
- -1 aromatic hydroperoxides Chemical class 0.000 description 6
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 6
- 239000012153 distilled water Substances 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- 239000000395 magnesium oxide Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 229910000029 sodium carbonate Inorganic materials 0.000 description 6
- 239000001509 sodium citrate Substances 0.000 description 6
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 6
- 239000001307 helium Substances 0.000 description 5
- 229910052734 helium Inorganic materials 0.000 description 5
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 5
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 4
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 4
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000000741 silica gel Substances 0.000 description 4
- 229910002027 silica gel Inorganic materials 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000004408 titanium dioxide Substances 0.000 description 4
- RSJKGSCJYJTIGS-UHFFFAOYSA-N undecane Chemical compound CCCCCCCCCCC RSJKGSCJYJTIGS-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000001361 adipic acid Substances 0.000 description 3
- 235000011037 adipic acid Nutrition 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 150000002736 metal compounds Chemical class 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000010960 commercial process Methods 0.000 description 2
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 241000167854 Bourreria succulenta Species 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- KSSJBGNOJJETTC-UHFFFAOYSA-N COC1=C(C=CC=C1)N(C1=CC=2C3(C4=CC(=CC=C4C=2C=C1)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC(=CC=C1C=1C=CC(=CC=13)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC=C(C=C1)OC Chemical compound COC1=C(C=CC=C1)N(C1=CC=2C3(C4=CC(=CC=C4C=2C=C1)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC(=CC=C1C=1C=CC(=CC=13)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)N(C1=CC=C(C=C1)OC)C1=C(C=CC=C1)OC)C1=CC=C(C=C1)OC KSSJBGNOJJETTC-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000012482 calibration solution Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- QAEKNCDIHIGLFI-UHFFFAOYSA-L cobalt(2+);2-ethylhexanoate Chemical compound [Co+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O QAEKNCDIHIGLFI-UHFFFAOYSA-L 0.000 description 1
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(II,III) oxide Inorganic materials [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 description 1
- 238000001246 colloidal dispersion Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- JGDFBJMWFLXCLJ-UHFFFAOYSA-N copper chromite Chemical compound [Cu]=O.[Cu]=O.O=[Cr]O[Cr]=O JGDFBJMWFLXCLJ-UHFFFAOYSA-N 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229940111120 gold preparations Drugs 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000007210 heterogeneous catalysis Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-M hydroperoxide group Chemical group [O-]O MHAJPDPJQMAIIY-UHFFFAOYSA-M 0.000 description 1
- GPHZOCJETVZYTP-UHFFFAOYSA-N hydroperoxycyclododecane Chemical compound OOC1CCCCCCCCCCC1 GPHZOCJETVZYTP-UHFFFAOYSA-N 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- BSMBZDDPUMOQPJ-UHFFFAOYSA-N n-pyridin-2-yl-3-pyridin-2-yliminoisoindol-1-amine Chemical class C=1C=CC=NC=1NC(C1=CC=CC=C11)=NC1=NC1=CC=CC=N1 BSMBZDDPUMOQPJ-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/132—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/51—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
- C07C45/53—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition of hydroperoxides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Description
- Die vorliegende Erfindung betrifft im Allgemeinen ein verbessertes katalytisches Verfahren zum Zerlegen von Alkyl- oder aromatischen Hydroperoxiden, um eine Mischung zu erzeugen, die den entsprechenden Alkohol und das entsprechende Keton enthält. Speziell betrifft die Erfindung das Zerlegen eines Hydroperoxids, indem es mit einer katalytischen Menge eines heterogenen Katalysators aus Au oder Ag kontaktiert wird.
- Technische Verfahren für die Herstellung von Mischungen aus Cyclohexanol und Cyclohexanon aus Cyclohexan sind gegenwärtig kommerziell von besonderer Bedeutung und in der Patentliteratur gut beschrieben. Nach der technischen Praxis wird Cyclohexan typischerweise oxidiert, um ein Reaktionsgemisch zu erzeugen, das Cyclohexylhydroperoxid (CHHP) enthält. Das resultierende CHHP wird wahlweise in Gegenwart eines Katalysators zerlegt, um ein Reaktionsgemisch zu erzeugen, das Cyclohexanol und Cyclohexanon enthält. In der Technik ist ein solches Gemisch bekannt als eine K/A (Keton/Alkohol)-Mischung und kann leicht unter Erzeugung von Adipinsäure oxidiert werden, die ein bedeutender Reaktant in den Verfahren zum Herstellen bestimmter Kondensationspolymere und besonders Polyamide ist. Wegen der großen Volumina an Adipinsäure, die in diesen und anderen Verfahren verbraucht werden, lassen sich Verbesserungen in den Verfahren zum Erzeugen von Adipinsäure und ihren Präkursoren nutzen, um Kostenvorteile zu schaffen.
- Druliner et al. offenbaren in der US-P-4326084 ein verbessertes katalytisches Verfahren zum Oxidieren von Cyclohexan, um ein Reaktionsgemisch zu erzeugen, das CHHP enthält, und um danach das resultierende CHHP unter Erzeugung einer Mischung zu zerlegen, die K und A enthält. Die Verbesserung umfasst die Verwendung bestimmter Übergangsmetall-Komplexe von 1,3-Bis(2-pyridylimino)isoindolinen als Katalysatoren für die Oxidation von Cyclohexan und die Zerlegung von CHHP. Nach dieser Patentschrift zeigen diese Katalysatoren eine längere Katalysatorwirkzeit, eine höhere CHHP-Umwandlung zu K und A, eine Verarbeitbarkeit bei niedrigeren Temperaturen (80ºC bis 160ºC) und eine verringerte Bildung von unlöslichen, Metall-enthaltenden Feststoffen im Vergleich zu Ergebnissen, die mit bestimmten Kobalt(II)-Fettsäure-Salzen, z. B. Kobalt-2-ethylhexanoat, erzielt werden.
- Druliner et al. offenbaren in der US-P-4503257 einen anderen verbesserten katalytischen Prozess zum Oxidieren von Cyclohexan, um ein Reaktionsgemisch zu erzeugen, das CHHP enthält, und um danach das resultierende CHHP unter Erzeugung einer Mischung zu zerlegen, die K und A enthält. Diese Verbesserung umfasst die Verwendung von Co&sub3;O&sub4;, MnO&sub2; oder Fe&sub3;O&sub4; die auf einen geeigneten festen Träger als Katalysatoren für die Oxidation von Cyclohexan und die Zerlegung von CHHP bei einer Temperatur von etwa 80ºC bis etwa 130ºC in Gegenwart von molekularem Sauerstoff aufgebracht sind.
- Sanderon et al. offenbaren in der US-P-5414163 ein Verfahren zum Herstellen von tert-Butanol aus tert-Butylhydroperoxid in der flüssigen Phase über katalytisch wirksame Mengen von Titandioxid, Zirconiumdioxid oder Mischungen davon.
