DE102008000330B4 - Neutraler Elektrolyt für einen Nasselektrolytkondensator sowie Nasselektrolytkondensator - Google Patents
Neutraler Elektrolyt für einen Nasselektrolytkondensator sowie Nasselektrolytkondensator Download PDFInfo
- Publication number
- DE102008000330B4 DE102008000330B4 DE102008000330.1A DE102008000330A DE102008000330B4 DE 102008000330 B4 DE102008000330 B4 DE 102008000330B4 DE 102008000330 A DE102008000330 A DE 102008000330A DE 102008000330 B4 DE102008000330 B4 DE 102008000330B4
- Authority
- DE
- Germany
- Prior art keywords
- electrolyte
- acid
- working electrolyte
- electrolytic capacitor
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003792 electrolyte Substances 0.000 title claims abstract description 99
- 239000003990 capacitor Substances 0.000 title claims abstract description 91
- 230000007935 neutral effect Effects 0.000 title description 7
- 238000000576 coating method Methods 0.000 claims description 45
- 239000011248 coating agent Substances 0.000 claims description 43
- 239000002245 particle Substances 0.000 claims description 42
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 18
- 229910000484 niobium oxide Inorganic materials 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 150000003839 salts Chemical class 0.000 claims description 12
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 12
- 229910052758 niobium Inorganic materials 0.000 claims description 11
- 239000010955 niobium Substances 0.000 claims description 11
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 11
- 150000008064 anhydrides Chemical class 0.000 claims description 9
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 claims description 8
- 229910052715 tantalum Inorganic materials 0.000 claims description 8
- 239000008367 deionised water Substances 0.000 claims description 7
- 229910021641 deionized water Inorganic materials 0.000 claims description 7
- 150000008040 ionic compounds Chemical class 0.000 claims description 7
- XDTTUTIFWDAMIX-UHFFFAOYSA-N 3-methyl-4-nitrobenzoic acid Chemical compound CC1=CC(C(O)=O)=CC=C1[N+]([O-])=O XDTTUTIFWDAMIX-UHFFFAOYSA-N 0.000 claims description 6
- 238000007710 freezing Methods 0.000 claims description 6
- 230000008014 freezing Effects 0.000 claims description 6
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- 150000004706 metal oxides Chemical class 0.000 claims description 6
- 239000003125 aqueous solvent Substances 0.000 claims description 5
- 238000009835 boiling Methods 0.000 claims description 4
- 150000005338 nitrobenzoic acids Chemical class 0.000 claims description 4
- 239000003002 pH adjusting agent Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- CCXSGQZMYLXTOI-UHFFFAOYSA-N 13506-76-8 Chemical compound CC1=CC=CC([N+]([O-])=O)=C1C(O)=O CCXSGQZMYLXTOI-UHFFFAOYSA-N 0.000 claims description 3
- YPQAFWHSMWWPLX-UHFFFAOYSA-N 1975-50-4 Chemical compound CC1=C(C(O)=O)C=CC=C1[N+]([O-])=O YPQAFWHSMWWPLX-UHFFFAOYSA-N 0.000 claims description 3
- BBEWSMNRCUXQRF-UHFFFAOYSA-N 4-methyl-3-nitrobenzoic acid Chemical compound CC1=CC=C(C(O)=O)C=C1[N+]([O-])=O BBEWSMNRCUXQRF-UHFFFAOYSA-N 0.000 claims description 3
- QRRSIFNWHCKMSW-UHFFFAOYSA-N 5-methyl-2-nitrobenzoic acid Chemical compound CC1=CC=C([N+]([O-])=O)C(C(O)=O)=C1 QRRSIFNWHCKMSW-UHFFFAOYSA-N 0.000 claims description 3
- DGDAVTPQCQXLGU-UHFFFAOYSA-N 5437-38-7 Chemical compound CC1=CC=CC(C(O)=O)=C1[N+]([O-])=O DGDAVTPQCQXLGU-UHFFFAOYSA-N 0.000 claims description 3
- 150000007522 mineralic acids Chemical class 0.000 claims description 3
- 150000007524 organic acids Chemical class 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 238000000034 method Methods 0.000 description 19
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 16
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 16
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 15
- 239000011230 binding agent Substances 0.000 description 15
- -1 etc. Chemical class 0.000 description 15
- 229920001940 conductive polymer Polymers 0.000 description 14
- 239000002253 acid Substances 0.000 description 13
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- 239000008199 coating composition Substances 0.000 description 11
- 229910001220 stainless steel Inorganic materials 0.000 description 11
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 10
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- 239000010410 layer Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 235000011007 phosphoric acid Nutrition 0.000 description 9
- 239000010935 stainless steel Substances 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 8
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 8
- 150000007513 acids Chemical class 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000011231 conductive filler Substances 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 8
- 239000000123 paper Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 238000011068 loading method Methods 0.000 description 7
- 229910001868 water Inorganic materials 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 5
- 239000006229 carbon black Substances 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 5
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 229910052763 palladium Inorganic materials 0.000 description 5
- 229920000137 polyphosphoric acid Polymers 0.000 description 5
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 235000011054 acetic acid Nutrition 0.000 description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229920006125 amorphous polymer Polymers 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 230000009477 glass transition Effects 0.000 description 4
- 150000003949 imides Chemical class 0.000 description 4
- 239000011133 lead Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- BLFRCIAKSKLEGK-UHFFFAOYSA-N nitromethoxybenzene Chemical compound [O-][N+](=O)COC1=CC=CC=C1 BLFRCIAKSKLEGK-UHFFFAOYSA-N 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- SLAMLWHELXOEJZ-UHFFFAOYSA-N 2-nitrobenzoic acid Chemical compound OC(=O)C1=CC=CC=C1[N+]([O-])=O SLAMLWHELXOEJZ-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- ROSDCCJGGBNDNL-UHFFFAOYSA-N [Ta].[Pb] Chemical compound [Ta].[Pb] ROSDCCJGGBNDNL-UHFFFAOYSA-N 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000011253 protective coating Substances 0.000 description 3
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 150000003626 triacylglycerols Chemical class 0.000 description 3
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- CCTFMNIEFHGTDU-UHFFFAOYSA-N 3-methoxypropyl acetate Chemical compound COCCCOC(C)=O CCTFMNIEFHGTDU-UHFFFAOYSA-N 0.000 description 2
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 2
- 229910000792 Monel Inorganic materials 0.000 description 2
- 101150097381 Mtor gene Proteins 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000004963 Torlon Substances 0.000 description 2
- 229920003997 Torlon® Polymers 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 238000007743 anodising Methods 0.000 description 2
- 150000004984 aromatic diamines Chemical class 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- KVNRLNFWIYMESJ-UHFFFAOYSA-N butyronitrile Chemical compound CCCC#N KVNRLNFWIYMESJ-UHFFFAOYSA-N 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 229940051250 hexylene glycol Drugs 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- RTWNYYOXLSILQN-UHFFFAOYSA-N methanediamine Chemical compound NCN RTWNYYOXLSILQN-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- KRDOSDPABCAONA-UHFFFAOYSA-N n-anilinooxyaniline Chemical compound C=1C=CC=CC=1NONC1=CC=CC=C1 KRDOSDPABCAONA-UHFFFAOYSA-N 0.000 description 2
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 238000010943 off-gassing Methods 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 235000021313 oleic acid Nutrition 0.000 description 2
- 229910052762 osmium Inorganic materials 0.000 description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920000128 polypyrrole Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M potassium hydroxide Inorganic materials [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 2
- 239000012260 resinous material Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910052702 rhenium Inorganic materials 0.000 description 2
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 2
- 150000003457 sulfones Chemical class 0.000 description 2
- 150000003462 sulfoxides Chemical class 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 229920006259 thermoplastic polyimide Polymers 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 2
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- BWRBVBFLFQKBPT-UHFFFAOYSA-N (2-nitrophenyl)methanol Chemical compound OCC1=CC=CC=C1[N+]([O-])=O BWRBVBFLFQKBPT-UHFFFAOYSA-N 0.000 description 1
- WHOZNOZYMBRCBL-OUKQBFOZSA-N (2E)-2-Tetradecenal Chemical compound CCCCCCCCCCC\C=C\C=O WHOZNOZYMBRCBL-OUKQBFOZSA-N 0.000 description 1
- CUXYLFPMQMFGPL-UHFFFAOYSA-N (9Z,11E,13E)-9,11,13-Octadecatrienoic acid Natural products CCCCC=CC=CC=CCCCCCCCC(O)=O CUXYLFPMQMFGPL-UHFFFAOYSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- MEHUJCGAYMDLEL-CABCVRRESA-N (9r,10s)-9,10,16-trihydroxyhexadecanoic acid Chemical compound OCCCCCC[C@H](O)[C@H](O)CCCCCCCC(O)=O MEHUJCGAYMDLEL-CABCVRRESA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- SUGXZLKUDLDTKX-UHFFFAOYSA-N 1-(2-nitrophenyl)ethanone Chemical compound CC(=O)C1=CC=CC=C1[N+]([O-])=O SUGXZLKUDLDTKX-UHFFFAOYSA-N 0.000 description 1
- ARKIFHPFTHVKDT-UHFFFAOYSA-N 1-(3-nitrophenyl)ethanone Chemical compound CC(=O)C1=CC=CC([N+]([O-])=O)=C1 ARKIFHPFTHVKDT-UHFFFAOYSA-N 0.000 description 1
- HXKKHQJGJAFBHI-UHFFFAOYSA-N 1-aminopropan-2-ol Chemical compound CC(O)CN HXKKHQJGJAFBHI-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- KKTRZAZFCRHFFW-UHFFFAOYSA-N 1-nitrocyclohexa-3,5-diene-1,2-dicarboxylic acid Chemical compound OC(=O)C1C=CC=CC1(C(O)=O)[N+]([O-])=O KKTRZAZFCRHFFW-UHFFFAOYSA-N 0.000 description 1
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- WXHLLJAMBQLULT-UHFFFAOYSA-N 2-[[6-[4-(2-hydroxyethyl)piperazin-1-yl]-2-methylpyrimidin-4-yl]amino]-n-(2-methyl-6-sulfanylphenyl)-1,3-thiazole-5-carboxamide;hydrate Chemical compound O.C=1C(N2CCN(CCO)CC2)=NC(C)=NC=1NC(S1)=NC=C1C(=O)NC1=C(C)C=CC=C1S WXHLLJAMBQLULT-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- HDTYPEMKRNDJSO-UHFFFAOYSA-N 2-methyl-n-(2-methylanilino)oxyaniline Chemical compound CC1=CC=CC=C1NONC1=CC=CC=C1C HDTYPEMKRNDJSO-UHFFFAOYSA-N 0.000 description 1
- JOMNTHCQHJPVAZ-UHFFFAOYSA-N 2-methylpiperazine Chemical compound CC1CNCCN1 JOMNTHCQHJPVAZ-UHFFFAOYSA-N 0.000 description 1
- CFBYEGUGFPZCNF-UHFFFAOYSA-N 2-nitroanisole Chemical compound COC1=CC=CC=C1[N+]([O-])=O CFBYEGUGFPZCNF-UHFFFAOYSA-N 0.000 description 1
- CMWKITSNTDAEDT-UHFFFAOYSA-N 2-nitrobenzaldehyde Chemical compound [O-][N+](=O)C1=CC=CC=C1C=O CMWKITSNTDAEDT-UHFFFAOYSA-N 0.000 description 1
- IQUPABOKLQSFBK-UHFFFAOYSA-N 2-nitrophenol Chemical compound OC1=CC=CC=C1[N+]([O-])=O IQUPABOKLQSFBK-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- HCGFUIQPSOCUHI-UHFFFAOYSA-N 2-propan-2-yloxyethanol Chemical compound CC(C)OCCO HCGFUIQPSOCUHI-UHFFFAOYSA-N 0.000 description 1
- WGYFINWERLNPHR-UHFFFAOYSA-N 3-nitroanisole Chemical compound COC1=CC=CC([N+]([O-])=O)=C1 WGYFINWERLNPHR-UHFFFAOYSA-N 0.000 description 1
- ZETIVVHRRQLWFW-UHFFFAOYSA-N 3-nitrobenzaldehyde Chemical compound [O-][N+](=O)C1=CC=CC(C=O)=C1 ZETIVVHRRQLWFW-UHFFFAOYSA-N 0.000 description 1
- AFPHTEQTJZKQAQ-UHFFFAOYSA-N 3-nitrobenzoic acid Chemical compound OC(=O)C1=CC=CC([N+]([O-])=O)=C1 AFPHTEQTJZKQAQ-UHFFFAOYSA-N 0.000 description 1
- CWNPOQFCIIFQDM-UHFFFAOYSA-N 3-nitrobenzyl alcohol Chemical compound OCC1=CC=CC([N+]([O-])=O)=C1 CWNPOQFCIIFQDM-UHFFFAOYSA-N 0.000 description 1
- RTZZCYNQPHTPPL-UHFFFAOYSA-N 3-nitrophenol Chemical compound OC1=CC=CC([N+]([O-])=O)=C1 RTZZCYNQPHTPPL-UHFFFAOYSA-N 0.000 description 1
- KFIRODWJCYBBHY-UHFFFAOYSA-N 3-nitrophthalic acid Chemical compound OC(=O)C1=CC=CC([N+]([O-])=O)=C1C(O)=O KFIRODWJCYBBHY-UHFFFAOYSA-N 0.000 description 1
- 239000010963 304 stainless steel Substances 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- KMKWGXGSGPYISJ-UHFFFAOYSA-N 4-[4-[2-[4-(4-aminophenoxy)phenyl]propan-2-yl]phenoxy]aniline Chemical compound C=1C=C(OC=2C=CC(N)=CC=2)C=CC=1C(C)(C)C(C=C1)=CC=C1OC1=CC=C(N)C=C1 KMKWGXGSGPYISJ-UHFFFAOYSA-N 0.000 description 1
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 1
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 description 1
- YQYGPGKTNQNXMH-UHFFFAOYSA-N 4-nitroacetophenone Chemical compound CC(=O)C1=CC=C([N+]([O-])=O)C=C1 YQYGPGKTNQNXMH-UHFFFAOYSA-N 0.000 description 1
- BXRFQSNOROATLV-UHFFFAOYSA-N 4-nitrobenzaldehyde Chemical compound [O-][N+](=O)C1=CC=C(C=O)C=C1 BXRFQSNOROATLV-UHFFFAOYSA-N 0.000 description 1
- OTLNPYWUJOZPPA-UHFFFAOYSA-N 4-nitrobenzoic acid Chemical compound OC(=O)C1=CC=C([N+]([O-])=O)C=C1 OTLNPYWUJOZPPA-UHFFFAOYSA-N 0.000 description 1
- JKTYGPATCNUWKN-UHFFFAOYSA-N 4-nitrobenzyl alcohol Chemical compound OCC1=CC=C([N+]([O-])=O)C=C1 JKTYGPATCNUWKN-UHFFFAOYSA-N 0.000 description 1
- SLBQXWXKPNIVSQ-UHFFFAOYSA-N 4-nitrophthalic acid Chemical compound OC(=O)C1=CC=C([N+]([O-])=O)C=C1C(O)=O SLBQXWXKPNIVSQ-UHFFFAOYSA-N 0.000 description 1
- WSASFFHWOQGSER-MUAIWGBPSA-N 82xgf31q2y Chemical compound C1[C@@]23[C@H](C(O)=O)CC[C@H]2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O WSASFFHWOQGSER-MUAIWGBPSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 150000000703 Cerium Chemical class 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 240000001624 Espostoa lanata Species 0.000 description 1
- 235000009161 Espostoa lanata Nutrition 0.000 description 1
- MEHUJCGAYMDLEL-UHFFFAOYSA-N Ethyl-triacetylaleuritat Natural products OCCCCCCC(O)C(O)CCCCCCCC(O)=O MEHUJCGAYMDLEL-UHFFFAOYSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- BNUHAJGCKIQFGE-UHFFFAOYSA-N Nitroanisol Chemical compound COC1=CC=C([N+]([O-])=O)C=C1 BNUHAJGCKIQFGE-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- WSASFFHWOQGSER-UHFFFAOYSA-N Shellolic acid Natural products C1C23C(C(O)=O)CCC2C(C)(CO)C1C(C(O)=O)=CC3O WSASFFHWOQGSER-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 229920005822 acrylic binder Polymers 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- CUXYLFPMQMFGPL-SUTYWZMXSA-N all-trans-octadeca-9,11,13-trienoic acid Chemical compound CCCC\C=C\C=C\C=C\CCCCCCCC(O)=O CUXYLFPMQMFGPL-SUTYWZMXSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229960004050 aminobenzoic acid Drugs 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- CFJRGWXELQQLSA-UHFFFAOYSA-N azanylidyneniobium Chemical compound [Nb]#N CFJRGWXELQQLSA-UHFFFAOYSA-N 0.000 description 1