- Sanderson et al. offenbaren in der US-P-5414141, 5399794 und 5401889 ein Verfahren zum Herstellen von tert-Butanol aus tert-Butylhydroperoxid in der flüssigen Phase über katalytisch wirksame Mengen von Palladium mit Gold als ein Dispergiermittel, gehalten auf Aluminiumoxid.
- Druliner et al. offenbaren in der vorläufigen Patentanmeldung 60/025368, eingereicht am 3. September, 1996 (jetzt die PCT US97/15332, eingereicht am 2. September, 1997) das Zerlegen eines Hydroperoxids durch sein Kontaktieren mit einer katalytischen Menge eines heterogenen Katalysators aus Zr-, Nb-, Hf und Ti-Hydroxiden oder -Oxiden. Bevorzugt wird der Katalysator auf SiO&sub2;, Al&sub2;O&sub3;, Kohlenstoff oder TiO&sub2; getragen.
- Die US-P-3941845 (Voskuil et al.) offenbart ein Verfahren für die Zerlegung von Cycloalkylperoxiden unter Verwendung eines heterogenen Katalysators, der Kupferoxid aufweist. Vorzugsweise wird ein Kupfer-Chromoxid als ein Katalysator eingesetzt.
- Die EP-659726 (DSM, N. V.) offenbart ein Verfahren für die Zerlegung von Cycloalkylperoxiden unter Verwendung eines heterogenen Katalysators, bei dem es sich um eine Metallverbindung handelt, die auf einem Trägermaterial imobilisiert ist. Das Metall des Katalysators wird ausgewählt aus Mn, Fe, Co, Ni und Cu. Die Metallverbindung ist in der Regel eine Metalloxid-Verbindung.
- Weitere Verbesserungen und Möglichkeiten sind für die Zerlegung von Hydroperoxid in K/A-Mischungen nachgefragt, um die dem Stand der Technik innewohnenden Mängel zu überwinden. Weitere Aufgaben und Vorteile der vorliegenden Erfindung werden dem Fachmann auf dem Gebiet unter Bezugnahme auf die detaillierte Beschreibung offensichtlich, die nachfolgend folgt.
- Nach der vorliegenden Erfindung wird ein verbessertes Verfahren gewährt, bei welchem ein Hydroperoxid unter Erzeugung eines Zersetzungs-Reaktionsgemisches, das einen entsprechenden Alkohol und Keton enthält. Die Verbesserung umfasst das Zerlegen des Hydroperoxids durch Kontaktieren eines Hydroperoxids mit einer katalytischen Menge eines heterogenen Katalysators, ausgewählt aus der Gruppe, bestehend aus Au (Gold) und Ag (Silber). Darüber hinaus werden die Katalysatoren gegebenenfalls von einem geeigneten Trägerelement gehalten, wie beispielsweise SiO&sub2;, Al&sub2;O&sub3;, Kohlenstoff, Zirconiumdioxid, MgO oder TiO&sub2;.
- Die vorliegende Erfindung gewährt ein verbessertes Verfahren zur Ausführung des Hydroperoxid- Zersetzungsschrittes in einem technischen Prozess, in dem eine Alkyl- oder aromatische Verbindung unter Erzeugung einer Mischung des entsprechenden Alkohols und Ketons oxidiert wird. Speziell kann Cyclohexan oxidiert werden, um eine Mischung Cyclohexanol (A) und Cyclohexanon (K) enthaltend zu erzeugen. Der technische Prozess umfasst zwei Schritte: erstens, Cyclohexan wird oxidiert unter Erzeugung eines Reaktionsgemisches, das CHHP enthält; zweitens, CHHP wird zerlegt unter Erzeugung einer Mischung, die K und A enthält. Wie bereits erwähnt, sind Verfahren für die Oxidation von Cyclohexan in der Literatur gut bekannt und für den Fachmann auf dem Gebiet zugänglich.
- Vorteile des gegenwärtigen Verfahrens zur heterogenen Katalyse gegenüber den Verfahren, die homogene Metall-Katalysatoren einsetzen, wie beispielsweise Metallsalze oder Metall/Ligandenmischungen, schließen längere Katalysatorwirkzeit ein, verbesserte Ausbeuten an nutzbaren Produkten und das Fehlen löslicher Metallverbindungen.
- Das verbesserte Verfahren kann außerdem für die Zerlegung anderer Alkan- oder aromatischer» Hydroperoxide eingesetzt werden, wie beispielsweise tert-Butylhydroperoxid, Cyclododecylhydroperoxid und Cumolhydroperoxid.
- Das Verfahren zur Zerlegung von CHHP kann unter einer großen Vielzahl von unter stark variierenden Bedingungen und in einer großen Vielzahl von Lösemitteln ausgeführt werden, einschließlich dem Cyclohexan selbst. Da das CHHP im typischen Fall technisch als eine Lösung in Cyclohexan durch katalytische Oxidation von Cyclohexan erzeugt wird, ist ein bequemes und bevorzugtes Lösemittel für das erfindungsgemäße Verfahren der Zerlegung Cyclohexan selbst. Eine derartige Mischung kann verwendet werden, wie sie aus dem ersten Schritt des Oxidationsprozesses für Cyclohexan erhalten wird, oder nachdem einige der Bestandteile nach bekannten Verfahren entfernt worden sind, wie beispielsweise Destillation oder wässriger Extraktion zur Entfernung von Carbonsäuren und anderen Verunreinigungen.
- Die bevorzugte Konzentration von CHHP in der Mischung der Beschickung für die CHHP-Zerlegung kann im Bereich von etwa 0,5% bis 100 Gew.-% (d. h. unvermischt) liegen. Auf dem in der Technik praktizierten Weg liegt der bevorzugte Bereich von etwa 0,5% bis etwa 3 Gew.-%.
- Geeignete Reaktionstemperaturen für das Verfahren der vorliegenden Erfindung liegen im Bereich von etwa 80ºC bis etwa 170ºC. Im typischen Fall sind Temperaturen von etwa 110ºC bis etwa 130ºC bevorzugt. Die Reaktionsdrücke können vorzugsweise im Bereich von etwa 69 kPa bis etwa 2.760 kPa (10 bis 400psi) liegen, wobei Drücke von etwa 276 kPa bis etwa 1.380 kPa (40 bis 200psi) mehr bevorzugt sind. Die Reaktionszeit variiert umgekehrt proportional zur Reaktionstemperatur und liegt im typischen Fall im Bereich von etwa 2 bis etwa 30 Minuten.
- Das erfindungsgemäße Verfahren kann auch unter Verwendung von Au oder Ag in Gegenwart anderer Metalle (z. B. Pd) ausgeführt werden. Der prozentuale Gehalt des Metalls im Bezug auf den Träger kann von etwa 0,01% bis etwa 50 Gew.-% variieren und beträgt bevorzugt etwa 0,1% bis etwa 10 Gew.-%. Geeignete, gegenwärtig bevorzugte Träger schließen ein: SiO&sub2; (Siliciumdioxid), Al&sub2;O&sub3; (Aluminiumoxid), C (Kohlenstoff), TiO&sub2; (Titandioxid), MgO (Magnesiumoxid) oder ZrO&sub2; (Zirconiumdioxid). Zirconiumdioxid ist ein besonders bevorzugter Träger, wobei Au auf Zirconiumdioxid als Träger ein für die Erfindung besonders bevorzugter Katalysator ist.
- Einige der heterogenen Katalysatoren der Erfindung können bereits von Herstellern hergestellt erhalten werden oder sie können aus geeigneten Ausgangsmaterialien unter Anwendung von Methoden bekannter Ausführung hergestellt werden. Trägerkatalysatoren mit Gold können nach jeder beliebigen Standardprozedur hergestellt werden, von der bekannt ist, dass sie ein gut dispergiertes Gold liefert, wie beispielsweise Verdampfungsmethoden oder Beschichtungen aus kolloidalen Dispersionen.
- Besonders bevorzugt wird Gold in ultrafeiner Partikelgröße. Ein derartiges feindisperses Gold (oftmals kleiner als 10 nm) kann hergestellt werden nach Haruta, M., "Size-and Support-Dependency in the Catalysis of Gold" ("Größen- und Trägerabhängigkeit in der Katalyse des Goldes"), Catalysis Today 36 (1997) 153-166 und Tsubota et al., Preparation of Catalysts V, S. 695-704 (1991). Derartige Goldpräparate erzeugende Proben, die anstelle der typischen Bronzefarbe im Zusammenhang mit Gold eine purpur-rosa Farbe haben und zu hochdispersen Goldkatalysatoren führen, wenn sie auf ein geeignetes Trägerelement aufgebracht werden. Diese hochdispersen Goldpartikel haben einen Durchmesser von typischerweise etwa 3 nm bis etwa 15 nm.
- Die festen Katalysatorträger einschließlich SiO&sub2;, Al&sub2;O&sub3;, Kohlenstoff, MgO, Zirconiumdioxid oder TiO&sub2; können amorph oder kristallin sein oder eine Mischung von amorphen und kristallinen Formen annehmen. Die Auswahl einer optimalen mittleren Partikelgröße für die Katalysatorträger hängt von solchen Prozessparametern ab, wie beispielsweise Verweilzeit im Reaktor und gewünschte Reaktor- Durchflussraten. Im Allgemeinen wird die mittlere Partikelgröße, die ausgewählt wird, von etwa 0,005 mm bis etwa Smm variieren. Katalysatoren mit einer Oberfläche größer als 10 m²/g sind bevorzugt, da die erhöhte Oberfläche des Katalysators im direkten Zusammenhang mit den erhöhten Zerlegungsgeschwindigkeiten in Chargenversuchen steht. Es können auch Träger eingesetzt werden, die über sehr viel größere Oberflächen verfügen, wobei jedoch die ihnen innewohnende Sprödheit von Katalysatoren mit großer Oberfläche und die damit verbundenen Probleme, eine akzeptable Partikelgrößenverteilung aufrecht zu erhalten, der Oberfläche des Katalysatorträgers eine praktische obere Grenze setzen werden.
- In der Ausführung der Erfindung können die Katalysatoren mit CHHP durch Ansatz in ein Katalysatorbett kontaktiert werden, das so angeordnet ist, dass der innige Kontakt zwischen Katalysatoren und Reaktanten gewährt ist. Alternativ lassen sich Katalysatoren mit Reaktionsmischungen unter Anwendung von Methoden bekannter Ausführung aufschlämmen. Das erfindungsgemäße Verfahren eignet sich für chargenweise oder kontinuierliche Prozesse der CHHP-Zerlegung. Diese Prozesse können unter vielfältig variierenden Bedingungen ausgeführt werden.
- Das Zusetzen von Luft oder einer Mischung von Luft und inerten Gasen zu CHHP-Zersetzungsmischungen gewährt höhere Umwandlungen von Prozessreaktanten K und A, da ein bestimmter Teil von Cyclohexan direkt zu K und A zusätzlich zu dem K und A oxidiert wird, die durch CHHP-Zerlegung erzeugt werden. Dieser Zusatzprozess ist bekannt als "Cyclohexan-Mitwirkung" und wurde im Detail in der US-P-4326084 von Druliner et al. beschrieben, deren gesamter Inhalt hiermit als Fundstelle einbezogen ist.
- Das Verfahren der vorliegenden Erfindung wird anhand der folgenden nicht einschränkenden Beispiele weiter veranschaulicht. Sofern nicht anders angegeben, sind alle Temperaturen in den Beispielen in ºC und alle Prozentangaben als Gewichtsprozent angegeben.
- Es wurden 5 g Holzkohle-Kohlenstoff mit 0,5 bis 0,85 mm (20 bis 35mesh) (EM Science, Cherry Hill, NJ) in strömendem Helium (100 ml/min) bei 400ºC für 1 Stunde calciniert. Dieses Material wurde sodann in eine Lösung von 0,1 g Goldtrichlorid in 10 ml Wasser mit einem Gehalt von 1 ml konzentrierter HCl aufgeschlämmt. Die Aufschlämmung wurde für 15 Minuten bei Raumtemperatur, gerührt und danach bis zur Trockene auf einem Rotationsverdampfer eingedampft. Der gewonnene Feststoff wurde in strömendem Stickstoff (100 ml/min) bei 400ºC für 1 Stunde calciniert, gekühlt und danach in einem fest verschlossenen Fläschchen zum Testen als ein Katalysator für die CHHP-Zerlegung aufbewahrt.
- Es wurden 5 g Silicagel mit +8mesh mit einer Oberfläche von 300 m²/g und einem Porenvolumen von 1 cm³/g (Alfa Aesar, Ward Hill, MA) in strömendem Helium (100 ml/min) bei 400ºC für 1 Stunde calciniert. Dieses Material wurde sodann in einer Lösung von 0,1 g Goldtrichlorid in 10 ml Wasser mit einem Gehalt von 1 ml konzentrierter HCl aufgeschlämmt. Die Aufschlämmung wurde für 15 Minuten bei Raumtemperatur gerührt und danach bis zur Trockene auf einem Rotationsverdampfer eingedampft. Der gewonnene Feststoff wurde in strömendem Stickstoff (100 ml/min) bei 400ºC für 1 Stunde calciniert; gekühlt und danach in einem fest verschlossenen Fläschchen zum Testen als ein Katalysator für die CHHP-Zerlegung aufbewahrt.