- HNYOPLTXPVRDBG-UHFFFAOYSA-N barbituric acid Chemical compound O=C1CC(=O)NC(=O)N1 HNYOPLTXPVRDBG-UHFFFAOYSA-N 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 229960004365 benzoic acid Drugs 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 159000000006 cesium salts Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 238000002484 cyclic voltammetry Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000313 electron-beam-induced deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229940074391 gallic acid Drugs 0.000 description 1
- 235000004515 gallic acid Nutrition 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerol group Chemical group OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229940102253 isopropanolamine Drugs 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 150000002603 lanthanum Chemical class 0.000 description 1
- HEPLMSKRHVKCAQ-UHFFFAOYSA-N lead nickel Chemical compound [Ni].[Pb] HEPLMSKRHVKCAQ-UHFFFAOYSA-N 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 229910052912 lithium silicate Inorganic materials 0.000 description 1
- 229940018564 m-phenylenediamine Drugs 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000013528 metallic particle Substances 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- YZMHQCWXYHARLS-UHFFFAOYSA-N naphthalene-1,2-disulfonic acid Chemical compound C1=CC=CC2=C(S(O)(=O)=O)C(S(=O)(=O)O)=CC=C21 YZMHQCWXYHARLS-UHFFFAOYSA-N 0.000 description 1
- KQSABULTKYLFEV-UHFFFAOYSA-N naphthalene-1,5-diamine Chemical compound C1=CC=C2C(N)=CC=CC2=C1N KQSABULTKYLFEV-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229940044654 phenolsulfonic acid Drugs 0.000 description 1
- NIXKBAZVOQAHGC-UHFFFAOYSA-N phenylmethanesulfonic acid Chemical compound OS(=O)(=O)CC1=CC=CC=C1 NIXKBAZVOQAHGC-UHFFFAOYSA-N 0.000 description 1
- 229920000083 poly(allylamine) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 159000000008 strontium salts Chemical class 0.000 description 1
- 229920001909 styrene-acrylic polymer Polymers 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 239000011269 tar Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
- NJMOHBDCGXJLNJ-UHFFFAOYSA-N trimellitic anhydride chloride Chemical compound ClC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 NJMOHBDCGXJLNJ-UHFFFAOYSA-N 0.000 description 1
- 239000002383 tung oil Substances 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 150000003746 yttrium Chemical class 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 150000003754 zirconium Chemical class 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/022—Electrolytes; Absorbents
- H01G9/035—Liquid electrolytes, e.g. impregnating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/022—Electrolytes; Absorbents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/145—Liquid electrolytic capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
- Hintergrund der Erfindung
- Elektrolytkondensatoren werden zunehmend wegen ihres volumetrischen Wirkungsgrads, ihrer Zuverlässigkeit und Prozesskompatibilität bei der Entwicklung von Schaltkreisen eingesetzt. Elektrolytkondensatoren haben typischerweise eine höhere Kapazität pro Volumeneinheit als gewisse andere Kondensatortypen. Das macht sie wertvoll für Stromkreise mit relativ hohen Strömen und niedriger Frequenz. Einer der entwickelten Kondensatortypen ist ein Nass-Elektrolytkondensator, der eine Anode, einen Stromkollektor als Katode (z. B. Aluminiumbecher) und eine Flüssigkeit enthält, den „nassen“ Elektrolyten. Nass-Elektrolytkondensatoren bieten üblicherweise eine gute Kombination von hoher Kapazität und niedrigem Leckstrom. In bestimmten Situationen können Nass-Elektrolytkondensatoren Vorteile gegenüber Kondensatoren mit festem Elektrolyten aufweisen. Zum Beispiel können Nass-Elektrolytkondensatoren bei höherer Arbeitsspannung betrieben werden als solche mit festem Elektrolyten. Außerdem sind Nass-Elektrolytkondensatoren oft größer als solche mit festem Elektrolyten, was zu größeren Kapazitätswerten führt. Leider weisen jedoch viele herkömmliche Kondensatoren bei der Verwendung mit korrosiven Elektrolyten wie Schwefelsäure beträchtliche Probleme auf. Zum Beispiel sind Aluminium-Stromkollektoren höchst empfindlich gegenüber Korrosion und im Allgemeinen nicht mit korrosiven Elektrolyten verträglich. Unter bestimmten Bedingungen (z. B. hohen Temperaturen) können sich auf Stromkollektor-Katoden aufgebrachte Beschichtungen (z. B. Rutheniumoxid) aufgrund von Korrosion durch den Elektrolyten ablösen. Um diese Probleme zu vermeiden, können neutralere flüssige Elektrolyten verwendet werden, aber das führt oft zu entsprechenden Einbußen bei den elektrischen Eigenschaften.
- Aus der
US 2003 / 0 142 464 A1 - Die
US 5 160 653 A offenbart einen Arbeitselektrolyten für einen Elektrolytkondensator, der 400 - 600 ppm Nitrobenzoesäure als nitroaromatischen Depolarisator enthält und dabei einen pH-Wert von 8,0 aufweist. - Die
US 2005 / 0 094 352 A1 - Die
US 6 743 370 B1 offenbart ein Beispiel eines Elektrolyten mit 1,25 % alpha-Nitroanisol (Beispiel 3) entsprechend einer Menge von 12.500 ppm. Auch bei der für ein Experiment dieses Beispiels (3. Experiment) beschriebenen Verdünnung von 125,3 g des vorbereiteten Elektrolyten mit 71 g Diethylenglykol beträgt die Menge des alpha-Nitroanisol immer noch etwa 7.800 ppm. - Es besteht zur Zeit Bedarf für einen verbesserten Elektrolyten zur Verwendung in Nass-Elektrolytkondensatoren.
- Zusammenfassung der Erfindung
- Entsprechend einer Ausführungsform der vorliegenden Erfindung wird ein Elektrolytkondensator dargelegt, der eine Anode, einen Stromkollektor als Katode und einen Arbeitselektrolyten umfasst, der sich zwischen dem Stromkollektor und der Anode befindet. Der Elektrolyt hat einen pH-Wert zwischen etwa 5,0 und etwa 8,0 und eine elektrische Leitfähigkeit von etwa 30 Millisiemens pro Zentimeter oder mehr, bestimmt bei einer Temperatur von 25°C.
- Gemäß der vorliegenden Erfindung wird auch ein Depolarisator in einer Menge von 10 ppm bis 200 ppm des Arbeitselektrolyten verwendet, um die Bildung von Wasserstoffgas an der Katode des Elektrolytkondensators zu hemmen, die sonst Aufblähen und einen eventuellen Ausfall des Kondensators verursachen könnte. In einigen Ausführungsformen wird der Depolarisator zwischen etwa 20 und etwa 150 ppm des Elektrolyten verwendet,
- Entsprechend einer anderen Ausführungsform der vorliegenden Erfindung wird ein Arbeitselektrolyt für einen Elektrolytkondensator dargelegt. Der Arbeitselektrolyt enthält zwischen etwa 10 und etwa 200 ppm eines nitroaromatischen Depolarisators. Der nitroaromatische Depolarisator enthält eine Alkyl-substituierte Nitrobenzoesäure, deren Anhydrid oder Salz oder Mischungen der genannten Substanzen. Der Arbeitselektrolyt hat einen pH-Wert zwischen etwa 5,0 und etwa 8,0.
- Andere Eigenschaften und Aspekte der vorliegenden Erfindung werden nachstehend detaillierter dargelegt.
- Figurenliste
- Eine vollständige und erhellende Darlegung der vorliegenden Erfindung einschließlich deren bester Form, die sich an jemanden mit gewöhnlichem Fachwissen richtet, wird insbesondere im Rest der Spezifikation gegeben, der sich auf die beigefügten Figuren bezieht, in denen:
-
1 eine Schnittansicht einer Ausführungsform eines Kondensators nach der vorliegenden Erfindung ist und -
2 eine Schnittansicht einer weiteren Ausführungsform eines Kondensators nach der vorliegenden Erfindung ist. - Der wiederholte Gebrauch von Referenzzeichen in der vorliegenden Spezifikation und den Zeichnungen soll dieselben oder analoge Merkmale oder Elemente der Erfindung darstellen.
- Detaillierte Beschreibung repräsentativer Ausführungsformen
- Es ist von jemandem mit gewöhnlichem Fachwissen zu verstehen, dass die vorliegende Diskussion nur eine Beschreibung von beispielhaften Ausführungsformen ist und nicht als Beschränkung der breiteren Aspekte der vorliegenden Erfindung gedacht ist. Diese breiteren Aspekte sind im beispielhaften Aufbau enthalten.
- Allgemein ausgedrückt, bezieht sich die vorliegende Erfindung auf einen Arbeitselektrolyten für die Verwendung in einem Nass-Elektrolytkondensator. Der Elektrolyt ist relativ neutral und hat einen pH-Wert zwischen etwa 5,0 und etwa 8,0, in einigen Ausführungsformen zwischen etwa 5,5 und etwa 7,5 und in einigen Ausführungsformen zwischen etwa 6,0 und etwa 7,5. Obwohl er einen neutralen pH-Wert besitzt, ist der Elektrolyt dennoch elektrisch leitfähig. Gemäß der Erfindung weist der Elektrolyt eine elektrische Leitfähigkeit von etwa 30 Millisiemens pro Zentimeter („mS/cm“) oder mehr auf, in einigen Ausführungsformen zwischen etwa 40 mS/cm und etwa 100 mS/cm, jeweils bestimmt bei einer Temperatur von 25°C. Der Wert der elektrischen Leitfähigkeit kann unter Verwendung eines beliebigen üblichen Leitfähigkeitsmessgerätes (z. B. Oakton Con Series 11) bei einer Temperatur von 25°C ermittelt werden.
- Der Arbeitselektrolyt der vorliegenden Erfindung kann eine Vielzahl von Bestandteilen enthalten, die zur Optimierung seiner Leitfähigkeit, seines pH-Werts und seiner Stabilität während der Lagerung und des Einsatzes des Kondensators dienen. Zum Beispiel wird im Allgemeinen ein Lösungsmittel verwendet, das als Träger der anderen Bestandteile des Elektrolyten fungiert. Das Lösungsmittel kann zwischen etwa 30 Gew.-% und etwa 90 Gew.-%, in einigen Ausführungsformen zwischen etwa 40 Gew.-% und etwa 80 Gew.-% und in einigen Ausführungsformen zwischen etwa 45 Gew.- % und etwa 70 Gew.-% des Elektrolyten ausmachen. Es kann jedes aus einer Vielzahl von Lösungsmitteln verwendet werden, wie Wasser (z. B. entionisiertes Wasser), Ether (z. B. Diethylether und Tetrahydrofuran), Alkohole (z. B. Methanol, Ethanol, N-Propanol, Isopropanol und Butanol), Triglyceride, Ketone (z. B. Aceton, Methylethylketon und Methylisobutylketon), Ester (z. B. Ethylacetat, Butylacetat, Diethylen-Glycoletheracetat und Methoxypropylacetat), Amide (z. B. Dimethylformamid, Dimethylacetamid, Dimethylcapryl/caprin-Fettsäureamid und N-Alkylpyrrolidone), Nitrile (z. B. Acetonitril, Propionitril, Butyronitril und Benzonitril), Sulfoxide oder Sulfone (z. B. Dimethylsulfoxide (DMSO) und Sulfolan) und so weiter. Obwohl nicht unbedingt erforderlich, ist die Verwendung eines wässrigen Lösungsmittels (z. B. Wasser) oft erwünscht, um den pH-Wert des Elektrolyten auf einem relativ neutralen Niveau zu halten. Tatsächlich kann Wasser (z. B. entionisiertes Wasser) etwa 50 Gew.-% oder mehr, in einigen Ausführungsformen etwa 70 Gew.-% oder mehr und in einigen Ausführungsformen zwischen etwa 90 Gew.-% und etwa 100 Gew.-% der (des) im Elektrolyten verwendeten Lösungsmittel(s) ausmachen.
- Die elektrische Leitfähigkeit des Arbeitselektrolyten der vorliegenden Erfindung kann durch einen oder mehrere ionische Verbindungen gegeben sein, d. h. einen Bestandteil, der ein oder mehrere Ionen enthält oder imstande ist, in Lösung ein oder mehrere Ionen zu bilden. Geeignete ionische Verbindungen zur Verwendung in der vorliegenden Erfindung können zum Beispiel sein: anorganische Säuren, wie Salzsäure, Salpetersäure, Schwefelsäure, Phosphorsäure, Polyphosphorsäure, Borsäure, Boronsäure usw., organische Säuren, darunter Carbonsäuren, wie Acrylsäure, Methacrylsäure, Malonsäure, Bernsteinsäure, Salicylsäure, Sulfosalicylsäure, Adipinsäure, Maleinsäure, Apfelsäure, Ölsäure, Gallussäure, Weinsäure, Zitronensäure, Ameisensäure, Essigsäure, Glycolsäure, Oxalsäure, Propionsäure, Phthalsäure, Isophthalsäure, Glutarsäure, Gluconsäure, Milchsäure, Asparaginsäure, Glutaminsäure, Itaconsäure, Trifluoressigsäure, Barbitursäure, Zimtsäure, Benzoesäure, 4-Hydroxybenzoesäure, Aminobenzoesäure usw., Sulfonsäuren, wie Methansulfonsäure, Benzolsulfonsäure, Toluolsulfonsäure, Trifluormethansulfonsäure, Styrolsulfonsäure, Naphthalindisulfonsäure, Phenolsulfonsäure usw., polymere Säuren, wie Poly-Acryl- oder Poly-Methacrylsäure und deren Copolymere (z. B. Malein-Acryl-, Sulfon-Acryl- und Styrol-AcrylCopolymere), Carageensäure, Carboxymethylcellulose, Alginsäure usw. Anhydride (z. B. Maleinsäureanhydrid) und Salze der oben genannten Säuren können ebenfalls verwendet werden. Die Salze können in Form von Metallsalzen vorliegen, wie Natriumsalzen, Kaliumsalzen, Calciumsalzen, Cäsiumsalzen, Zinksalzen, Kupfersalzen, Eisensalzen, Aluminiumsalzen, Zirconiumsalzen, Lanthansalzen, Yttriumsalzen, Magnesiumsalzen, Strontiumsalzen, Cersalzen oder durch Reaktion der Säuren mit Aminen (z. B. Ammoniak, Triethylamin, Tributylamin, Piperazin, 2-Methylpiperazin, Polyallylamin) dargestellten Salzen.
- Die Konzentration ionischer Verbindungen wird so gewählt, dass das gewünschte Gleichgewicht zwischen elektrischer Leitfähigkeit und pH-Wert erreicht wird. Das heißt, eine starke Säure (z. B. Phosphorsäure) kann als ionische Verbindung verwendet werden, obwohl ihre Konzentration normalerweise begrenzt ist, um den gewünschten neutralen pH-Wert-Pegel zu halten. Wenn sie verwendet werden, machen starke Säuren normalerweise zwischen etwa 0,001 Gew.-% und etwa 5 Gew.-%, in einigen Ausführungsformen zwischen etwa 0,01 Gew.-% und etwa 2 Gew.-% und in einigen Ausführungsformen zwischen etwa 0,1 Gew.-% und etwa 1 Gew.-% des Elektrolyten aus. Andererseits können schwache Säuren (z. B. Essigsäure) verwendet werden, solange die gewünschte elektrische Leitfähigkeit erreicht wird. Wenn sie verwendet werden, machen schwache Säuren normalerweise zwischen etwa 1 Gew.-% und etwa 40 Gew.-%, in einigen Ausführungsformen zwischen etwa 2 Gew.-% und etwa 30 Gew.-% und in einigen Ausführungsformen zwischen etwa 5 Gew.-% und etwa 25 Gew.-% des Elektrolyten aus. Bei Bedarf können im Elektrolyten Mischungen von starken und schwachen Säuren verwendet werden. Die Gesamtkonzentration ionischer Verbindungen kann schwanken, liegt jedoch typisch zwischen etwa 1 Gew.-% und etwa 50 Gew.-%, in einigen Ausführungsformen zwischen etwa 2 Gew.-% und etwa 40 Gew.-% und in einigen Ausführungsformen zwischen etwa 5 Gew.-% und etwa 30 Gew.-% des Elektrolyten.
- Bei Bedarf können auch basische pH-Modifikatoren im Elektrolyten in einer Menge verwendet werden, die ausreicht, die Auswirkung der ionischen Verbindungen auf den pH-Wert auszugleichen. Geeignete basische pH-Modifikatoren können sein, sind jedoch nicht beschränkt auf: Ammoniak, Mono-, Di- und Trialkylamine, Mono-, Di- und Tri-Alkanolamine, Hydroxide von Alkali- und Erdalkalimetallen, Silikate von Alkali- und Erdalkalimetallen und Mischungen davon. Besondere Beispiele für basische pH-Modifikatoren sind Ammoniak, Natrium-, Kalium- und Lithiumhydroxid, Natrium-, Kalium- und Lithiummetasilikate, Monoethanolamin, Triethylamin, Isopropanolamin, Diethanolamin und Triethanolamin.
- Um sicherzustellen, dass der Elektrolyt während normaler Lagerungs- und Einsatzbedingungen stabil bleibt, wird allgemein gewünscht, dass sein Gefrierpunkt bei etwa -20°C oder niedriger und in einigen Ausführungsformen bei etwa -25°C oder niedriger liegt. Bei Bedarf können ein oder mehrere Gefrierpunktsenker verwendet werden, wie Glycole (z. B. Propylenglycol, Butylenglycol, Triethylenglycol, Hexylenglycol, Polyethylenglycole, Ethoxydiglycol, Dipropyleneglycol usw.), Glycolether (z. B. Methylglycolether, Ethylglycolether, Isopropylglycolether usw.) und so fort. Obwohl die Konzentration der Gefrierpunktsenker schwanken kann, liegt sie jedoch typisch zwischen etwa 5 Gew.-% und etwa 50 Gew.-%, in einigen Ausführungsformen zwischen etwa 10 Gew.-% und etwa 40 Gew.-% und in einigen Ausführungsformen zwischen etwa 20 Gew.-% und etwa 30 Gew.-% des Elektrolyten. Es sollte auch beachtet werden, dass der Siedepunkt typischerweise etwa 85°C oder mehr und in einigen Ausführungsformen 100°C oder mehr beträgt, sodass der Elektrolyt bei erhöhten Temperaturen stabil bleibt.
- Geeignete Depolarisatoren können nitroaromatische Verbindungen sein, wie 2-Nitrophenol, 3-Nitrophenol, 4-Nitrophenol, 2-Nitrobenzoesäure, 3-Nitrobenzoesäure, 4-Nitrobenzoesäure, 2-Nitroacetophenon, 3-Nitroacetophenon, 4-Nitroacetophenon, 2-Nitroanisol, 3-Nitroanisol, 4-Nitroanisol, 2-Nitrobenzaldehyd, 3-Nitrobenzaldehyd, 4-Nitrobenzaldehyd, 2-Nitrobenzylalkohol, 3-Nitrobenzylalkohol, 4-Nitrobenzylalkohol, 2-Nitrophthalsäure, 3-Nitrophthalsäure, 4-Nitrophthalsäure und so fort. Besonders geeignete nitroaromatische Depolarisatoren zur Verwendung in der vorliegenden Erfindung sind Nitrobenzoesäuren, deren Anhydride oder Salze, mit einer oder mehreren Alkylgruppen (z. B. Methyl, Ethyl, Propyl, Butyl usw.) substituiert. Besondere Beispiele solcher Alkyl-substituierter Nitrobenzoe-Verbindungen sind zum Beispiel 2-Methyl-3-Nitrobenzoesäure, 2-Methyl-6-Nitrobenzoesäure, 3-Methyl-2-Nitrobenzoesäure, 3-Methyl-4-Nitrobenzoesäure, 3-Methyl-6-Nitrobenzoesäure, 4-Methyl-3-Nitrobenzoesäure, deren Anhydride oder Salze und so fort. Ohne sich durch Theorie einschränken zu wollen, wird angenommen, dass Alkyl-substituierte Nitrobenzoe-Verbindungen bevorzugt an den aktiven Stellen der Katodenoberfläche biochemisch adsorbiert werden, wenn das Katodenpotential in einen niedrigen Bereich kommt oder die Zellspannung hoch ist, und anschließend davon in den Elektrolyten desorbiert werden, wenn das Katodenpotential hoch geht oder die Zellenspannung niedrig ist. Auf diese Weise sind die Verbindungen „elektrochemisch reversibel“, woraus sich eine verbesserte Hemmung der Wasserstoffgasproduktion ergeben könnte.
- Allgemein ausgedrückt, kann der Arbeitselektrolyt der vorliegende Erfindung in jedem Nass-Elektrolytkondensator verwendet werden. Dank seines relativ neutralen pH-Werts ist der Elektrolyt besonders gut für Elektrolytkondensatoren geeignet, die aus einer Anode, einer Katode und einem dazwischen befindlichen und mit Anode und Katode in Kontakt stehenden Arbeitselektrolyten bestehen. In dieser Hinsicht werden nun verschiedene Ausführungsformen von Nass-Elektrolyt-Kondensatoren in größerer Ausführlichkeit beschrieben, die nach der vorliegenden Erfindung hergestellt werden können.
- Es versteht sich, dass die nachstehende Beschreibung nur beispielhaft ist und mehrere andere Ausführungsformen ebenfalls von der vorliegenden Erfindung berührt sind.
- Die Anode kann im Allgemeinen aus einer Vielzahl von unterschiedlichen Materialien gebildet sein. Zum Beispiel kann die Anode aus einem Pulver gebildet werden, das vorwiegend aus einem Ventilmetall (d. h. einem Metall, welches zur Oxidation fähig ist) oder aus einer Zusammensetzung aufgebaut ist, welche das Ventilmetall als eine Komponente enthält. Geeignete Ventilmetalle, die benutzt werden können, sind Tantal, Niob, Aluminium, Hafnium, Titan, Legierungen dieser Metalle und so weiter; die Auswahl ist aber nicht auf diese beschränkt. Zum Beispiel kann die Anode gebildet sein aus einem Ventilmetalloxid oder -nitrid (z. B. Nioboxid, Tantaloxid, Tantalnitrid, Niobnitrid etc.), welches im Allgemeinen als ein halbleitendes oder stark leitendes Material angesehen wird. Besonders geeignete Ventilmetalloxide zur Verwendung in der Anode sind Nioboxide, die ein Atomverhältnis von Niob zu Sauerstoff von 1: weniger als 2,5 aufweisen, in einigen Ausführungsformen 1: weniger als 1,1 und in einigen Ausführungsformen 1:1,0 ± 0,2. Zum Beispiel kann das Nioboxid NbO0.7, NbO1.0, NbO1.1 und NbO2 sein. Zusätzliche Beispiele für solche Ventilmetalloxide sind in
US 6 322 912 B1 von Fife beschrieben, das hier in seiner Gesamtheit für alle Zwecke als Referenz mit aufgenommen wird. Beispiele für solche Ventilmetall-Nitride sind auch in „Tantalum Nitride: A New Substrate for Solid Electrolytic Capacitors“ von T. Tripp; Proceedings of CARTS 2000: 20th Capacitor and Resistor Technology Symposium, 6. - 20. März 2000, beschrieben. - Eine Vielzahl von herkömmlichen Herstellungsverfahren kann im Allgemeinen angewandt werden, um die Anode zu fertigen. Zum Beispiel kann die Anode als Folie, gepresstes Pulver usw. geformt werden, wie in der Technik wohl bekannt ist. Solche Anoden aus gepresstem Pulver werden zum Beispiel im Fife et al. erteilten
US 7 099 143 B1 beschrieben, das hier in seiner Gesamtheit für alle Zwecke als Referenz mit aufgenommen wird. Alternativ kann die Anode aus Keramikteilchen (z. B. Nb2O5, Ta2O5) geformt werden, die chemisch reduziert werden, um ein elektrisch leitfähiges Material (z. B. NbO, Ta) zu bilden. Zum Beispiel kann eine Schlickermischung, die die Keramikteilchen enthält, anfänglich erzeugt und auf einem Substrat in Form einer dünnen Schicht abgelagert werden. Bei Bedarf können mehrere Schichten gebildet werden, um die für die Anode vorgegebene Dichte zu erreichen. Nach der Formung kann (können) die Schicht(en) einer Wärmebehandlung unterzogen werden, um die Keramikteilchen chemisch zu reduzieren und die elektrisch leitfähige Anode zu bilden. Solche aus Schlicker gebildeten Anoden können geringe Dicke, hohen Formfaktor (d. h. Verhältnis von Breite zu Dicke) und gleichförmige Dichte aufweisen, was wiederum zur Verbesserung von volumetrischem Wirkungsgrad und äquivalentem Serienwiderstand („ESR“) führen kann. Zum Beispiel können die Anoden eine Dicke von etwa 1500 Mikrometer oder weniger, in einigen Ausführungsformen etwa 1000 Mikrometer oder weniger und in manchen Ausführungsformen etwa 50 bis etwa 500 Mikrometer haben. Ebenso können die Anoden einen Formfaktor von etwa 1 oder mehr haben, in manchen Ausführungen von ungefähr 5 oder mehr und in manchen Ausführungen von ungefähr 15 oder mehr. Beispiele von durch Beguss gebildeten Anoden wie oben beschrieben werden in einer gleichfalls angemeldeten Anmeldung, die zum selben Datum wie die vorliegende Anmeldung eingereicht wurde, mit dem Titel „Anode zur Verwendung in Elektrolytkondensatoren“, die hier in ihrer Gesamtheit für alle Zwecke als Referenz mit aufgenommen wird. - Die Anode kann jede gewünschte Form aufweisen, quadratisch, rechteckig, kreisförmig, oval, dreieckig usw. Polygonale Formen, die mehr als vier (4) Kanten haben (z. B. Sechseck, Achteck, Siebeneck, Fünfeck usw.) sind wegen ihrer relativ großen Oberfläche besonders erwünscht. Die Anode kann auch eine „gerillte“ Form haben, die ein oder mehrere Rillen, Fugen, Furchen oder Einbuchtungen enthält, um das Verhältnis von Oberfläche zu Volumen zu erhöhen und dadurch den ESR zu minimieren und den Frequenzgang der Kapazität zu erweitern. Solche „gerillten“ Anoden werden zum Beispiel in den
US 6 191 936 B1 von Webber et al.,US 5 949 639 B1 von Maeda et al. undUS 3 345 545 B1 von Bourgault et al., sowie in derUS 2005 / 0 270 725 A1 - Nach der Formung kann die Anode anodisch so oxidiert werden, dass eine dielektrische Schicht über und innerhalb der Anode gebildet wird. Anodisches Oxidieren ist ein elektrochemischer Prozess, mit dem das Anodenmaterial oxidiert wird, um ein Material zu bilden, das eine relativ hohe Dielektrizitätskonstante hat. Zum Beispiel kann eine Anode aus Nioboxid (NbO) anodisch oxidiert werden, um Niobpentoxid (Nb2O5) zu bilden. Speziell in einer Ausführung wird die Anode aus Nioboxid bei erhöhter Temperatur (z. B. etwa 85°C) in eine schwache Säurelösung (z. B. Phosphorsäure, Polyphosphorsäure, Mischungen daraus usw.) getaucht, an die ein kontrolliertes Maß an Spannung und Strom gelegt wird, um einen Überzug aus Niobpentoxid mit einer bestimmten Dicke zu bilden. Die Stromversorgung wird anfangs auf einem konstanten Strom gehalten, bis die erforderliche Formierungsspannung erreicht ist. Danach wird die Stromversorgung auf einer konstanten Spannung gehalten, um sicherzustellen, dass sich das Dielektrikum mit der gewünschten Dicke auf der Oberfläche der Anode bildet. Die Spannung zur anodischen Oxidation liegt typischerweise im Bereich von etwa 10 bis ungefähr 200 Volt und in einigen Ausführungen von etwa 20 bis ungefähr 100 Volt. Zusätzlich zum Ausbilden auf der Oberfläche der Anode wird ein Teil der dielektrischen Oxidschicht typischerweise auch auf der Oberfläche der Poren des Materials ausgebildet. Es sollte sich verstehen, dass der dielektrische Film aus anderen Typen von Materialien und unter Anwendung anderer Techniken geformt werden kann.
- Die Katode kann unter Verwendung einer Vielzahl von Techniken ausgebildet werden. In einer Ausführung enthält die Katode einen Stromkollektor, der aus jedem Metall bestehen kann, das sich zum Aufbau eines Kondensators eignet, wie Tantal, Niob, Aluminium, Nickel, Hafnium, Titan, Kupfer, Silber, Stahl (z. B. Edelstahl), Legierungen davon und so weiter. Die Konfiguration des Katoden-Stromkollektors kann im allgemeinen variieren, wie Fachleuten wohl bekannt ist. Zum Beispiel kann der Stromkollektor die Form eines Behälters, einer Dose, einer Folie, eines Blattes, von Schaum, eines Netzes, eines Siebes, eines Tuchs, von Filz usw. aufweisen. In einer Ausführung ist der Katoden-Stromkollektor aus Netzmaterial. Die Oberfläche des Katoden-Stromkollektors wird so gewählt, dass ein bestimmtes Kapazitätsniveau erreicht wird. Zum Beispiel bedeckt der Katoden-Stromkollektor eine Oberfläche von etwa 0,1 bis etwa 25 Quadratzentimetern, in manchen Ausführungsformen von etwa 0,2 bis etwa 15 Quadratzentimetern, und in gewissen Ausführungsformen von etwa 0,5 bis etwa 10 Quadratzentimetern. Es versteht sich, dass die spezifische Oberfläche des Stromkollektors viel größer als die oben angegebenen Bereiche sein kann.
- In einigen Ausführungen wird eine Katodenbeschichtung auf dem Stromkollektor erzeugt, die eine elektrochemische Kapazität an einer Grenzfläche mit dem Elektrolyten trägt und ein hohes Verhältnis von Oberfläche zu Volumen besitzt. Die Katodenbeschichtung kann elektrochemisch aktive Teilchen enthalten, welche leitfähig sind, so dass der Elektrolyt einen guten elektrischen Kontakt mit dem Katoden-Stromkollektor beibehält. Das Ausmaß der Leitfähigkeit kann als „spezifischer Widerstand“ der elektrochemisch aktiven Teilchen bei etwa 20°C charakterisiert werden, welche im Allgemeinen weniger als etwa 1 Ohm.cm beträgt, in manchen Ausführungsformen weniger als etwa 1 × 10-2 Ohm.cm, in manchen Ausführungsformen weniger als etwa 1 × 10-3 Ohm.cm und in manchen Ausführungsformen weniger als etwa 1 × 10-4 Ohm.cm. Die elektrochemisch aktiven Teilchen erhöhen die effektive Katoden-Oberfläche, über welche der Elektrolyt elektrochemisch mit dem Katoden-Stromkollektor in Verbindung steht. Eine derartige erhöhte effektive Katodenoberfläche ermöglicht die Herstellung von Kondensatoren mit erhöhter Zellenkapazität für eine gegebene Größe und/oder von Kondensatoren mit reduzierter Größe für eine gegebene Kapazität. Typischerweise besitzen die elektrochemisch aktiven Teilchen eine spezifische Oberfläche von mindestens etwa 200 m2/g, in manchen Ausführungsformen mindestens etwa 500 m2/g und in einigen Ausführungsformen mindestens etwa 1500 m2/g. Um die gewünschte Oberfläche zu erzielen, besitzen die elektrochemisch aktiven Teilchen im Allgemeinen eine geringe Größe. Zum Beispiel kann die mittlere Größe der elektrochemisch aktiven Teilchen weniger als etwa 100 Mikrometer, in einigen Ausführungsformen etwa 1 bis etwa 50 Mikrometer und in manchen Ausführungsformen etwa 5 bis etwa 20 Mikrometer betragen. Auch können die elektrochemisch aktiven Teilchen porös sein. Ohne sich durch Theorie einschränken zu wollen, wird angenommen, dass poröse Teilchen eine Passage bzw. einen Durchgangsweg für einen Elektrolyt bereitstellen, um den Katoden-Stromkollektor besser zu kontaktieren. Zum Beispiel können die elektrochemisch aktiven Teilchen Poren/Kanäle mit einem mittleren Durchmesser von mehr als etwa 0,5 nm (5 Angström), in einigen Ausführungsformen mehr als etwa 2 nm (20 Angström) und in manchen Ausführungsformen mehr als etwa 5 nm (50 Angström) aufweisen.