- Es wurden 5 g Silicagel mit weniger als 2 um und einer Oberfläche von A50 m²/g und einem Porenvolumen von 1,6 cm³/g (Alfa Aesar, Ward Hill, MA) in strömendem Helium (100 ml/min) bei 400ºC für 1 Stunde calciniert. Dieses Material wurde sodann in einer Lösung von 1,0 g Goldtrichlorid in 10 ml Wasser mit einem Gehalt von 1 ml konzentrierter HCl aufgeschlämmt. Die Aufschlämmung wurde für 15 Minuten bei Raumtemperatur gerührt und danach bis zur Trockene auf einem Rotationsverdampfer eingedampft. Der gewonnene Feststoff wurde in strömendem Stickstoff (100 ml/min) bei 400ºC für 1 Stunde calciniert, gekühlt und danach in einem fest verschlossenen Fläschchen zum Testen als ein Katalysator für die CHHP-Zerlegung aufbewahrt.
- Es wurden 5 g Silicagel mit +8mesh und einer Oberfläche von 300 m²/g und einem Porenvolumen von 1 cm³/g (Alfa Aesar, Ward Hill, MA) in strömendem Helium (100 ml/min) bei 400ºC für 1 Stunde calciniert. Dieses Material wurde sodann in einer Lösung von 10 ml Wasser mit einem Gehalt von 1 ml konzentrierter HCl aufgeschlämmt. Die Aufschlämmung wurde für 15 Minuten bei Raumtemperatur gerührt und danach bis zur Trockene auf einem Rotationsverdampfer eingedampft. Der gewonnene Feststoff wurde in strömendem Stickstoff (100 ml/min) bei 400ºC für 1 Stunde calciniert, gekühlt und danach in einem fest verschlossenen Fläschchen zum Testen als ein Katalysator für die CHHP-Zerlegung aufbewahrt.
- Es wurden 5 g α-Aluminiumoxid-Kügelchen mit 6 bis 12mesh (Calsicat, Erie, PA) zu einer Lösung von 0,1 g Goldtrichlorid in 10 ml Wasser mit einem Gehalt von 1 ml konzentrierter HCl aufgeschlämmt. Die Aufschlämmung wurde für 15 Minuten bei Raumtemperatur gerührt und danach auf einem Rotationsverdampfer bis zur Trockene eingedampft. Der gewonnene Feststoff wurde in strömendem Stickstoff (100 ml/min) bei 400ºC für 1 Stunde calciniert, gekühlt und danach in einem fest verschlossenen Fläschchen zum Testen als ein Katalysator für die CHHP-Zerlegung aufbewahrt.
- Es wurden 5 g Silicagel mit +8mesh und einer Oberfläche von 300 m²/g und einem Porenvolumen von 1 cm³/g (Alfa Aesar, Ward Hill, MA) in strömendem Helium (100 ml/min) bei 400ºC für 1 Stunde calciniert. Dieses Material wurde zu einer Lösung von 1,0 g Silbernitrat in 10 ml Wasser mit einem Gehalt von 1 ml konzentrierter HNO&sub3; aufgeschlämmt. Die Aufschlämmung wurde für 15 Minuten bei Raumtemperatur gerührt und danach bis zur Trockene auf einem Rotationsverdampfer eingedampft. Der gewonnene Feststoff wurde in strömendem Stickstoff (100 ml/min) bei 400ºC für 1 Stunde calciniert, bis 200ºC gekühlt und nochmals 1 Stunde in strömendem Wasserstoff (100 ml/min) calciniert und danach in einem fest verschlossenen Fläschchen zum Testen als ein Katalysator für die CHHP-Zerlegung aufbewahrt.
- Es wurden 10 g pulverförmiges MgO mit -200mesh (Alfa Aesar, Ward Hill, MA) zu einer Lösung von 0,2 g Goldtrichlorid in 50 ml Wasser mit einem Gehalt von 1 ml konzentrierter HCl aufgeschlämmt. Der pH-Wert der Aufschlämmung wurde mit Natriumcarbonat-Lösung auf 9,6 eingestellt und danach 0,69 g Natriumcitrat zugesetzt. Nach dem Rühren für 2 Stunden bei Raumtemperatur wurde der Feststoff durch Filtration gewonnen und mit destilliertem Wasser gut gewaschen. Der gewonnene Feststoff wurde in strömender Luft (100 ml/min) bei 250ºC für 5 Stunden calciniert, gekühlt und danach in einem fest verschlossenen Fläschchen zum Testen als ein Katalysator für die CHHP-Zerlegung aufbewahrt.
- Es wurden 10 g pulverförmiges γ-Aluminiumoxid mit -60mesh (Alfa Aesar, Ward Hill, MA) zu einer Lösung von 0,2 g Goldtrichlorid in 50 ml Wasser mit einem Gehalt von 1 ml konzentrierter HCl aufgeschlämmt. Der pH-Wert der Aufschlämmung wurde mit Natriumcarbonat-Lösung auf 9,6 eingestellt und danach 0,69 g Natriumcitrat zugegeben. Nach dem Rühren für 2 Stunden bei Raumtemperatur wurde der Feststoff durch Filtration gewonnen und mit destilliertem Wasser gut gewaschen. Der gewonnene Feststoff wurde in strömender Luft (100 ml/min) bei 250ºC für 5 Stunden calciniert, gekühlt und danach in einem fest verschlossenen Fläschchen zum Testen als ein Katalysator für die CHHP-Zerlegung aufbewahrt. Der resultierende Katalysator hatte eine purpur/rosa Farbe und eine Gold-Partikelgröße von 8 nm anhand der Bestimmung mit Hilfe der Röntgenbeugung (XRD).
- Es wurden 10 g Siliciumdioxid als Granalien mit +8mesh (Alfa Aesar, Ward Hill, MA) zu einer Lösung von 0,2 g Goldtrichlorid in 50 ml. Wasser mit einem Gehalt von 1 ml konzentrierter HCl aufgeschlämmt. Der pH-Wert der Aufschlämmung wurde mit Natriumcarbonat-Lösung auf 9,6 eingestellt und danach 0,69 g Natriumcitrat zugegeben. Nach dem Rühren für 2 Stunden bei Raumtemperatur wurde der Feststoff durch Filtration gewonnen und mit destilliertem Wasser gut gewaschen. Der gewonnene Feststoff wurde in strömender Luft (100 ml/min) bei 250ºC für 5 Stunden calciniert, gekühlt und danach in einem fest verschlossenen Fläschchen zum Testen als Katalysator für die CHHP-Zerlegung aufbewahrt.