- Jedes aus einer Vielzahl von elektrochemisch aktiven Teilchen kann in der vorliegenden Erfindung verwendet werden. Zum Beispiel können verschiedene Metalle als elektrochemisch aktive Teilchen verwendet werden, wie Teilchen aus Ruthenium, Iridium, Nickel, Rhodium, Rhenium, Kobalt, Wolfram, Mangan, Tantal, Niob, Molybdän, Blei, Titan, Platin, Palladium und Osmium, sowie Kombinationen dieser Metalle. In einer besonderen Ausführungsform sind zum Beispiel die elektrochemisch aktiven Teilchen Palladiumpartikel. Nicht-isolierende Oxidteilchen können ebenfalls in der vorliegenden Erfindung verwendet werden. Geeignete Oxide können ein Metall aus der Gruppe Ruthenium, Iridium, Nickel, Rhodium, Rhenium, Kobalt, Wolfram, Mangan, Tantal, Niob, Molybdän, Blei, Titanium, Platin, Palladium und Osmium sowie Kombinationen dieser Metalle enthalten. Besonders geeignete Metalloxide sind Rutheniumdioxid (RuO2) und Mangandioxid (MnO2). Auch kohlenstoffhaltige Teilchen können verwendet werden, die das gewünschte Leitfähigkeitsniveau haben, wie Aktivkohle, Ruß, Graphit etc. Einige geeignete Formen von Aktivkohle und Techniken zu deren Bildung werden beschrieben in den
US 5 726 118 B1 von Ivey et al.,US 5 858 911 B1 von Wellen et al. sowie derUS 2003 / 0 158 342 A1 - Weil es oft schwierig ist, die elektrochemisch aktiven Partikel direkt an den Katoden-Stromkollektor zu binden, kann auch ein Binder in der Katodenbeschichtung verwendet werden, um die elektrochemisch aktiven Partikel effektiv an den Katoden-Stromkollektor zu heften. Jeder Binder, der die gewünschte Haftfestigkeit bietet, kann verwendet werden. Zum Beispiel können zu den Bindern Polytetrafluorethylen, Polyvinylidenfluorid, Carboxymethylzellulose, Fluorolefin-Copolymer-vernetztes Polymer, Polyvinylalkohol, Polyacrylsäure, Polyimid, Petroleum-Teer, Kohlenteer und Phenolharze gehören.
- In einer besonderen Ausführung wird ein amorpher Polymerbinder in der Katodenbeschichtung verwendet, der zum Anheften der elektrochemisch aktiven Teilchen an den Katoden-Stromkollektor beitragen soll. Viele herkömmliche Binder bestehen aus thermoplastischen Polymeren, die semikristalliner oder kristalliner Natur sind (z. B. Polytetrafluorethylen). Während der Formierung des Kondensators schmelzen solche Binder und „benetzen“ dadurch einen beträchtlichen Teil der elektrochemisch aktiven Teilchen. Dagegen wird angenommen, dass amorphe Polymere, die eine relativ hohe „Glas-übergangstemperatur“ („Tc“) haben, nicht in demselben Ausmaß einen Schmelzfluss erleiden wie normale thermoplastische Binder und daher Teile der Partikel unbedeckt lassen, die daher als elektrochemische Grenzfläche zum Elektrolyten und zum Stromkollektor fungieren und dadurch die Kapazität erhöhen. Genauer gesagt, haben die amorphen Polymere der vorliegenden Erfindung im Allgemeinen eine Glasübergangstemperatur von etwa 100°C oder mehr, in einigen Ausführungen etwa 150°C oder mehr und in einigen Ausführungen etwa 250°C oder mehr. Wie in der Technik wohl bekannt ist, kann die Glasübergangstemperatur mit der Differentialrasterkalorimetrie („DSC“) nach ASTM D-3418 bestimmt werden.
- Jedes einer Vielzahl von amorphen Polymeren kann verwendet werden, die die gewünschte Glasübergangstemperatur besitzen. Eine Klasse besonders geeigneter amorpher Polymere sind thermoplastische Polyimide, die normalerweise aromatische Ringe enthalten, welche durch Imidbindungen vernetzt sind - d. h. Bindungen, in denen zwei Carbonylgruppen an dasselbe Stickstoffatom gebunden sind. Zu den geeigneten thermoplastischen Polyimiden können zum Beispiel Polyamid/-imid, wie es von Solvay Polymers unter der Bezeichnung Torlon™ erhältlich ist, Polyetherimid, wie es von GE Plastics unter der Bezeichnung Ultem™ erhältlich ist, deren Copolymere und so weiter. Amid/-Imid-Polymere können zum Beispiel von einem Amid-Amidsäure-Polymer-Vorläufer abgeleitet werden. Der Polyamid-Amidsäure-Vorläufer wird dann thermisch behandelt, im Allgemeinen bei einer Temperatur über etwa 150°C, um das Polyamid/-imid zu bilden. Polyamid-Amidsäuren können über die Polykondensationsreaktion von mindestens einem Polycarbonsäureanhydrid oder dessen Derivaten und mindestens einem primären Diamin dargestellt werden. Spezieller ist das Säureanhydrid typischerweise Trimellitsäure oder ein Derivat davon, wie ein niedrigerer Alkylester des Trimellitsäureanhydrids oder ein Trimellitsäurehalogenid (z. B. Säurechlorid des Trimellitanhydrids, d. h. Trimellitanhydridchlorid, TMAC). Das primäre Diamin ist ebenfalls typischerweise ein aromatisches Diamin, wie p-Phenylendiamin, m-Phenylendiamin, Oxybis(anilin), Benzidin, 1,5-Diaminonaphthalin, Oxybis(2-methylanilin), 2,2-Bis[4-(p-aminophenoxy)phenyl]propan, Bis[4-(p-aminophenoxy)]benzol, Bis[4-(3-aminophenoxy)]benzol, 4,4'-Methylendianilin oder eine Kombination davon. Beispiele für andere verwendbare primäre Diamine werden beschrieben in den
US 5 230 956 B1 von Cole et al. undUS 6 479 581 B1 von Ireland et al., welche hierin in ihrer Gesamtheit durch den Bezug darauf für alle Zwecke einbezogen sind. Zu den besonders geeigneten aromatischen Diaminen gehören Meta-Phenylendiamin und Oxybis(anilin). - Obwohl das nicht unbedingt erforderlich ist, kann der amorphe Polymerbinder in Form von Teilchen bereitgestellt werden, um die Haftungseigenschaften zu verbessern. Wenn sie eingesetzt werden, besitzen die Binder-Teilchen typischerweise eine Größenverteilung von etwa 1 bis etwa 250 Mikrometer und in manchen Ausführungsformen von etwa 5 bis etwa 150 Mikrometer. Zum Beispiel können die Teilchen eine Partikelgrößenverteilung D90 (90 Gew.-% der Teilchen haben einen niedrigeren Durchmesser als der angegebene Wert) von etwa 150 Mikrometer oder weniger, in manchen Ausführungsformen von etwa 100 Mikrometer oder weniger und in manchen Ausführungsformen von etwa 75 Mikrometer oder weniger besitzen.
- Die relative Menge der elektrochemisch aktiven Teilchen und Binderteilchen in der Katodenbeschichtung kann auch in Abhängigkeit von den gewünschten Eigenschaften des Kondensators variieren. Zum Beispiel wird eine größere relative Menge an elektrochemisch aktiven Teilchen im Allgemeinen zu einem Kondensator mit einer größeren Katodenkapazität führen. Wenn die Menge der elektrochemisch aktiven Teilchen zu groß ist, kann sich jedoch die Katodenbeschichtung möglicherweise nicht ausreichend an den Katoden-Stromkollektor binden. Um daher ein angemessenes Gleichgewicht zwischen diesen Eigenschaften zu erzielen, enthält die Katodenbeschichtung elektrochemisch aktive Teilchen und Binder in einem jeweiligen Gewichtsverhältnis von etwa 0,5:1 bis etwa 100:1, in einigen Ausführungsformen von etwa 1:1 bis etwa 50:1 und in manchen Ausführungsformen von etwa 2:1 bis etwa 20:1. Die elektrochemisch aktiven Teilchen können etwa 50 Gew.-% bis etwa 99 Gew.-%, in einigen Ausführungsformen etwa 60 Gew.-% bis etwa 98 Gew.-% und in manchen Ausführungsformen etwa 70 Gew.-% bis etwa 95 Gew.-% der Katodenbeschichtung ausmachen. Desgleichen kann der Binder etwa 1 Gew.-% bis etwa 40 Gew.-%, in manchen Ausführungsformen etwa 2 Gew.-% bis etwa 30 Gew.-% und in einigen Ausführungsformen etwa 5 Gew.-% bis etwa 20 Gew.-% der Katodenbeschichtung ausmachen.
- Zusätzlich zu den elektrochemisch aktiven Teilchen und dem Binder kann die Katodenbeschichtung auch andere Bestandteile enthalten. Zum Beispiel kann in einigen Ausführungen ein leitfähiger Füllstoff verwendet werden, um die Leitfähigkeit der Beschichtung weiter zu erhöhen. Solche leitfähigen Füllstoffe können besonders vorteilhaft sein, um Leitfähigkeitsverlusten entgegenzuwirken, die daher rühren könnten, dass der Binder einen Teil der Oberfläche der elektrochemisch aktiven Teilchen bedeckt. Es kann jeder geeignete leitfähige Füllstoff verwendet werden, wie Metallpartikel (z. B. Silber, Kupfer, Nickel, Aluminium und so weiter), nichtmetallische Partikel (z. B. Ruß, Graphit und so weiter). Wenn er eingesetzt wird, kann der leitfähige Füllstoff etwa 1 Gew.-% bis etwa 40 Gew.-%, in manchen Ausführungsformen etwa 2 Gew.-% bis etwa 30 Gew.-% und in einigen Ausführungsformen etwa 5 Gew.-% bis etwa 20 Gew.-% der Katodenbeschichtung ausmachen.
- Um die Beschichtung auf den Katoden-Stromkollektor aufzubringen, können die elektrochemisch aktiven Teilchen, der Binder und/oder der leitfähige Füllstoff mit einem Lösungsmittel gemischt werden, entweder separat oder zusammen, um eine Beschichtungszubereitung zu bilden. Jedwedes Lösungsmittel kann verwendet werden, wie Wasser; Glycole (z. B. Propylenglycol, Butylenglycol, Triethylenglycol, Hexylenglycol, Polyethylenglycole, Ethoxydiglycol und Dipropylenglycol); Glycolether (z. B. Methylglycolether, Ethylglycolether und Isopropylglycolether); Ether (z. B. Diethylether und Tetrahydrofuran); Alkohole (z. B. Methanol, Ethanol, n-Propanol, Isopropanol und Butanol); Triglyceride; Ketone (z. B. Aceton, Methylethylketon und Methylisobutylketon); Ester (z. B. Ethylacetat, Butylacetat, Diethylenglycoletheracetat und Methoxypropylacetat); Amide (z. B. Dimethylformamid, Dimethylacetamid, Dimethylcapryl/Caprin-Fettsäureamid und N-Alkylpyrrolidone); Nitrile (z. B. Acetonitril, Propionitril, Butyronitril und Benzonitril); Sulfoxide oder Sulfone (z. B. Dimethylsulfoxid (DMSO) und Sulfolan) und so weiter. Obwohl die Konzentration des Lösungsmittels im Allgemeinen variieren kann, ist es nichtsdestoweniger typischerweise in einer Menge von etwa 25 Gew.-% bis etwa 95 Gew.-%, in einigen Ausführungsformen etwa 30 Gew.-% bis etwa 90 Gew.-%, und in manchen Ausführungsformen von etwa 40 Gew.-% bis etwa 85 Gew.-% der Beschichtungsrezeptur vorhanden.
- Der Feststoffgehalt und/oder die Viskosität der Beschichtungszubereitung können im Allgemeinen nach Bedarf variieren, um die gewünschte Beschichtungsdicke zu erzielen. Zum Beispiel kann der Feststoffgehalt im Bereich von etwa 5 Gew.-% bis etwa 60 Gew.-%, weiter bevorzugt zwischen etwa 10 Gew.-% bis etwa 50 Gew.-% und noch weiter bevorzugt zwischen etwa 20 Gew.-% bis etwa 40 Gew.-% liegen. Durch Variieren des Feststoffgehalts der Beschichtungsrezeptur kann das Vorhandensein der Teilchen in der Beschichtung reguliert werden. Zum Beispiel kann zur Bildung einer Katodenbeschichtung mit einem höheren Spiegel an elektrochemisch aktiven Teilchen die Rezeptur mit einem relativ hohen Feststoffgehalt ausgestattet werden, so dass ein größerer Prozentsatz der Teilchen während des Aufbringungsverfahrens in die Beschichtung eingebunden wird. Darüber hinaus kann die Viskosität der Beschichtungsrezeptur auch in Abhängigkeit von dem Beschichtungsverfahren und/oder dem verwendeten Lösungsmitteltyp variieren. Zum Beispiel können niedrigere Viskositäten für einige Beschichtungstechniken (z. B. Tauchbeschichtung) verwendet werden, während höhere Viskositäten für andere Beschichtungstechniken verwendet werden können. Im Allgemeinen beträgt die Viskosität weniger als etwa 2000 Pas (2 × 106 Centipoise), in manchen Ausführungsformen weniger als etwa 200 Pas (2 × 105 Centipoise), in manchen Ausführungsformen weniger als etwa 20 Pas (2 × 104 Centipoise), und in manchen Ausführungsformen weniger als etwa 2 Pa · s (2 × 103 Centipoise) gemessen mit einem Brookfield DV-1-Viskosimeter mit einer LV-Spindel. Falls gewünscht, können Verdickungsmittel oder andere Viskositätsmodifikatoren in der Beschichtungsrezeptur verwendet werden, um die Viskosität zu erhöhen oder zu senken.
- Sobald sie gebildet ist, kann die Beschichtungszubereitung dann auf den Katoden-Stromkollektor unter Verwendung jedweder bekannten Technik aufgetragen werden. Zum Beispiel kann die Katodenbeschichtung aufgetragen werden unter Anwendung von Techniken wie Sputtern, Siebdruck, Tauchen, elektrophoretische Beschichtung, Elektronenstrahl-Abscheidung, Sprühen, Walzenpressen, Pinseln bzw. Bürsten, Rakelmesser-Auftrag, Zentrifugalauftrag, Maskieren und Vakuumabscheidung. Andere geeignete Techniken sind ebenfalls beschrieben in den
US 5 369 547 B1 von Evans et al.;US 6 594 140 B1 von Evans et al.; undUS 6 224 985 B1 von Shah et al., welche hierin in ihrer Gesamtheit durch Bezug darauf für alle Zwecke einbezogen sind. Zum Beispiel kann der Katoden-Stromkollektor in die Beschichtungszubereitung eingetaucht werden oder damit besprüht werden. Die Beschichtungszubereitung kann eine gesamte Oberfläche des Stromkollektors bedecken. Alternativ dazu kann die Beschichtungszubereitung auch lediglich einen Teil des Stromkollektors bedecken, so dass Platz bleibt, damit ein Leitungsdraht am Stromkollektor anliegen kann. Zum Beispiel kann die Beschichtungszubereitung etwa 25 % bis etwa 100 % einer Oberfläche des Stromkollektors, in manchen Ausführungsformen etwa 60 % bis etwa 95 % einer Oberfläche des Stromkollektors bedecken. Nach dem Auftragen kann die Beschichtungszubereitung gegebenenfalls getrocknet werden, um jedwede(s) Lösemittel zu entfernen. Das Trocknen kann zum Beispiel bei einer Temperatur von etwa 50°C bis etwa 150°C stattfinden. - Zusätzlich zu denjenigen, die oben angegeben wurden, können auch andere wahlfreie Komponenten im Nass-Elektrolyt-Kondensator verwendet werden. Zum Beispiel kann eine leitfähige Polymerbeschichtung verwendet werden, welche über dem Stromkollektor und/oder der Katodenbeschichtung liegt. Zu den geeigneten leitfähigen Polymeren können, ohne jedoch darauf eingeschränkt zu sein, Polypyrrole, Polythiophene, wie Poly(3,4-ethylendioxythiophen) (PEDT), Polyaniline, Polyacetylene, Poly-p-phenylene und Derivate davon gehören. Die leitfähige Polymerbeschichtung kann auch aus mehreren leitfähigen Polymerschichten gebildet werden. Zum Beispiel kann das leitfähige Polymer eine Schicht aus PEDT und eine andere Schicht aus einem Polypyrrol enthalten.
- Obwohl nicht erforderlich, kann die leitfähige Polymerbeschichtung die effektive Kapazität des Kondensators weiter erhöhen. Wenn zum Beispiel ein leitfähiges Monomer polymerisiert, nimmt es typischerweise eine amorphe, nichtkristalline Form an, welche bei Betrachtung unter Rasterelektronenmikroskopie in gewisser Weise wie ein Netz aussieht. Dies bedeutet, dass die resultierende leitfähige Polymerbeschichtung eine große Oberfläche aufweist und deshalb so wirkt, dass die effektive Oberfläche des beschichteten Stromkollektors, auf den sie aufgebracht wird, etwas erhöht wird. Verschiedene Verfahren können angewandt werden, um die leitfähige Polymerbeschichtung auf die Katodenbeschichtung aufzutragen. Zum Beispiel können Techniken wie Siebdruck, Eintauchen, elektrophoretische Beschichtung und Sprühen zur Bildung der Beschichtung verwendet werden. In einer Ausführungsform kann das (können die) Monomer(e), das (die) zur Bildung des leitfähigen Polymers (z. B. PEDT) verwendet wird (werden), zu Beginn mit einem Polymerisationskatalysator zu einer Dispersion gemischt werden. Zum Beispiel ist ein derartiger Katalysator BAYTRON C (Bayer Corp.), bei dem es sich um Eisen(III)-toluolsulphonat und n-Butanol handelt. BAYTRON C ist ein im Handel verfügbarer Katalysator für BAYTRON M, bei welchem es sich um 3,4-Ethylendioxythiophen handelt, ein PEDT-Monomer, welches ebenfalls von der Bayer Corporation vertrieben wird. Sobald eine Dispersion gebildet ist, kann der beschichtete Stromkollektor dann in die Dispersion getaucht werden, sodass sich ein leitfähiges Polymer bildet. Alternativ dazu können Katalysator und Monomer(e) auch separat aufgetragen werden. In einer Ausführungsform kann der Katalysator in einem Lösemittel (z. B. Butanol) gelöst und dann als Eintauchlösung angewandt werden. Obwohl oben verschiedene Verfahren beschrieben worden sind, sollte es sich verstehen, dass jedwedes andere Verfahren zur Auftragung der Beschichtung, einschließlich der leitfähigen Polymerbeschichtung, ebenfalls verwendet werden kann. Zum Beispiel werden andere Verfahren zum Aufbringen einer solchen Beschichtung, die aus einem oder mehreren leitfähigen Polymeren besteht, in den
US 5 457 862 B1 von Sakata, et al.,US 5 473 503 B1 von Sakata, et al.,US 5 729 428 B1 von Sakata, et al.,US 5 812 367 B1 von Kudoh et al. Beschrieben, die hier in ihrer Gesamtheit für alle Zwecke als Referenz mit aufgenommen werden. - Eine Schutzbeschichtung kann auch wahlfrei zwischen der leitfähigen Polymerbeschichtung und der Katodenbeschichtung positioniert sein. Es wird angenommen, dass die Schutzbeschichtung die mechanische Stabilität der Grenzfläche zwischen der leitfähigen Polymerbeschichtung und der Katodenbeschichtung verbessern kann. Die Schutzbeschichtung kann aus relativ isolierenden harzartigen Materialien (natürlich oder synthetisch) gebildet sein. Einige harzartigen Materialien, die verwendet werden können, schließen, ohne aber darauf beschränkt zu sein, Polyurethan, Polystyrol, Ester von ungesättigten oder gesättigten Fettsäuren (z.B. Glyceride) und so weiter, ein. Geeignete Ester von Fettsäuren sind Ester der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, Elaeostearinsäure, Ölsäure, Linolsäure, Linolensäure, Aleuritinsäure, Shellolsäure, und so weiter, sind aber nicht darauf beschränkt. Es hat sich herausgestellt, dass diese Fettsäureester besonders nützlich sind, wenn sie in relativ komplexen Kombinationen verwendet werden, um ein „Trocknungs-Öl“ zu bilden, das es erlaubt, den resultierenden Film schnell zu einer stabilen Schicht zu polymerisieren. Solche Trocknungs-Öle können Mono-, Di- und/oder Tri-Glyceride enthalten, die ein Glycerol-Gerüst mit einem, zwei, bzw. drei Fettsäure-Resten haben, die verestert sind. Einige geeignete Trocknungs-Öle, die benutzt werden können, sind zum Beispiel Olivenöl, Leinöl, Rizinusöl, Tungöl, Sojaöl und Schellack, sind aber nicht darauf beschränkt. Diese und andere Schutzschicht-Materialien werden detaillierter in dem Fife, et al. Erteilten
US 6 674 635 B1 beschrieben, das hier in seiner Gesamtheit für alle Zwecke als Referenz mit aufgenommen wird. - Die physische Anordnung von Anode, Katode und Arbeitselektrolyt des Kondensators kann im Allgemeinen nach dem Stand der Technik variieren. Unter Bezugnahme auf
1 wird zum Beispiel eine Ausführungsform eines Nass-Elektrolyt-Kondensators 40 gezeigt, welcher einen Arbeitselektrolyten 44 enthält, der zwischen einer Anode 20 und einer Katode 43 angeordnet ist. Die Anode 20 enthält einen dielektrischen Film 21 und ist mit einem Draht 42 (z. B. Tantaldraht) eingebettet. Die Katode 43 wird aus einem Katoden-Stromkollektor 41 und einer Katodenbeschichtung gebildet. In dieser Ausführungsform liegt der Katoden-Stromkollektor 41 in der Form einer zylindrisch geformten „Büchse“ mit einem daran angebrachten Deckel vor. Ein Verschluss bzw. eine Dichtung 23 (z. B. Glas-auf-Metall) kann ebenfalls verwendet werden, welche(r) die Anode 20 mit der Katode 43 verbindet und versiegelt. Obwohl nicht gezeigt, kann der Kondensator 40 auch einen Abstandhalter (nicht gezeigt) enthalten, welcher die Anode 20 fest innerhalb der Katode 43 hält. Der Abstandhalter kann zum Beispiel aus Kunststoff hergestellt sein und die Form einer Unterlegscheibe haben. Auch kann ein Separator (z. B. Papier) zwischen der Katode und der Anode angeordnet sein, um direkten Kontakt zwischen Katode und Anode zu verhindern, jedoch lonenstromfluss des Arbeitselektrolyten 44 zu den Elektroden zuzulassen. Jedes in bekannten Elektrolytkondensatoren als Separator verwendetes Material kann als Separator in der vorliegenden Erfindung eingesetzt werden. Beispiele dafür sind Papier, Kunstfasern, Glasfasern, Papiere aus diesen Fasern, poröse Membranen und ionendurchlässige Materialien (z. B. Nation™). Typischerweise sind die Anode und die Katode durch einen Abstand von etwa 10 Mikrometer bis etwa 1000 Mikrometer getrennt. Die Katode ist per Punktschwei-ßung mit einem Metalldraht (nicht gezeigt) als externem Anschluss verbunden. - In der in
1 gezeigten Ausführung werden nur eine einzige Anode und ein einziger Katoden-Stromkollektor verwendet. Es versteht sich jedoch, dass mehrere Anoden und/oder Katoden-Stromkollektoren (z. B. 2 oder mehr) im Kondensator enthalten sein können, um eine erhöhte Kapazität zu erreichen. Es können beliebige Anzahlen von Anoden und/oder Katoden-Stromkollektoren verwendet werden, wie z. B. 2 bis 50, in einigen Ausführungen 4 bis 40 und einigen Ausführungen 6 bis 30. Um die Dicke des Aufbaus für Anwendungen mit geringer Bauhöhe zu minimieren, werden die Anoden und Katoden-Stromkollektoren auch generell in einer ein- oder zweidimensionalen Matrix angeordnet. Unter Bezugnahme auf2 wird zum Beispiel ein Kondensator 200 gezeigt, der eine Anordnung 100 von drei (3) einzelnen Katoden 64 und zwei (2) einzelnen Anoden 65 aufweist. In dieser speziellen Ausführung enthält die Anordnung 100 eine (1) Zeile und eine (1) Spalte von Anoden und Katoden, die so angeordnet sind, dass ihre oberen/unteren Flächen einander benachbart sind, um die Höhe des Aufbaus zu minimieren. Zum Beispiel ist die obere, durch ihre Breite (Richtung -x) und Länge (Richtung -y) definierte Fläche einer Katode benachbart zu einer entsprechenden unteren Fläche einer Anode angeordnet. Alternativ dazu können die Anoden und Katoden auch „hintereinander“ angeordnet werden, so dass die Rückfläche eines Kondensators neben die Vorder- oder Rückfläche eines anderen Kondensators positioniert wird. Es versteht sich, dass sich die Anoden und Katoden nicht in derselben Richtung erstrecken müssen. Zum Beispiel kann die Fläche einer Katode in einer Ebene angeordnet sein, die im Wesentlichen senkrecht zur Richtung -x verläuft, während die Fläche einer anderen Katode in einer Ebene angeordnet ist, die im Wesentlichen senkrecht zur Richtung -y verläuft. Es ist jedoch wünschenswert, dass die Anoden/Katoden sich im Wesentlichen in derselben Richtung erstrecken. - Um eine integrierte Kondensator-Baugruppe herzustellen, werden die einzelnen Anoden und Katoden elektrisch mit gemeinsamen Katoden- und Anoden-Anschlüssen verbunden. Die Anschlüsse dienen als elektrische Verbindungen für die Kondensator-Baugruppe und helfen dabei, die einzelnen Anoden und Katoden gegen Bewegung zu stabilisieren. Zum Ausbilden der Anschlüsse kann jedes leitfähige Material verwendet werden, wie z.B. ein leitfähiges Metall (z.B. Tantal., Niob, Kupfer, Nickel, Silber, Zink, Zinn, Palladium, Blei, Aluminium, Molybdän, Titan, Eisen, Zirkonium, Magnesium und deren Legierungen). Besonders geeignete leitfähige Metalle sind zum Beispiel Nickel, Niob und Tantal. Die Anschlüsse können generell auf jede gewünschte Weise angeordnet werden, so dass sie voneinander elektrisch isoliert sind und die einzelnen Kondensatoren aufnehmen können. In
2 enthält der Kondensator 200 zum Beispiel Einzel-Katoden 64, die Katodenleitungen 72 tragen, die gemeinsam mit einem Katodenanschluss 172 (z. B. Tantaldraht) verbunden sind. Ähnlich enthalten Einzel-Anoden 65 Anodenleitungen 62, die gemeinsam mit einem Anodenanschluss 162 (z. B. Tantaldraht) verbunden sind. Die Katoden-Anschlussdrähte 72 und die Anoden-Anschlussdrähte 62 können elektrisch mit den Anschlüssen 172 bzw. 162 verbunden sein, wozu jedes bekannte Verfahren verwendet werden kann. Zum Beispiel können die Anschlussleitungen entweder direkt (z.B. durch Laser-Schweißen, leitfähigen Kleber, usw.) oder über ein zusätzliches leitfähiges Element (z.B. Metall) verbunden sein. Separatoren 117 sind auch zwischen den Katoden und Anoden angeordnet, um direkten Kontakt dazwischen zu verhindern, jedoch Ionenstromfluss des Arbeitselektrolyten 144 zu den Elektroden zuzulassen. - Gegebenenfalls können die Bestandteile des Kondensators 200 in einem Behälter 119 eingeschlossen werden. Obwohl jede Form verwendet werden kann, hat der Behälter 119 die Form eines Zylinders mit Oberseite 121 und Unterseite 123. Die Oberseite 121 des Behälters 119 wird durch einen Deckel 125 und eine Dichtung 127 (z. B. Gummistopfen) abgedeckt. Der Behälter 119 und/oder der Deckel 125 können aus einem beliebigen aus einer Vielzahl leitfähiger Materialien hergestellt werden, wie z.B. Kupfer, Nickel, Silber, Zink, Zinn, Palladium, Blei, Aluminium, Molybdän, Titan, Eisen, Zirkonium, Magnesium und deren Legierungen. Die Anschlüsse 162 und 172 ragen durch den Deckel 125, um anschließend die elektrische Verbindung herstellen zu können. Um die elektrische Isolierung zwischen den Anschlüssen 162 und 172 sicherzustellen, sind leitfähige Stäbe 175 (z. B. Edelstahl, Niob usw.) vorgesehen, die die Anschlüsse innerhalb der dem Deckel 125 benachbarten Bereiche einkapseln.
- Teilweise aufgrund der hohen Leitfähigkeit kann der Nass-Elektrolyt-Kondensator hervorragende elektrische Eigenschaften erreichen. Zum Beispiel kann der äquivalente Reihenverlustwiderstand (ESR) - das Ausmaß, zu dem der Kondensator beim Laden und Entladen in einem elektronischen Schaltkreis wie ein Widerstand wirkt - weniger als etwa 1500 Milliohm, in einigen Ausführungsformen weniger als etwa 1000 Milliohm und in manchen Ausführungsformen weniger als etwa 500 Milliohm aufweisen, gemessen mit einer 2-Volt-Vorspannung und einem 1-Volt-Signal bei einer Frequenz von 1000 Hz. Der Elektrolytkondensator der vorliegenden Erfindung kann in verschiedenen Anwendungen, einschließlich, ohne jedoch darauf eingeschränkt zu sein, medizinischen Anwendungen, wie Defibrillatoren etc., Automobilanwendungen sowie militärischen Anwendungen, wie RADAR-Systemen, und so weiter verwendet werden. Der Elektrolyt-Kondensator der vorliegenden Erfindung kann auch in Haushalts-Elektronik, darunter Radiogeräten, Fernsehgeräten und so weiter, verwendet werden.
- Die vorliegende Erfindung kann besser verstanden werden, wenn auf die folgenden Beispiele Bezug genommen wird.
- BEISPIEL 1
- Zu Beginn wurde ein keramischer Körper mit folgender Zusammensetzung gebildet:
Material Gew-% Entionisiertes Wasser 19,05 Nichtionisches Netzmittel 0,19 Anionische polymere Detergentien 1,30 Acryl-Binder 9,76 Nb2O5-Pulver 69,70 - Die Zutaten wurden in einer zweckbestimmten M-18-Schwingmühle gemahlen. Nach der Darstellung wurde die Mischung durch Rühren in einem Gusshafen 24 Stunden lang entlüftet. Der Schlicker wurde zu einem Band von 0,001875 inches (1,875 mil, 0,047625 mm) auf einem Polypropylenträger gegossen. Um das Trocknen zu erleichtern, wurde der Träger mit dem nassen Band 2 Minuten lang über ein Wasserbad geleitet, das auf einer konstanten Temperatur von 50 °C gehalten wurde. Am Ende der Trocknungsphase trennte eine Metallklinge das gegossene Band vom Träger, und das Band wurde zusammen mit einem einzelnen Papierblatt zusammengerollt, damit das Band während der Lagerung nicht mit sich selbst verklebt. Stücke von 6" x 6" (152,4 x 152,4 mm) wurden vom Band abgeschnitten. 9 dieser Bandstücke wurden dann aufeinandergestapelt und in einer Presse 10 Sekunden lang bei 20684 kPa (3000 psi) zusammengeheftet. Ein Opferteil wurde auf einem Webrahmen gewebt und zwischen zwei 9-Lagen-Stapel gelegt. Das Opferteil wurde aus einer Angelleine WN-101, Hersteller Shakespeare, (Durchmesser 0,0083 inch, 0,21 mm) hergestellt. Danach wurden die gestapelten Schichten und der Webrahmen zusammen 18 Sekunden lang bei einem Druck von 209 kgf/cm2 in einer Shinto-Presse gepresst. Der gepresste Block wurde aus dem Webrahmen geschnitten und dann in einer Clifton-Presse laminiert durch 2 Sekunden langes Pressen bei 12721 kPa (1845 psi), Nachlassen des Drucks, 4 Sekunden langes Pressen bei 12721 kPa (1845 psi), Nachlassen des Drucks und 16 Sekunden langes Pressen bei 12721 kPa (1845 psi). Dieser laminierte Block wurde mit einem Scheibchenschneider PTC CC-7100 in 21,2 mm x 12,7 mm große Stücke geschnitten. Die Dicke der scheibchenförmigen Körper betrug 0,7 mm. Die Scheibchen wogen jeweils 0,55 g.