- Es wurden 10 g pulverförmiges Titandioxid mit -325mesh (Alfa Aesar, Ward Hill, MA) zu einer Lösung von 0,2 g Goldtrichlorid in 50 ml Wasser mit einem Gehalt von 1 ml konzentrierter HCl aufgeschlämmt. Der pH-Wert der Aufschlämmung wurde mit Natriumcarbonat-Lösung auf 7,0 eingestellt und danach 1,5 g Natriumcitrat zugegeben. Nach dem Rühren für 2 Stunden bei Raumtemperatur wurde der Feststoff durch Filtration gewonnen und mit destilliertem Wasser gut gewaschen. Der gewonnene Feststoff wurde in strömender Luft (100 ml/min) bei 400ºC für 5 Stunden calciniert, gekühlt und danach in einem fest verschlossenen Fläschchen zum Testen als ein Katalysator für die CHHP-Zerlegung aufbewahrt.
- Es wurden 10 g Zirconiumdioxid mit -325mesh (Calsicat #96F-88A, Erie, PA) zu einer Lösung von 0,2 g Goldtrichlorid in 50 ml Wasser und 1 Tropfen konz. HCl aufgeschlämmt. Die Aufschlämmung wurde leicht gerührt und der pH-Wert mit 0,1 M Natriumcarbonat-Lösung auf 9,6 eingestellt. Die Aufschlämmung wurde leicht gerührt, während 0,69 g Natriumcitrat als Feststoff langsam zugesetzt wurden und danach für weitere 2 Stunden gerührt wurde. Nach dem Filtrieren und dem ausreichenden Waschen mit destilliertem Wasser wurde der Feststoff in strömender Luft für 5 Stunden bei 250ºC calciniert.
- Es wurden IOg γ-Aluminiumoxid mit -60mesh zu einer Lösung von 0,2 g Gold und 0,02 g Palladiumtetraaminchlorid in 50 ml Wasser und einem Tropfen konz. HCl aufgeschlämmt. Die Aufschlämmung wurde leicht gerührt und der pH-Wert mit 0,1 M Natriumcarbonat-Lösung auf 9,6 eingestellt. Die Aufschlämmung wurde wiederum leicht gerührt, während 0,69 g Natriumcitrat als Feststoff langsam zugesetzt wurden, wonach für weitere 2 Stunden gerührt wurde. Nach dem Filtrieren und ausreichendem Waschen mit destilliertem Wasser wurde der Feststoff in strömender Luft für 5 Stunden bei 250ºC calciniert.
- Sämtliche Reaktionen wurden in einem diskontinuierlich arbeitenden Reaktor in gerührten 3,5 ml- Glasfläschchen ausgeführt, die mit Membranen und Kunststoffkappen verschlossen waren. Die Fläschchen wurden in einen Aluminium-Heizblock/Rührapparat eingesetzt, der bis zu 8 Fläschchen aufnimmt. Das Rühren erfolgte unter Verwendung von Teflon®-beschichteten Rührstäben. Jedes Fläschchen wurde zuerst mit 1,5 ml n-Octan oder Undecan-Lösemittel, mit näherungsweise 0,005 oder 0,01g eines vorgegebenen zerkleinerten Katalysators, einem Rührstab beschickt und das Fläschchen verschlossen. Die Fläschchen wurden für näherungsweise 10 Minuten gerührt und erhitzt, um zu gewährleisten, dass die gewünschte Reaktionstemperatur von 125ºC erreicht worden war. Danach wurden zu Beginn jedes Beispiels 30 ul einer Stammlösung von CHHP und TCB (1,2,4-Trichlorbenzol) oder CB (Chlorbenzol), GC (Gaschromatograph)-interner Standard eingespritzt. Die Stammlösungen bestanden aus Mischungen von etwa 20 Gew.-% TCB oder CB in CHHP. Das CHHP-Ausgangsmaterial enthielt bis zu 2,0 Gew.-% vereinigtes Cyclohexanol und Cyclohexanon. Die Fläschchen wurden aus dem Aluminium- Heizblock/Rührapparat nach 0,5 bis 10 Minuten Dauer entnommen und auf Raumtemperatur abkühlen gelassen.
- In den Beispielen 1 bis 9 (Tabelle I) wurden die Fläschchen direkt auf die zurückbleibende CHHP- Menge unter Verwendung einer 15 m DB-17-Kapillarsäule mit einem Innendurchmesser von 0,32 mm analysiert. Die flüssige Phase der Säule bestand aus Methylpolysiloxan (50 Gew.-% Phenyl). Die Säule wurde von der "J. and W. Scientific", Folsum, California, erhalten.
- Die GC-Analysen für die Mengen an CHHP in jeder Lösung wurden unter Verwendung der folgenden Gleichung berechnet:
- Gew.-% CHHP = (Fläche % CHHP/Fläche % TCB) · Gew.-% TCB · R. F.CHHP
- R. F.CHHP(GC-Ansprechfaktor für CHHP) wurde aus den Eichlösungen ermittelt, die bekannte Mengen an CHHP und TCB enthielten und wurde aus der folgenden Gleichung berechnet:
- % CHHP-Zerlegung = 100 · [1-(Fläche % CHHP/Fläche % TCB) Ende /(Fläche % CHHP/Fläche % TCB Beginn)]
- In den Beispielen 1 bis 9 (Tabelle I) betragen die Anfangskonzentrationen von CHHP in den jeweiligen Fläschchen näherungsweise 2,2 Gew.-%. Die Zahlenwerte für GC in Gew.-% CHHPAnfang und CHHPEnde, sind lediglich Näherungswerte, da der Betrag der in den GC-Berechnungen verwendeten Verhältnisse von TCB/g Lösung ungefähr gleich 0,25 mg TCB/g Lösung gesetzt wurde. Da eine nicht erhitzte Probe von 1,5 ml n-Octan und 304 CHHP/TCB-Lösung mit jedem Satz von CHHP-Zersetzungsprodukt der Fläschchen analysiert wurde, die aus der gleichen CHHP/TCB-Lösung angesetzt waren, ließen sich genaue Änderungen in den CHHP/TCB-Verhältnissen berechnen.
- Beispiele 10 bis 12 (Tabelle II) und Beispiele 13 bis 15 (Tabelle III) liefern die Ergebnisse der chargenweisen Zerlegung in % tert-Butylhydroperoxid (tert-BuOOH) und in % Cumolhydroperoxid (CumolOOH) jeweils für 1% Au/Kohlenstoff und 10% Au/SiO&sub2;-Katalysatoren. Die Analysen auf tert-BuOOH und CumolOOH wurden unter Anwendung gut bekannter Methoden der iodometrischen Titration ausgeführt, die in "Comprehensive Analytical Chemistry", Elsevier Publishing Company, New York, Herausg. C. L. Wilson, S. 756, 1960, beschrieben wurden. Ausgangslösungen und Produktlösungen von tert-BuOOH und CumolOOH in n-Octan, gefolgt von einem Zusetzen eines Überschusses einer KI/Essigsäure-Lösung, wurden in verschlossenen Fläschchen bei Umgebungstemperatur für 10 Minuten gerührt und mit 0,1 M Na&sub2;S&sub2;O&sub3;-Lösung auf die durch vorhandenes tert-BuOOH und CumolOOH freigesetzten I&sub2;-Mengen titriert.