- BEISPIEL 2
- Ein Nass-Elektrolytkondensator wurde aus dem Keramikkörper aus Beispiel 1 gebildet. Zu Beginn wurde ein Edelstahlnetz (150 x 150 mesh, erhältlich bei McMaster) in Rechtecke von 2,2 cm x 1,1 cm geschnitten. Katoden-Leitungsdrähte (getemperter Edelstahldraht 304 mit 150 µm Durchmesser) wurden auf eine Länge von 2,5 cm geschnitten. Diese Rechtecke und Drähte wurden dann zuerst 30 Minuten lang in 45°C warmem Seifenwasser in einem Ultraschallbad gespült und anschließend 4-mal mit entionisierten Wasser gespült. Nach einer Trocknung von 30 Minuten in einem Ofen bei 85°C wurden die Muster wieder in Aceton 20 Minuten lang bei Umgebungstemperatur entfettet. Die Muster wurden im 85°C warmen Ofen getrocknet, um das gesamte restliche Aceton zu entfernen, 5-mal mit entionisiertem Wasser gespült und dann im 85°C warmen Ofen getrocknet. Der Katoden-Leitungsdraht wurde mit einem Punktschweißgerät an die Mitte der 1,1-cm-Kante des rechteckigen Netzes geschweißt. Die Tiefe betrug etwa 1,0 mm. Die rechteckigen Netze wurden dann eine Minute lang in einer Lösung von 1,0 Vol.-% H2SO4 und 0,1 Vol.-% HCl geätzt, 45-mal mit entionisiertem Wasser entfettet und dann mit einem Gebläse bei Raumtemperatur getrocknet. Die resultierende Dicke des Netzsubstrats betrug etwa 130 µm.
- Dann wurde eine Tinte zubereitet durch Mischen von 4,0 Gramm Aktivkohle Norit DLC Super 30 in 12,0 Gramm N-Methylpyrrolidon (NMP) in einem Becher mit einem Magnetrührer. 0,4 Gramm Ruß BP2000 wurden als leitfähiges Füllmaterial hinzugefügt. Anschließend wurden 0,5 Gramm Torlon TF 4000 (Solvay Advanced Polymers Co.) hinzugefügt. Das fortlaufende Mischen dauerte mehr als 12 Stunden bei Raumtemperatur. Die Tinte wurde durch Tauchbeschichten auf das Edelstahlsubstrat aufgebracht. Ein Spatel wurde verwendet, um überschüssige Tinte an beiden Seiten des Substrats abzuschaben, damit sich die Beschichtung unten nicht verdickt. Diese nassen Katoden wurden 15 Minuten lang bei 120°C vorgetrocknet und dann 30 Minuten lang thermisch bei 260°C ausgehärtet. Die Beladung betrug 0,0107 Gramm, die Dicke 150 µm.
- Zur elektrischen Messung wurde ein einfacher Kondensator unter Verwendung einer rechteckigen NbO-Anode gegen zwei Katoden gebaut. Die Anoden wurden durch Auflage der Anodenkörper aus Beispiel 1 auf ein poröses Al2O3-Substrat gebildet. Die Körper wurden dann 60 Minuten lang bei 800°C an Luft getrocknet. Die von Binder befreiten Teile wurden dann flach zwischen zwei (2) Tantalsubstrate (Dicke 0,1875 inches, 4,763 mm) gelegt und 120 Minuten lang in einer Wasserstoffatmosphäre auf 1200°C erhitzt. Danach wurde ein Ta-Draht von 0,19 mm in das von der Nylonschnur hinterlassene Loch eingeführt. Der Draht wurde durch 30-minütiges Erhitzen des Teils im Vakuum auf 1300°C an den Körper geschweißt. Dann wurde die Anode bei 25 Volt und 85°C in einem allgemeinen Phosphorsäurebad anodisch oxidiert, um ein dichtes Oxid-Dielektrikum zu bilden. Diese rechteckigen Anoden waren 20,0 mm lang, 11,0 mm breit und 0,7 mm dick. Ein Stück Klebeband wurde um den Aufbau gewickelt, nachdem eine Anode, zwei Katoden und zwei Separatoren aufeinandergestapelt wurden. Die Separatoren wurden aus Papier KP 60 (MH Technologies Co.) gebildet, das eine Dicke von 18 µm, eine Länge von 2,3 cm, eine Breite von 1,2 cm und eine Durchschlagfestigkeit von 23,6 V/µm hatte.
- Zwei Katoden-Leitungsdrähte wurden an die Katode geschweißt, um den Kontaktwiderstand zu minimieren. Die Einheit Anode/Separator/Katode wurde 30 Minuten lang in einer wässrigen Lösung vakuumimprägniert, die nach der Zusammensetzung in Tabelle 1 angesetzt wurde. Tabelle 1. Zusammensetzung des Arbeitselektrolyten und Eigenschaften
Bestandteile Menge pH-Wert Leitfähigkeit (mS/cm) Siedepunkt (°C) Gefrierpunkt (°C) entionisiertes H2O 214,4 g 6,24 60 105 -30 Ethylenglycol 103,2 g Essigsäure 62,4 g H3PO4 2,0 g NH3.H2O 79,5 ml 3-Methyl-4-Nitrobenzoesäure 1,0 ppm - Es wurden ein Potentiostat/Galvanostat EG&G 273 und ein Frequenzganganalysator Solartron 1255 verwendet. Kommunikation zwischen der Hardware und der elektrochemischen Zelle wurde über die Software Screibner Cornnrare 2.1 erreicht. Die Impedanzmessung erfolgte an der nassen Einheit Anode/Separator/Katode innerhalb eines Frequenzfensters von 0,1 Hz bis 100 000 Hz, und die Vorspannung wurde auf 2,0 V, 5,0 V bzw. 8,0 V eingestellt. Der Realteil des Nyquist-Diagramms ergab den äquivalenten Reihenwiderstand (ESR) des Kondensators bei einer gegebenen Frequenz, und der Imaginärteil wurde für die Berechnung der Kapazität nach folgender Formel verwendet:
- C
- Kapazität (F)
- f
- Frequenz (Hz)
- Z"
- Imaginärteil der Impedanz (Ohm)
- Die bei 0,1 Hz gemessene Kapazität wurde verwendet, um die Kapazität unter Gleichstrombedingungen anzunähern. Sie betrug 2,53 mF, 2,37 mF und 2,31 mF bei einer Vorspannung von 2,0 V, 5,0 V bzw. 8,0 V. Der ESR wurde bei einer Frequenz von 1000 Hz ausgewertet und war nicht so vorspannungsabhängig wie die Kapazität. Er blieb bei allen Vorspannungen bei etwa 1,0 Ω.
- Danach wurde die Katode separat in einem Drei-Elektroden-System unter Verwendung des „Cyclovoltammetrie“-Verfahrens gemessen. Die Gegenelektrode war ein Platin-Maschenwerk von 5,0 cm2, die Referenzelektrode war eine gesättigte Kalomel-Elektrode (SCE). Das Katodenpotential wurde zwischen -0,5 V geg. SCE und 0,5 V geg. SCE bei einer Rate von 25 mV/s abgetastet. Die Gleichspannungskapazität der Katode wurde dann nach der folgenden Gleichung berechnet:
- C
- Katodenkapazität
- Q
- elektrische Ladung
- U
- Katodenpotential
- Die Katodenkapazität wurde auf 558,7 mF geschätzt, was mehr als 200-mal der Anodenkapazität entspricht.
- BEISPIEL 3
- Es wurde ein Kondensator aufgebaut wie in Beispiel 2 beschrieben, außer dass kein Ruß in der Katodentinte war. Die resultierende Katodenbeladung betrug 0,0107 Gramm. Die gemessene Kapazität bei 0,1 Hz betrug 2,57 mF, 2,42 mF und 2,37 mF bei einer Vorspannung von 2,0 V, 5,0 V bzw. 8,0 V. Der ESR bei einer Frequenz von 1000 Hz betrug 1,98 Ω. Die Katodenkapazität wurde auf 550,0 mF geschätzt.
- BEISPIEL 4
- Es wurde ein Kondensator aufgebaut wie in Beispiel 2 beschrieben, außer dass 1,0 Gramm Torlon TF 4000 hinzugefügt wurde. Die Katodenbeladung betrug 0,0113 Gramm. Die gemessene Kapazität bei 0,1 Hz betrug 2,54 mF, 2,41 mF und 2,35 mF bei einer Vorspannung von 2,0 V, 5,0 V bzw. 8,0 V. Der ESR bei einer Frequenz von 1000 Hz betrug 1,35 Ω. Die Katodenkapazität wurde auf 550,0 mF geschätzt.
- BEISPIEL 5
- Es wurde ein Kondensator aufgebaut wie in Beispiel 2 beschrieben, außer dass 0,4 Gramm Acetylenkohle (Chevron) als leitfähiger Füllstoff verwendet wurde. Die Katodenbeladung betrug 0,0060 Gramm. Die gemessene Kapazität bei 0,1 Hz betrug 2,60 mF, 2,36 mF und 2,23 mF bei einer Vorspannung von 2,0 V, 5,0 V bzw. 8,0 V. Der ESR bei einer Frequenz von 1000 Hz betrug 1,15 Ω. Die Katodenkapazität wurde auf 500,0 mF geschätzt.
- BEISPIEL 6
- Es wurde ein Kondensator aufgebaut wie in Beispiel 5 beschrieben, außer dass das Edelstahlnetz ein Monel 304 120 x 120 mesh war. Die Katodenbeladung betrug 0,0074 Gramm. Die gemessene Kapazität bei 0,1 Hz betrug 2,64 mF, 2,46 mF und 2,39 mF bei einer Vorspannung von 2,0 V, 5,0 V bzw. 8,0 V. Der ESR bei einer Frequenz von 1000 Hz betrug 1,24 Ω. Die Katodenkapazität wurde auf 403,4 mF geschätzt.
- BEISPIEL 7
- Es wurde ein Kondensator aufgebaut wie in Beispiel 6 beschrieben, außer dass das Edelstahlnetz ein Monel 316 150 x 150 mesh war. Die gemessene Kapazität bei 0,1 Hz betrug 2,69 mF, 2,47 mF und 2,37 mF bei einer Vorspannung von 2,0 V, 5,0 V bzw. 8,0 V. Der ESR bei einer Frequenz von 1000 Hz betrug 1,24 Ω. Die Katodenkapazität wurde auf 384,9 mF geschätzt.
- BEISPIEL 8
- Es wurde ein Kondensator aufgebaut wie in Beispiel 5 beschrieben, außer dass das Katodensubstrat Nickelschaum von 110 PPI (Inco) war. Die Katodenbeladung betrug 0,013 Gramm. Die gemessene Kapazität bei 0,1 Hz betrug 2,66 mF, 2,37 mF und 2,28 mF bei einer Vorspannung von 2,0 V, 5,0 V bzw. 8,0 V. Der ESR bei einer Frequenz von 1000 Hz betrug 1,13 Ω. Die Katodenkapazität wurde auf 1250 mF geschätzt.
- BEISPIEL 9
- Es wurde ein Kondensator aufgebaut wie in Beispiel 7 beschrieben, außer dass 0,4 Gramm Ruß BP2000 als leitfähiger Füllstoff verwendet wurde. Die Katodenbeladung betrug 0,074 Gramm. Die gemessene Kapazität bei 0,1 Hz betrug 2,54 mF, 2,38 mF und 2,32 mF bei einer Vorspannung von 2,0 V, 5,0 V bzw. 8,0 V. Der ESR bei einer Frequenz von 1000 Hz betrug 1,16 Ω. Die Katodenkapazität wurde auf 372,3 mF geschätzt.
- BEISPIEL 10
- 10 Stück NbO-Anoden, 11 Stück Katoden und 20 Stück Separatorpapier wurden wie in Beispiel 2 präpariert und in der Reihenfolge Katode, Separator und Anode gestapelt. Jede rechteckige Anode hatte eine Länge von 11,0 mm, eine Breite von 11,0 mm und eine Dicke von 0,7 mm. Um sie an die Größe der Anode anzupassen, wurden die Katoden ebenfalls in Quadrate von 11,0 mm Kantenlänge geschnitten. Separatorpapier derselben Größe wie in Beispiel 2 wurde einfach U-förmig gefaltet, um darin ein Stück Anode einzuwickeln. Anodenleitungsdrähte und Katodenleitungsdrähte ragten in entgegengesetzten Richtungen aus dem Stapel. Der gesamte Stapel wurde mit einem Stück Klebeband umwickelt. Alle Tantal-Leitungsdrähte der Anoden und Edelstahl-Leitungsdrähte der Katoden wurden auf 6,0 mm Länge getrimmt. Die Anodenleitungsdrähte wurden an einen einzigen dicken Edelstahldraht mit 0,2 mm Durchmesser geschweißt, die Katodenleitungsdrähte an einen weiteren Draht. Die Dicke des Stapels betrug 10,0 mm. Die Einheit Anode/Separator/Katode wurde 30 Minuten lang in einem wässrigen Elektrolyten vakuumimprägniert, wie er in Beispiel 2 verwendet wurde. Die gemessene Kapazität bei 0,1 Hz betrug 14,53 mF, 12,84 mF und 12,34 mF bei einer Vorspannung von 2,0 V, 5,0 V bzw. 8,0 V. Der ESR bei einer Frequenz von 1000 Hz betrug 0,22 Ω.
- BEISPIEL 11
- Anoden und Katoden wurden wie in Beispiel 2 beschrieben präpariert, jedoch mit einigen Maßänderungen. Insbesondere wurden die Anoden- und Katodensubstrate zu einem Quadrat mit der Seitenlänge 1,0 cm geschnitten. Separatorpapier derselben Größe wie in Beispiel 2 wurde U-förmig gefaltet, um eine Anode zu umwickeln. Zwei NbO-Anoden wurden zusammen mit 3 Katoden horizontal gestapelt, wie in
2 gezeigt. Alle Tantal-Leitungsdrähte der Anoden und Edelstahl-Leitungsdrähte der Katoden wurden auf 6,0 mm Länge getrimmt. Die Tantal-Leitungsdrähte der Anoden wurden an einen einzigen dicken Tantaldraht mit 0,2 mm Durchmesser, die Edelstahl-Leitungsdrähte der Katoden an einen dicken Edelstahldraht mit einem Laserschweißgerät unter Argon-Schutzatmosphäre geschweißt. Die beiden dicken Drähte wurden mit einem Punkschweißgerät an Niob-Stäbe geschweißt. Dann wurden Nickel-Leitungsdrähte an diese Niob-Stäbe geschweißt. Die Einheit wurde mit Klebeband umwickelt, um die Stauchung zu erhöhen, und 30 Minuten vor dem Einsetzen in das Gehäuse im Arbeitselektrolyten (in nachstehender Tabelle 2 dargelegt) vakuumimprägniert. - Die Gehäuse und Gummistopfen wurden von bedrahteten Aluminium-Elektrolytkondensatoren Nichicon VZ 16V-10 mF genommen und zuerst in Spülmittel und dann in Aceton gereinigt, um die restlichen Chemikalien zu entfernen. Das zylindrische Aluminiumgehäuse hatte einen Außendurchmesser von 18,0 mm und war 30,0 mm hoch. Die Bauteile wurden dann zum Einkapseln der nassen NbO-Kondensatoren verwendet. Weil das Aluminiumgehäuse nur als Behälter und nicht als Anode oder Katode verwendet wurde, wurde seine Innenfläche mit Klebeband abgedeckt, um direkten Kontakt mit der Anoden-Katoden-Einheit zu verhindern. Ein absorbierender Wattbausch wurde auf den Grund des Gehäuses gelegt und dann mit 2,5 Gramm Arbeitselektrolyt vorgesättigt. Nach dem Einsetzen der Elektrodeneinheit in das Gehäuse wurde dieses sofort mit einer Drehmaschine gebördelt. Der Lebensdauertest erforderte das 2000-stündiges Anlegen der Nennspannung 16 Volt bei 85°C.
- Zum Prüfen wurden zwei Arbeitselektrolyten zubereitet, wie sie nachstehend in Tabelle 2 dargelegt werden. Tabelle 2. Arbeitselektrolyten für Lebensdauertest der nassen NbO-Teile
Zusammensetzung A B H2O 214,4 g 214,4 g Ethylenglycol 103,2 g 103,2 g Essigsäure 62,4 g 62,4 g H3PO4 1,0 g 1,0 g H3BO3 1,0 g 1,0 g NH3.H2O 79,5 ml 79,5 ml 3-Methyl-4-Nitrobenzoesäure 1,0 ppm 30,0 ppm - Wärmezyklen zwischen -30°C und 105°C ergaben bei keinem der beiden Elektrolyten irgendwelche Anzeichen von Ausfällungen. Die Ergebnisse des Lebensdauertests sind unten in Tabelle 3 angegeben. Tabelle 3. Ergebnisse des Lebensdauertests
Bei Beginn Nach 2000 Stunden bei 16 Volt und 85°C A Kapazität (m F) Vorspannung 2,0 V 2,91 Ausbruch und Verformung bei den Mustern aufgrund von Gasentwicklung innerhalb 72 Stunden Vorspannung 5,0 V 2,54 Vorspannung 8,0 V 2,44 ESR bei 1,0 kHz (Ohm) 1,32 Leckstrom (µA) 10,0 B Kapazität (m F) Vorspannung 2,0 V 3,00 3,12 Vorspannung 5,0 V 2,68 2,19 Vorspannung 8,0 V 2,59 2,09 ESR bei 1,0 kHz (Ohm) 0,97 1,86 Leckstrom (µA) 15,9 1,9 - Wie aus Tabelle 3 ersichtlich, zeigte der Unterschied in der Konzentration des Gasentwicklungshemmers, 3-Methyl-4-Nitrobenzoesäure, keinen wesentlichen Einfluss auf die Anfangsleistung dieser Kondensatoren. Jedoch wies der Kondensator, bei dem der Elektrolyt B verwendet wurde, sehr stabile elektrische Eigenschaften bei Anlegen der Nennspannung von 16 Volt, selbst nach 2000 Stunden bei 85°C, und wurde nicht durch Gasentwicklung beschädigt. Der Kondensator, in dem der Elektrolyt A mit geringer Konzentration an Gasentwicklungshemmer verwendet wurde, fiel im Anfangsstadium des Lebensdauertests wegen der Ausdehnung des Gehäuses durch Gasentwicklung aus. Daher kann die Konzentration des Gasentwicklungshemmers auf einem relativ hohen Niveau gehalten werden, um eine verlängerte Betriebslebensdauer sicherzustellen.
- BEISPIEL 12
- Anoden und Katoden wurden präpariert, wie in Beispiel 2 beschrieben. Die Anoden wurden zu Rechtecken von 5,16 mm x 3,88 mm x 0,58 mm geschnitten. Zur Formierung dieser Anoden wurden zwei verschiedene Formierungselektrolyten verwendet. Die Elektrolyten waren 1,0 Gew.-% H3PO4 (Phosphorsäure) und 0,5 Gew.-% H3PO4, gemischt mit 0,5 Gew.-% einer Polyphosphorsäure. Diese Anoden wurden zuerst 120 Minuten lang bei 24 Volt und 85°C anodisch oxidiert. Einige Anoden wurden später vakuumgetempert und/oder durchliefen eine zweite Formierung, wie in Tabelle 1 gezeigt. Die Kapazität wurde durch Messen der Gleichspannungs-Zellenkapazität dieser Anoden gegen eine große Katode mit Ta-Kern in Elektrolyt B, wie in Beispiel 11 beschrieben, unter Verwendung der Methode des galvanostatischen Ladens/Entladens ermittelt. Der Leckstrom wurde entsprechend in 1,0 Gew.-% H3PO4 gemessen. Die Gleichspannungskapazität bei einer Vorspannung von 2,0 Volt und der 2 Stunden nach Anlegen der Nennspannung von 16 Volt gemessene Leckstrom wurden für die Berechnung des normalisierten Leckstroms bei 85°C verwendet. Die Ergebnisse sind unten in Tabelle 4 angegeben. Tabelle 4. Bedingungen und Ergebnisse von Eloxierung und/oder Vakuumtempern
Mustergruppen 1. Formierung VakuumTempern 2. Formierung Normalisierter Leckstrom bei 85°C (ηA/µP/V) 1 A - - 2,371 2 A 50 mtorr - 0,264 3 A 10 torr - 1,074 4 A 10 torr A 0,776 5 B - - 1,071 6 B 50 mtorr - 0,402 7 B 10 torr - 1,062 Form ierungselektrolyt A 1,0 Gew.-% H3PO4 B 0,5 Gew.-% H3PO4 + 0,5 Gew.-% Polyphosphorsäure - Wie angegeben, wiesen die im Phosphorsäurebad formierten Anoden einen höheren Leckstrom auf als die in einer Mischung aus Phosphorsäure und Polyphosphorsäure formierten.
Claims (28)
- Nass-Elektrolyt-Kondensator (40; 200) umfassend: eine Anode (20; 65), einen Katoden-Stromkollektor (41) und einen Arbeitselektrolyten (44; 144), der zwischen dem Katoden-Stromkollektor (41) und der Anode (20; 65) angebracht ist, wobei der Arbeitselektrolyt (44; 144) einen nitroaromatischen Depolarisator in einer Menge von 10 ppm bis 200 ppm des Arbeitselektrolyten (44; 144) enthält, wobei der Elektrolyt (44; 144) einen pH-Wert zwischen 5,0 und 8,0 und eine elektrische Leitfähigkeit von 30 Millisiemens pro Zentimeter oder mehr hat, bestimmt bei einer Temperatur von 25°C.
- Kondensator (40; 200) mit nassem Elektrolyten nach
Anspruch 1 , dadurch gekennzeichnet, dass der pH-Wert zwischen 5,5 und 7,5 liegt. - Kondensator (40; 200) mit nassem Elektrolyten nach
Anspruch 1 , dadurch gekennzeichnet, dass der pH-Wert zwischen 6,0 und 7,5 liegt. - Kondensator (40; 200) mit nassem Elektrolyten nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Arbeitselektrolyt (44; 144) ein wässriges Lösungsmittel enthält.
- Kondensator (40; 200) mit nassem Elektrolyten nach
Anspruch 4 , dadurch gekennzeichnet, dass das wässrige Lösungsmittel zwischen 30 Gew.-% und 90 Gew.-% des Arbeitselektrolyten (44; 144) beträgt. - Kondensator (40; 200) mit nassem Elektrolyten nach
Anspruch 4 oder5 , dadurch gekennzeichnet, dass das wässrige Lösungsmittel deionisiertes Wasser enthält. - Kondensator (40; 200) mit nassem Elektrolyten nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Arbeitselektrolyt (44; 144) eine ionische Verbindung enthält, die wiederum eine anorganische Säure, eine organische Säure, deren Anhydrid oder Salz oder beliebige Mischungen der vorgenannten enthält.
- Kondensator (40; 200) mit nassem Elektrolyten nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Arbeitselektrolyt (44; 144) weiter einen basischen pH-Wert-Modifikator enthält.
- Kondensator (40; 200) mit nassem Elektrolyten nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Arbeitselektrolyt (44; 144) einen Gefrierpunkt von -20°C oder niedriger hat.
- Kondensator (40; 200) mit nassem Elektrolyten nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Arbeitselektrolyt (44; 144) einen Siedepunkt von 85°C oder höher hat.
- Kondensator (40; 200) mit nassem Elektrolyten nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der nitroaromatische Depolarisator eine Alkyl-substituierte Nitrobenzoesäure, deren Anhydrid oder Salz oder Mischungen der genannten Substanzen enthält.
- Kondensator (40; 200) mit nassem Elektrolyten nach
Anspruch 11 , dadurch gekennzeichnet, dass die Alkyl-substituierte Nitrobenzoesäure 2-Methyl-3-Nitrobenzoesäure, 2-Methyl-6-Nitrobenzoesäure, 3-Methyl-2-Nitrobenzoesäure, 3-Methyl-4-Nitrobenzoesäure, 3-Methyl-6-Nitrobenzoesäure oder 4-Methyl-3-Nitrobenzoesäure enthält. - Kondensator (40; 200) mit nassem Elektrolyten nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anode (20; 65) Tantal, Niob oder ein elektrisch leitfähiges Oxid davon enthält.
- Kondensator (40; 200) mit nassem Elektrolyten nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anode (20; 65) ein Ventilmetalloxid mit einem Atomverhältnis von Metall zu Sauerstoff von 1: weniger als 2,5 enthält.
- Kondensator (40; 200) mit nassem Elektrolyten nach
Anspruch 14 , dadurch gekennzeichnet, dass das Ventilmetalloxid Nioboxid enthält. - Kondensator (40; 200) mit nassem Elektrolyten nach einem der vorhergehenden Ansprüche, der ferner eine Beschichtung des Stromkollektors (41) enthält, die elektrochemisch aktive Partikel enthält.
- Kondensator (40; 200) mit nassem Elektrolyten nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Stromkollektor (41) ein Metall enthält.
- Kondensator (40; 200) mit nassem Elektrolyten nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kondensator (40; 200) einen ESR von 1500 Milliohm oder weniger aufweist, gemessen bei einer Frequenz von 1000 Hz.
- Kondensator (40; 200) mit nassem Elektrolyten nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kondensator (40; 200) einen ESR von 500 Milliohm oder weniger aufweist, gemessen bei einer Frequenz von 1000 Hz.
- Ein Arbeitselektrolyt (44; 144) für einen Elektrolytkondensator (40; 200), der zwischen 10 ppm und 200 ppm eines nitroaromatischen Depolarisators enthält, wobei der nitroaromatische Depolarisator eine Alkyl-substituierte Nitrobenzoesäure, deren Anhydrid oder Salz oder Mischungen der genannten Substanzen enthält und der Arbeitselektrolyt (44; 144) einen pH-Wert von 5,0 bis 8,0 hat.
- Arbeitselektrolyt (44; 144) nach
Anspruch 20 , dadurch gekennzeichnet, dass der Elektrolyt (44; 144) einen pH-Wert zwischen 5,5 und 7,5 hat. - Arbeitselektrolyt (44; 144) nach
Anspruch 20 , dadurch gekennzeichnet, dass der Elektrolyt (44; 144) einen pH-Wert zwischen 6,0 und 7,5 hat. - Arbeitselektrolyt (44; 144) nach einem der
Ansprüche 20 bis22 , dadurch gekennzeichnet, dass die elektrische Leitfähigkeit etwa 30 Millisiemens pro Zentimeter oder mehr beträgt. - Arbeitselektrolyt (44; 144) nach einem der
Ansprüche 20 bis23 , dadurch gekennzeichnet, dass der Arbeitselektrolyt (44; 144) ein wässriges Lösungsmittel enthält. - Arbeitselektrolyt nach einem der
Ansprüche 20 bis24 , dadurch gekennzeichnet, dass der Arbeitselektrolyt (44; 144) eine anorganische Säure, eine organische Säure, deren Anhydrid oder Salz oder beliebige Mischungen der vorgenannten enthält. - Arbeitselektrolyt (44; 144) nach einem der
Ansprüche 20 bis25 , dadurch gekennzeichnet, dass der Arbeitselektrolyt (44; 144) einen Gefrierpunkt von -20°C oder niedriger und einen Siedepunkt von 85°C oder höher hat. - Arbeitselektrolyt (44; 144) nach einem der
Ansprüche 20 bis26 , dadurch gekennzeichnet, dass der nitroaromatische Depolarisator 2-Methyl-3-Nitrobenzoesäure, 2-Methyl-6-Nitrobenzoesäure, 3-Methyl-2-Nitrobenzoesäure, 3-Methyl-4-Nitrobenzoesäure, 3-Methyl-6-Nitrobenzoesäure, 4-Methyl-3-Nitrobenzoesäure, deren Anhydrid oder Salz oder beliebige Mischungen der genannten enthält. - Arbeitselektrolyt (44; 144) nach einem der
Ansprüche 20 bis27 , dadurch gekennzeichnet, dass der nitroaromatische Depolarisator 20 ppm bis 150 ppm des Arbeitselektrolyten (44; 144) ausmacht.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/725,965 US7460356B2 (en) | 2007-03-20 | 2007-03-20 | Neutral electrolyte for a wet electrolytic capacitor |
US11/725,965 | 2007-03-20 |
Publications (3)
Publication Number | Publication Date |
---|---|
DE102008000330A1 DE102008000330A1 (de) | 2008-09-25 |
DE102008000330A9 DE102008000330A9 (de) | 2009-01-08 |
DE102008000330B4 true DE102008000330B4 (de) | 2023-08-03 |
Family
ID=39204259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102008000330.1A Active DE102008000330B4 (de) | 2007-03-20 | 2008-02-18 | Neutraler Elektrolyt für einen Nasselektrolytkondensator sowie Nasselektrolytkondensator |
Country Status (6)
Country | Link |
---|---|
US (1) | US7460356B2 (de) |
JP (1) | JP5301181B2 (de) |
KR (1) | KR20080085754A (de) |
CN (1) | CN101271769A (de) |
DE (1) | DE102008000330B4 (de) |
GB (1) | GB2447724B (de) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4372173B2 (ja) * | 2007-03-16 | 2009-11-25 | 株式会社東芝 | 化学的機械的研磨方法および半導体装置の製造方法 |
US8023250B2 (en) | 2008-09-12 | 2011-09-20 | Avx Corporation | Substrate for use in wet capacitors |
US8915974B2 (en) | 2008-10-29 | 2014-12-23 | Showa Denko K.K. | Method for manufacturing capacitor element |
US8279585B2 (en) | 2008-12-09 | 2012-10-02 | Avx Corporation | Cathode for use in a wet capacitor |
US8405956B2 (en) | 2009-06-01 | 2013-03-26 | Avx Corporation | High voltage electrolytic capacitors |
US8223473B2 (en) * | 2009-03-23 | 2012-07-17 | Avx Corporation | Electrolytic capacitor containing a liquid electrolyte |
GB2468942B (en) * | 2009-03-23 | 2014-02-19 | Avx Corp | High voltage electrolytic capacitors |
US20100268292A1 (en) * | 2009-04-16 | 2010-10-21 | Vishay Sprague, Inc. | Hermetically sealed wet electrolytic capacitor |
WO2011074194A1 (ja) * | 2009-12-17 | 2011-06-23 | 三洋化成工業株式会社 | 電解コンデンサ用電解液およびそれを用いた電解コンデンサ |
CN102763181B (zh) | 2010-02-15 | 2017-02-15 | 松下知识产权经营株式会社 | 电解电容器 |
US9413042B2 (en) * | 2010-03-24 | 2016-08-09 | Samsung Sdi Co., Ltd. | Monitoring system for an energy storage cell |
US8824121B2 (en) * | 2010-09-16 | 2014-09-02 | Avx Corporation | Conductive polymer coating for wet electrolytic capacitor |
US8477479B2 (en) * | 2011-01-12 | 2013-07-02 | Avx Corporation | Leadwire configuration for a planar anode of a wet electrolytic capacitor |
US8687347B2 (en) * | 2011-01-12 | 2014-04-01 | Avx Corporation | Planar anode for use in a wet electrolytic capacitor |
WO2012106611A2 (en) * | 2011-02-04 | 2012-08-09 | Vishay Sprague, Inc. | Hermetically sealed electrolytic capacitor |
CN102956364B (zh) * | 2011-08-17 | 2015-10-28 | 海洋王照明科技股份有限公司 | 一种双电层电容器电解液以及双电层电容器 |
US9105401B2 (en) | 2011-12-02 | 2015-08-11 | Avx Corporation | Wet electrolytic capacitor containing a gelled working electrolyte |
US9941055B2 (en) * | 2012-02-27 | 2018-04-10 | Kemet Electronics Corporation | Solid electrolytic capacitor with interlayer crosslinking |
GB2512481B (en) | 2013-03-15 | 2018-05-30 | Avx Corp | Wet electrolytic capacitor for use at high temperatures |
GB2512486B (en) * | 2013-03-15 | 2018-07-18 | Avx Corp | Wet electrolytic capacitor |
US10290430B2 (en) * | 2014-11-24 | 2019-05-14 | Avx Corporation | Wet Electrolytic Capacitor for an Implantable Medical Device |
US9947479B2 (en) * | 2015-11-16 | 2018-04-17 | Vishay Sprague, Inc. | Volumetric efficiency wet electrolyte capacitor having a fill port and terminations for surface mounting |
US10176930B2 (en) | 2016-01-14 | 2019-01-08 | Vishay Sprague, Inc. | Low profile flat wet electrolytic tantalum capacitor |
EP3439001B1 (de) * | 2016-03-29 | 2023-07-26 | Sanyo Chemical Industries, Ltd. | Elektrolytlösung für elektrolytkondensatoren und elektrolytkondensator |
US9870869B1 (en) | 2016-06-28 | 2018-01-16 | Avx Corporation | Wet electrolytic capacitor |