- Beispiele 16 bis 21 (Tabelle IV) wurden entsprechend der Beschreibung in den Beispielen 1 bis 9 mit der Ausnahme ausgeführt, dass die Reaktion bei 150ºC geführt wurde und Chlorbenzol als ein GC-interner Standard anstelle von TCB verwendet wurde und Undecan anstelle von n-Octan-Lösemittel verwendet wurde. In Tabelle IV wurde die Menge an Anfangs-CHHP und End-CHHP in der Reaktion ermittelt, indem die Fläche des CHHP-GC-Peaks dividiert durch die Fläche des Chlorbenzol-GC-Peaks berechnet wurde (Fläche %CHHP/Fläche % CB). TABELLE I TABELLE II TABELLE III TABELLE IV
Claims (13)
1. Verbessertes Verfahren zum Zerlegen eines Hydroperoxids, um ein Zersetzungs-Reaktionsgemisch
zu erzeugen, das einen entsprechenden Alkohol und ein Keton enthält, wobei die Verbesserung das
Zerlegen eines Hydroperoxids durch Kontaktieren des Hydroperoxids mit einer katalytischen Menge eines
heterogenen Katalysators umfasst, ausgewählt aus der Gruppe, bestehend aus (1) Gold und (2) Silber.
2. Verfahren nach Anspruch 1, wobei der heterogene Katalysator auf einem Katalysatorträgerelement
gehalten wird.
3. Verfahren nach Anspruch 2, wobei das Katalysatorträgerelement ausgewählt wird aus der Gruppe,
bestehend aus SiO&sub2;, Al&sub2;O&sub3;, Kohlenstoff, TiO&sub2;, MgO und Zirconiumdioxid.
4. Verfahren nach Anspruch 1, wobei das Hydroperoxid Cyclohexylhydroperoxid ist.
5. Verfahren nach Anspruch 1, wobei die Temperatur der Zersetzungsreaktion von 80ºC bis 170ºC
und der Druck der Zersetzungsreaktion 69 kPa bis 2.760 kPa betragen.
6. Verfahren nach Anspruch 5, wobei der Reaktionsdruck 276 kPa bis 1.380 kPa beträgt.
7. Verfahren nach Anspruch 1, wobei Reaktionsgemisch 0,5% bis 100 Gewichtsprozent
Cyclohexylhydroperoxid enthält.
8. Verfahren nach Anspruch 1, welches Verfahren in Gegenwart von Cyclohexan ausgeführt wird.
9. Verfahren nach Anspruch 1, welches Verfahren in Gegenwart von zugesetztem Sauerstoff
ausgeführt wird.
10. Verfahren nach Anspruch 2, wobei der Katalysator Gold ist.
11. Verfahren nach Anspruch 10, wobei das Gold auf Zirconiumdioxid gehalten wird.
12. Verfahren nach Anspruch 10, wobei das Gold 0,1% bis 10 Gewichtsprozent des Katalysators und
des Trägerelements ausmacht.
13. Verfahren nach Anspruch 10, bei welchem mit dem Gold ebenfalls Pd vorhanden ist.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3756497P | 1997-02-11 | 1997-02-11 | |
US4516597P | 1997-04-30 | 1997-04-30 | |
PCT/US1998/002926 WO1998034894A2 (en) | 1997-02-11 | 1998-02-10 | Hydroperoxide decomposition process |
Publications (2)
Publication Number | Publication Date |
---|---|
DE69810944D1 DE69810944D1 (en) | 2003-02-27 |
DE69810944T2 true DE69810944T2 (de) | 2003-11-13 |
Family
ID=26714254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE69810944T Expired - Lifetime DE69810944T2 (de) | 1997-02-11 | 1998-02-10 | Hydroperoxidzersetzungsverfahren |
Country Status (16)
Country | Link |
---|---|
US (1) | US6284927B1 (de) |
EP (1) | EP1012130B9 (de) |
JP (1) | JP3976793B2 (de) |
KR (1) | KR20000070969A (de) |
CN (1) | CN1102923C (de) |
AU (1) | AU6167498A (de) |
BR (1) | BR9815441B1 (de) |
CA (1) | CA2279493A1 (de) |
CZ (1) | CZ295000B6 (de) |
DE (1) | DE69810944T2 (de) |
EA (1) | EA002422B1 (de) |
HK (1) | HK1027554A1 (de) |
ID (1) | ID22219A (de) |
PL (1) | PL336762A1 (de) |
SK (1) | SK105899A3 (de) |
WO (1) | WO1998034894A2 (de) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6160183A (en) * | 1998-02-10 | 2000-12-12 | E. I. Du Pont De Nemours And Company | Direct oxidation of cycloalkanes |
CZ2001547A3 (cs) * | 1998-08-26 | 2001-08-15 | E. I. Du Pont De Nemours And Company | Způsob rozkladu hydroxyperoxidů |
KR20020018999A (ko) * | 1999-03-10 | 2002-03-09 | 메리 이. 보울러 | 히드로퍼옥시드 분해 방법 |
US6169215B1 (en) * | 1999-03-25 | 2001-01-02 | Mobil Oil Corporation | Production of phenol |
EP1309534B1 (de) * | 2000-08-18 | 2005-10-19 | INVISTA Technologies S.à.r.l. | Verbesserter hydroperoxid zersetzungskatalysator |
FR2823745A1 (fr) * | 2001-04-20 | 2002-10-25 | Rhodia Polyamide Intermediates | Procede de decomposition catalytique des hydroperoxydes organiques |
US6984761B2 (en) * | 2002-12-16 | 2006-01-10 | Exxonmobil Chemical Patents Inc. | Co-production of phenol, acetone, α-methylstyrene and propylene oxide, and catalyst therefor |
US7081552B2 (en) * | 2004-08-17 | 2006-07-25 | Solutia Inc. | Catalysts for cycloalkanes oxidation and decomposition of cycloalkyl hydroperoxide |
CN100364663C (zh) * | 2006-04-07 | 2008-01-30 | 浙江大学 | 负载型纳米金催化剂及制备方法 |
WO2007137021A2 (en) * | 2006-05-16 | 2007-11-29 | Shell Oil Company | Catalysts comprising a combination of oxidized metals and a method for cleaving phenylalkyl hydroperoxides using the catalysts |
US7417003B2 (en) * | 2006-12-29 | 2008-08-26 | Uop Llc | Solid acid catalyst and process for decomposition of cumene hydroperoxide |
JP4955440B2 (ja) * | 2007-03-29 | 2012-06-20 | Jx日鉱日石エネルギー株式会社 | ジヒドロキシ芳香族化合物の製造方法 |
JP5486010B2 (ja) * | 2008-10-10 | 2014-05-07 | エクソンモービル・ケミカル・パテンツ・インク | フェノールの製造方法 |
CN102177121B (zh) * | 2008-10-10 | 2015-05-13 | 埃克森美孚化学专利公司 | 生产苯酚的方法 |
WO2010098916A2 (en) | 2009-02-26 | 2010-09-02 | Exxonmobil Chemical Patents Inc. | Process for producing phenol |
US9321710B2 (en) | 2010-01-25 | 2016-04-26 | Exxonmobil Chemical Patents Inc. | Process for producing phenol |
WO2012036824A1 (en) | 2010-09-14 | 2012-03-22 | Exxonmobil Chemical Patents Inc. | Oxidation of alkylbenzenes and cycloalkylbenzenes |
CN102161526B (zh) * | 2011-03-04 | 2012-12-12 | 北京化工大学 | 氧化镁负载钴铁金属磁性纳米材料在降解废水中橙黄ⅱ的应用 |
SG194008A1 (en) | 2011-04-19 | 2013-11-29 | Exxonmobil Chem Patents Inc | Process for producing phenol |
US9388102B2 (en) | 2011-04-19 | 2016-07-12 | Exxonmobil Chemical Patents Inc. | Process for producing phenol |
US9249078B2 (en) | 2011-10-07 | 2016-02-02 | Exxonmobil Chemical Patents Inc. | Mixed metal oxide catalysts and use thereof |
CN104326870A (zh) * | 2014-09-16 | 2015-02-04 | 上海洪鲁化工技术有限公司 | 一种环己基过氧化氢的加氢分解方法 |
KR20170088937A (ko) * | 2014-11-28 | 2017-08-02 | 로디아 오퍼레이션스 | 알코올 및/또는 케톤의 제조방법 |
CN106268847A (zh) * | 2015-06-08 | 2017-01-04 | 中国石油化工股份有限公司 | 一种环己烷氧化液分解催化剂的制备及分解工艺 |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3093686A (en) | 1963-06-11 | Production of cyclic alcohols | ||
US2609395A (en) | 1949-12-16 | 1952-09-02 | Phillips Petroleum Co | Oxidation of hydrocarbons |
US2675407A (en) | 1952-04-10 | 1954-04-13 | Standard Oil Dev Co | Air oxidation of cycloalkanes |
US2851496A (en) * | 1954-07-27 | 1958-09-09 | Du Pont | Preparation of oxidation products of cyclohexane |
US2854487A (en) * | 1955-04-12 | 1958-09-30 | Distillers Co Yeast Ltd | Process for the manufacture of carbinols |
US3530185A (en) | 1966-08-08 | 1970-09-22 | Du Pont | Oxidation process |
FR1547427A (fr) | 1967-05-26 | 1968-11-29 | Rhone Poulenc Sa | Perfectionnement à la préparation de mélanges cycloalcanols/cycloalcanones |
US3598869A (en) | 1967-12-05 | 1971-08-10 | Celanese Corp | Oxidation of cyclohexane to nylon precursors |
US3927105A (en) | 1968-04-08 | 1975-12-16 | Rhone Poulenc Sa | Process for the preparation of mixtures of cycloalkanols and cycloalkanones |
FR2087365A5 (de) | 1970-05-15 | 1971-12-31 | Rhone Poulenc Sa | |
GB1347913A (en) | 1970-06-09 | 1974-02-27 | Basf Ag | Production of cycloalkanols and cycloalkanones |
US3957876A (en) | 1970-07-31 | 1976-05-18 | E. I. Du Pont De Nemours And Company | Process for the oxidation of cyclohexane |
BE777013A (nl) * | 1970-12-30 | 1972-06-21 | Shell Int Research | Werkwijze voor de ontleding van organische peroxyverbindingen |
NL174247C (nl) * | 1972-10-21 | 1984-05-16 | Stamicarbon | Werkwijze voor het bereiden van cycloalkanonen en cycloalkanolen door omzetting van een cycloalkylhydroperoxide. |
NL174343C (nl) | 1973-10-09 | 1984-06-01 | Stamicarbon | Werkwijze voor het bereiden van cycloalkanonen en cycloalkanolen door omzetting van een cycloalkylhydroperoxide. |
US3987100A (en) | 1974-04-11 | 1976-10-19 | E. I. Du Pont De Nemours And Company | Cyclohexane oxidation in the presence of binary catalysts |
GB1502767A (en) | 1974-05-06 | 1978-03-01 | Burmah Oil Trading Ltd | Production of phenols |
US4326084A (en) | 1979-10-11 | 1982-04-20 | E. I. Du Pont De Nemours And Company | Process for producing a mixture containing cyclohexanol and cyclohexanone from cyclohexane |
GB8303574D0 (en) * | 1983-02-09 | 1983-03-16 | Ici Plc | Hydrocarbon conversion processes |
US4503257A (en) | 1983-05-18 | 1985-03-05 | E. I. Du Pont De Nemours And Company | Cyclohexyl hydroperoxide decomposition process |
US4783557A (en) | 1986-09-12 | 1988-11-08 | Mitsui Petrochemical Industries, Ltd. | Processes for preparing hydroxynaphthalenes |
NL8802592A (nl) | 1988-10-21 | 1990-05-16 | Stamicarbon | Werkwijze voor de bereiding van een k/a-mengsel. |
US5023383A (en) | 1989-01-13 | 1991-06-11 | Mitsubishi Petrochemical Co., Ltd. | Method for producing aromatic alcohol |
NL9000893A (nl) * | 1990-04-14 | 1991-11-01 | Stamicarbon | Werkwijze voor de bereiding van een cycloalkanon en/of cycloalkanol. |
NL9100521A (nl) * | 1991-03-25 | 1992-10-16 | Stamicarbon | Werkwijze voor de bereiding van een alkanon en/of alkanol. |
NL9201756A (nl) * | 1992-10-09 | 1994-05-02 | Univ Delft Tech | Werkwijze voor de gekatalyseerde ontleding van organische hydroperoxiden. |
US5414163A (en) | 1993-11-12 | 1995-05-09 | Texaco Chemical Inc. | Use of titania or zirconia in the preparation of tertiary butyl alcohol from tertiary butyl hydroperoxide |
US5399794A (en) | 1993-11-12 | 1995-03-21 | Texaco Chemical Inc. | Use of supported palladium/gold catalysts in the preparation of tertiary butyl alcohol from tertiary butyl hydroperoxide |
US5364988A (en) | 1993-11-12 | 1994-11-15 | Texaco Chemical Company | Use of supported chromium catalyst in the preparation of tertiary butyl alcohol from tertiary butyl hydroperoxide |
US5401889A (en) | 1993-11-12 | 1995-03-28 | Texaco Chemical Inc. | Preparation of tertiary butyl alcohol by catalytic decomposition of tertiary butyl hydroperoxide |
US5414141A (en) | 1993-11-12 | 1995-05-09 | Texaco Chemical Inc. | Use of supported palladium catalysts in the preparation of tertiary butyl alcohol from tertiary butyl hydroperoxide |
BE1007904A3 (nl) * | 1993-12-23 | 1995-11-14 | Dsm Nv | Werkwijze voor de bereiding van een alkanol en/of een alkanon. |
CA2146314A1 (en) | 1994-04-04 | 1995-10-05 | Manoj V. Bhinde | Metal-ligand catalysts for oxydation of alkanes and decomposition of organic hydroperoxydes |
PL332138A1 (en) | 1996-09-03 | 1999-08-30 | Du Pont | Method of decomposing hydroperoxides |
-
1998
- 1998-02-10 CA CA002279493A patent/CA2279493A1/en not_active Abandoned
- 1998-02-10 SK SK1058-99A patent/SK105899A3/sk unknown
- 1998-02-10 EP EP98906452A patent/EP1012130B9/de not_active Expired - Lifetime
- 1998-02-10 AU AU61674/98A patent/AU6167498A/en not_active Abandoned
- 1998-02-10 JP JP53508798A patent/JP3976793B2/ja not_active Expired - Fee Related
- 1998-02-10 KR KR19997007235A patent/KR20000070969A/ko not_active Application Discontinuation
- 1998-02-10 PL PL98336762A patent/PL336762A1/xx unknown
- 1998-02-10 CZ CZ19992832A patent/CZ295000B6/cs not_active IP Right Cessation
- 1998-02-10 EA EA199900737A patent/EA002422B1/ru unknown
- 1998-02-10 DE DE69810944T patent/DE69810944T2/de not_active Expired - Lifetime
- 1998-02-10 WO PCT/US1998/002926 patent/WO1998034894A2/en not_active Application Discontinuation
- 1998-02-10 ID IDW990848A patent/ID22219A/id unknown
- 1998-02-10 CN CN98802426A patent/CN1102923C/zh not_active Expired - Fee Related
- 1998-02-10 BR BRPI9815441-9A patent/BR9815441B1/pt not_active IP Right Cessation
-
2000
- 2000-02-02 US US09/496,328 patent/US6284927B1/en not_active Expired - Lifetime
- 2000-10-25 HK HK00106790A patent/HK1027554A1/xx not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
AU6167498A (en) | 1998-08-26 |
CN1102923C (zh) | 2003-03-12 |
BR9815441A (pt) | 2001-10-23 |
ID22219A (id) | 1999-09-16 |
CA2279493A1 (en) | 1998-08-13 |
JP2001511787A (ja) | 2001-08-14 |
MX9907212A (de) | 2000-02-28 |
WO1998034894A3 (en) | 1999-01-21 |
PL336762A1 (en) | 2000-07-17 |
CN1246841A (zh) | 2000-03-08 |
EP1012130B1 (de) | 2003-01-22 |
EA199900737A1 (ru) | 2000-02-28 |
EP1012130B9 (de) | 2003-05-02 |
WO1998034894A2 (en) | 1998-08-13 |
DE69810944D1 (en) | 2003-02-27 |
JP3976793B2 (ja) | 2007-09-19 |
KR20000070969A (ko) | 2000-11-25 |
BR9815441B1 (pt) | 2009-12-01 |
CZ295000B6 (cs) | 2005-05-18 |
CZ283299A3 (cs) | 2000-05-17 |
EP1012130A2 (de) | 2000-06-28 |
SK105899A3 (en) | 2000-07-11 |
MX219178B (de) | 2004-02-16 |
HK1027554A1 (en) | 2001-01-19 |
EA002422B1 (ru) | 2002-04-25 |
US6284927B1 (en) | 2001-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69810944T2 (de) | Hydroperoxidzersetzungsverfahren | |
DE60005969T2 (de) | Verfahren zur herstellung von phenol und aceton | |
EP2257514A1 (de) | Verfahren zur herstellung von olefinisch ungesättigten carbonylverbindungen durch oxidative dehydrierung von alkoholen | |
DE69405387T2 (de) | Katalysator auf basis von silitiumdioxid und titan und seine anwendung für die epoxidierung von olefinen | |
EP1286942B1 (de) | Verfahren und katalysator zur selektiven herstellung von essigsäure durch katalytische oxidation von ethan und/oder ethylen | |
DE3872368T2 (de) | Hydrierungskatalysator. | |
WO1999040055A1 (en) | Direct oxidation of cycloalkanes | |
DE68904466T2 (de) | Verfahren zur herstellung von cyclohexanol und/oder cyclohexanon. | |
EP0819670B1 (de) | Verfahren zur Herstellung von 3-Hydroxypropionsäure oder einem Salz derselben | |
DE3222143A1 (de) | Kobalt enthaltende traegerkatalysatoren, deren herstellung und verwendung | |
DE60023358T2 (de) | Verbesserter hydroperoxid zersetzungskatalysator | |
DE19832016A1 (de) | Verfahren zur Oxidation von Cyclohexan in der Gasphase unter Verwendung von festen mikro- und mesoporösen Katalysatoren | |
EP3672932B1 (de) | Verfahren zur herstellung von terpenaldehyden und -ketonen | |
DE68901742T2 (de) | Verfahren zur herstellung von gamma-butyrolacton. | |
DE69905174T2 (de) | Hydroperoxidzersetzungsverfahren | |
DE2915395C2 (de) | Verfahren zur Herstellung eines Salzes der Brenztraubensäure | |
WO2000053550A1 (en) | Hydroperoxide decomposition process | |
DE69717295T2 (de) | Verfahren zur zersetzen von hydroperoxiden | |
DE2111216C3 (de) | Verfahren zur Herstellung von e-Caprolactam | |
EP0268826B1 (de) | Verfahren zur Aufbereitung von Cyclohexylhydroperoxid enthaltenden Reaktionsgemischen | |
DE2352378C2 (de) | Verfahren zu der Herstellung von Gemischen aus Cycloalkanonen und Cycloalkanolen | |
DE2852716C2 (de) | Verfahren zur Herstellung von Butan-2.3-dion | |
DE69005097T2 (de) | Verfahren zur Herstellung von Glyoxylsäure durch die Oxydation des Glyoxals im wässerigen Milieu in Anwesenheit katalytischer Mengen von Platin. | |
DE68914665T2 (de) | Katalysator zur Entfernung von Peroxid-Verunreinigungen aus tertiärem Butylalkohol. | |
DE3636056A1 (de) | Verfahren zur aufarbeitung von cyclohexylhydroperoxid enthaltenden reaktionsgemischen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8364 | No opposition during term of opposition | ||
8327 | Change in the person/name/address of the patent owner |
Owner name: INVISTA TECHNOLOGIES S.A.R.L., WILMINGTON, DEL, US |
|
8328 | Change in the person/name/address of the agent |
Representative=s name: MARKS & CLERK, LUXEMBOURG, LU |