US9870868B1 (en) | 2016-06-28 | 2018-01-16 | Avx Corporation | Wet electrolytic capacitor for use in a subcutaneous implantable cardioverter-defibrillator |
DE102017124139B4 (de) | 2017-10-17 | 2020-02-13 | Tdk Electronics Ag | Elektrolytkondensator |
US11189431B2 (en) | 2018-07-16 | 2021-11-30 | Vishay Sprague, Inc. | Low profile wet electrolytic tantalum capacitor |
US11024464B2 (en) | 2018-08-28 | 2021-06-01 | Vishay Israel Ltd. | Hermetically sealed surface mount polymer capacitor |
WO2020073190A1 (zh) * | 2018-10-09 | 2020-04-16 | 丰宾电子(深圳)有限公司 | 混合型铝电解电容器及其制造方法 |
WO2020073189A1 (zh) * | 2018-10-09 | 2020-04-16 | 丰宾电子(深圳)有限公司 | 混合型铝电解电容器及其制造方法 |
KR20210156847A (ko) * | 2019-05-17 | 2021-12-27 | 에이브이엑스 코포레이션 | 고체 전해질 커패시터 |
US11742149B2 (en) | 2021-11-17 | 2023-08-29 | Vishay Israel Ltd. | Hermetically sealed high energy electrolytic capacitor and capacitor assemblies with improved shock and vibration performance |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3345545A (en) | 1964-11-27 | 1967-10-03 | Johnson Matthey & Mallory Ltd | Solid electrolytic capacitor having minimum anode impedance |
US5160653A (en) | 1990-02-28 | 1992-11-03 | Aerovox M, Inc. | Electrolytic capacitor and electrolyte therefor |
US5230956A (en) | 1982-05-28 | 1993-07-27 | Amoco Corporation | Polyamide-imide sized fibers |
US5369547A (en) | 1993-03-22 | 1994-11-29 | The Evans Findings Co., Ltd. | Capacitor |
US5457862A (en) | 1993-11-10 | 1995-10-17 | Nec Corporation | Method of manufacturing solid electrolytic capacitor |
US5473503A (en) | 1993-07-27 | 1995-12-05 | Nec Corporation | Solid electrolytic capacitor and method for manufacturing the same |
US5726118A (en) | 1995-08-08 | 1998-03-10 | Norit Americas, Inc. | Activated carbon for separation of fluids by adsorption and method for its preparation |
US5729428A (en) | 1995-04-25 | 1998-03-17 | Nec Corporation | Solid electrolytic capacitor with conductive polymer as solid electrolyte and method for fabricating the same |
US5812367A (en) | 1996-04-04 | 1998-09-22 | Matsushita Electric Industrial Co., Ltd. | Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative |
US5858911A (en) | 1996-05-06 | 1999-01-12 | Agritec, Inc. | Method of producing activated carbon |
US5949639A (en) | 1996-09-27 | 1999-09-07 | Rohm Co., Ltd. | Capacitor element for solid electrolytic capacitor, device and process for making the same |
US6191936B1 (en) | 1999-04-12 | 2001-02-20 | Vishay Sprague, Inc. | Capacitor having textured pellet and method for making same |
US6224985B1 (en) | 1997-05-01 | 2001-05-01 | Wilson Greatbatch Ltd. | One step ultrasonically coated substrate for use in a capacitor |
US6322912B1 (en) | 1998-09-16 | 2001-11-27 | Cabot Corporation | Electrolytic capacitor anode of valve metal oxide |
US6479581B1 (en) | 1999-03-12 | 2002-11-12 | Solvay Advanced Polymers, Llc | Aqueous-based polyamide-amic acid compositions |
US6594140B1 (en) | 1993-03-22 | 2003-07-15 | Evans Capacitor Company Incorporated | Capacitor |
US20030142464A1 (en) | 2002-01-31 | 2003-07-31 | Yanming Liu | Electrolytes for capacitors |
US20030158342A1 (en) | 2000-06-27 | 2003-08-21 | Asahi Glass Company, Limited | Activated carbon material, process for producing the same and electric double layer capacitor employing the same |
US6674635B1 (en) | 2001-06-11 | 2004-01-06 | Avx Corporation | Protective coating for electrolytic capacitors |
US6743370B1 (en) | 2002-05-23 | 2004-06-01 | Pacesetter, Inc. | Conductive electrolyte for high voltage capacitors |
US20050094352A1 (en) | 2001-12-28 | 2005-05-05 | Akihito Komatsu | Electrolytic capacitor and electrolitic solution for driving electrolytic capacitor |
US20050270725A1 (en) | 2004-04-23 | 2005-12-08 | Hahn Randolph S | Fluted anode with minimal density gradients and capacitor comprising same |
US7099143B1 (en) | 2005-05-24 | 2006-08-29 | Avx Corporation | Wet electrolytic capacitors |
Family Cites Families (135)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US187616A (en) * | 1877-02-20 | Improvement in harvesters | ||
US90106A (en) * | 1869-05-18 | Improved composition for pavements, roofing, drain-pipes | ||
US134874A (en) * | 1873-01-14 | Improvement in hydraulic mains of gas-works | ||
US179753A (en) * | 1876-07-11 | Improvement in shoes | ||
US240152A (en) * | 1881-04-12 | Sieve for thrashing-machines | ||
US91020A (en) * | 1869-06-08 | John horton | ||
US172774A (en) * | 1876-01-25 | Improvement in gas-regulators | ||
US28787A (en) * | 1860-06-19 | Spoke-machine | ||
US243183A (en) * | 1881-06-21 | Gun-lock | ||
US34299A (en) * | 1862-02-04 | Inkstand | ||
US2147A (en) * | 1841-06-26 | dircks | ||
US89711A (en) * | 1869-05-04 | Improved washing-machine | ||
US227496A (en) * | 1880-05-11 | Henry s | ||
US190530A (en) * | 1877-05-08 | Improvement in spectacles | ||
US225327A (en) * | 1880-03-09 | Signaling apparatus for tele phon e-li n es | ||
US139850A (en) * | 1873-06-17 | Improvement in car-couplings | ||
US177193A (en) * | 1876-05-09 | Improvement in chairs | ||
US240149A (en) * | 1881-04-12 | Invalid-bedstead | ||
US2582993A (en) | 1948-10-29 | 1952-01-22 | Glenn N Howatt | Method of producing high dielectric high insulation ceramic plates |
US3082360A (en) | 1953-05-13 | 1963-03-19 | Sprague Electric Co | Electrolytic capacitors |
US2966719A (en) | 1954-06-15 | 1961-01-03 | American Lava Corp | Manufacture of ceramics |
US3138746A (en) * | 1960-05-02 | 1964-06-23 | Francis J P J Burger | Electrolytic capacitors and electrolyte therefor |
JPS5241465B1 (de) | 1967-10-25 | 1977-10-18 | ||
US3835055A (en) * | 1967-10-27 | 1974-09-10 | Safco Condensateurs | Electrolytes for low series-resistance,aluminum electrolytic capacitors |
CH515996A (de) | 1968-06-06 | 1971-11-30 | Starck Hermann C Fa | Verfahren zur Herstellung von hochreinem Niob und/oder Tantal |
US3544434A (en) | 1968-10-29 | 1970-12-01 | Ronald R Giller | Thick film capactors for miniaturized circuitry |
US4085435A (en) | 1976-06-14 | 1978-04-18 | Avx Corporation | Tantalum chip capacitor |
US3953703A (en) | 1974-10-03 | 1976-04-27 | Materials Research Corporation | Method for drying ceramic tape |
US4071878A (en) | 1975-02-18 | 1978-01-31 | N L Industries, Inc. | Method for producing capacitors and ceramic body therefore |
US4214071A (en) | 1975-04-11 | 1980-07-22 | Westinghouse Electric Corp. | Amide-imide polymers |
US4031436A (en) | 1975-05-09 | 1977-06-21 | United Chemi-Con, Inc. | Electrolyte capacitors |
US4109377A (en) | 1976-02-03 | 1978-08-29 | International Business Machines Corporation | Method for preparing a multilayer ceramic |
US4121949A (en) | 1976-04-30 | 1978-10-24 | P. R. Mallory & Co. Inc. | Method of making a cathode electrode for an electrolytic capacitor |
US4071876A (en) * | 1976-12-17 | 1978-01-31 | Gte Automatic Electric Laboratories Incorporated | Pluggable protector holder for surge arrestor gas tubes |
US4149876A (en) | 1978-06-06 | 1979-04-17 | Fansteel Inc. | Process for producing tantalum and columbium powder |
US4466841A (en) | 1980-12-08 | 1984-08-21 | Emhart Industries, Inc. | Cathode electrode for an electrical device and method of making same |
US4408257A (en) | 1980-12-08 | 1983-10-04 | Emhart Industries, Inc. | Cathode electrode for an electrical device |
GB2115223B (en) | 1982-02-18 | 1985-07-10 | Standard Telephones Cables Ltd | Multilayer ceramic dielectric capacitors |
US4494174A (en) | 1982-09-27 | 1985-01-15 | Sprague Electric Company | Wet-electrolyte capacitor package |
US4469610A (en) * | 1983-07-18 | 1984-09-04 | Nippon Chemi-Con Corporation | Electrolyte for an electrolytic capacitor |
US4523255A (en) | 1983-09-19 | 1985-06-11 | Sprague Electric Company | Cathode for an electrolytic capacitor |
JPS60229947A (ja) | 1984-04-28 | 1985-11-15 | Youbea Le-Ron Kogyo Kk | ポリアミドイミド系樹脂組成物 |
US4535389A (en) | 1984-09-21 | 1985-08-13 | Sprague Electric Company | Electrolytic capacitor |
US4684399A (en) | 1986-03-04 | 1987-08-04 | Cabot Corporation | Tantalum powder process |
EP0246825B1 (de) | 1986-05-20 | 1991-02-27 | Mitsubishi Petrochemical Co., Ltd. | Elektrolytische Lösung quaternärer Salze für elektrolytischen Kondensator |
US4683516A (en) | 1986-08-08 | 1987-07-28 | Kennecott Corporation | Extended life capacitor and method |
US4786342A (en) | 1986-11-10 | 1988-11-22 | Coors Porcelain Company | Method for producing cast tape finish on a dry-pressed substrate |
US4981942A (en) | 1987-03-31 | 1991-01-01 | Amoco Corporation | Polyamide-imide composition based on bisphenoxyphenyl diamines |
JPH01158715A (ja) * | 1987-12-15 | 1989-06-21 | Nichicon Corp | 電解コンデンサの駆動用電解液 |
US4780797A (en) | 1987-12-16 | 1988-10-25 | Tansitor Electronic, Inc. | Capacitor tantalum surface for use as a counterelectrode device and method |
JPH065656B2 (ja) | 1988-02-19 | 1994-01-19 | 株式会社村田製作所 | セラミック積層体の製造方法 |
JPH01253911A (ja) * | 1988-04-04 | 1989-10-11 | Asahi Glass Co Ltd | 電解コンデンサ |
JP2561323B2 (ja) * | 1988-07-12 | 1996-12-04 | ニチコン株式会社 | 電解コンデンサの駆動用電解液 |
US5002710A (en) | 1989-01-12 | 1991-03-26 | Rutgers University A Not For Profit Corporation Of The State Of New Jersey | Composition useful for producing thin ceramic sheets |
US5045170A (en) | 1989-05-02 | 1991-09-03 | Globe-Union, Inc. | Electrodies containing a conductive metal oxide |
CN1048892A (zh) | 1989-05-24 | 1991-01-30 | 奥本大学 | 混合纤维复合材料结构及其制法和用途 |
US4992910A (en) | 1989-11-06 | 1991-02-12 | The Evans Findings Company, Inc. | Electrical component package |
US4945452A (en) | 1989-11-30 | 1990-07-31 | Avx Corporation | Tantalum capacitor and method of making same |
US5043849A (en) | 1990-04-17 | 1991-08-27 | Tansistor Electronics, Inc. | Electrolytic capacitor with codeposited noble metal/base metal cathode element and method for making |
US5098485A (en) | 1990-09-19 | 1992-03-24 | Evans Findings Company | Method of making electrically insulating metallic oxides electrically conductive |
US5183340A (en) | 1990-09-19 | 1993-02-02 | Amoco Corporation | Bearing and bearing assembly |
US5309479A (en) * | 1991-04-29 | 1994-05-03 | Hughes Aircraft Company | Low Cost Ku band transmitter |
US5105341A (en) | 1991-06-03 | 1992-04-14 | Yosemite Investment, Inc. | Wet tantalum capacitor with liner |
US5198968A (en) | 1992-07-23 | 1993-03-30 | Avx Corporation | Compact surface mount solid state capacitor and method of making same |
US5357399A (en) | 1992-09-25 | 1994-10-18 | Avx Corporation | Mass production method for the manufacture of surface mount solid state capacitor and resulting capacitor |
US5400211A (en) | 1992-10-01 | 1995-03-21 | The Evans Findings Company, Inc. | Packaged electrical component |
US5419824A (en) | 1992-11-12 | 1995-05-30 | Weres; Oleh | Electrode, electrode manufacturing process and electrochemical cell |
US5306479A (en) | 1992-11-20 | 1994-04-26 | Teledyne Industries, Inc. (California Corp.) | Process for synthesizing niobium dioxide and mixed metal oxides containing niobium |
US5754394A (en) | 1993-03-22 | 1998-05-19 | Evans Capacitor Company Incorporated | Capacitor including a cathode having a nitride coating |
US5469325A (en) | 1993-03-22 | 1995-11-21 | Evans Findings Co. | Capacitor |
US5982609A (en) | 1993-03-22 | 1999-11-09 | Evans Capacitor Co., Inc. | Capacitor |
US5448447A (en) | 1993-04-26 | 1995-09-05 | Cabot Corporation | Process for making an improved tantalum powder and high capacitance low leakage electrode made therefrom |
US5394295A (en) | 1993-05-28 | 1995-02-28 | Avx Corporation | Manufacturing method for solid state capacitor and resulting capacitor |
US5495386A (en) | 1993-08-03 | 1996-02-27 | Avx Corporation | Electrical components, such as capacitors, and methods for their manufacture |
US5687057A (en) | 1993-10-06 | 1997-11-11 | Philips Electronics North America Corporation | Longer life electrolytic capacitors and electrolyte therefor |
JP2904392B2 (ja) | 1993-12-17 | 1999-06-14 | 株式会社栗本鐵工所 | 竪型連続遊星ボールミル |
US5419977A (en) | 1994-03-09 | 1995-05-30 | Medtronic, Inc. | Electrochemical device having operatively combined capacitor |
US5442978A (en) | 1994-05-19 | 1995-08-22 | H. C. Starck, Inc. | Tantalum production via a reduction of K2TAF7, with diluent salt, with reducing agent provided in a fast series of slug additions |
US5621607A (en) | 1994-10-07 | 1997-04-15 | Maxwell Laboratories, Inc. | High performance double layer capacitors including aluminum carbon composite electrodes |
US5862035A (en) | 1994-10-07 | 1999-01-19 | Maxwell Energy Products, Inc. | Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes |
JPH0955341A (ja) | 1995-08-11 | 1997-02-25 | Nisshinbo Ind Inc | 電気二重層キャパシタ用分極性電極及び該分極性電極を使用した電気二重層キャパシタ |
PT786786E (pt) | 1995-08-14 | 2000-04-28 | Elton Aozt | Condensador com uma camada dupla |
US5786980A (en) | 1996-02-02 | 1998-07-28 | Evans Capacitor Company, Incorporated | Electrical component package and packaged electrical component |
CA2247240A1 (en) | 1996-03-08 | 1997-09-12 | John Donald Connolly Jr. | Improved fluid energy mill |
US6165623A (en) | 1996-11-07 | 2000-12-26 | Cabot Corporation | Niobium powders and niobium electrolytic capacitors |
JP3254163B2 (ja) | 1997-02-28 | 2002-02-04 | 昭和電工株式会社 | コンデンサ |
TW388043B (en) | 1997-04-15 | 2000-04-21 | Sanyo Electric Co | Solid electrolyte capacitor |
US6051326A (en) * | 1997-04-26 | 2000-04-18 | Cabot Corporation | Valve metal compositions and method |
US5926362A (en) | 1997-05-01 | 1999-07-20 | Wilson Greatbatch Ltd. | Hermetically sealed capacitor |
US5894403A (en) | 1997-05-01 | 1999-04-13 | Wilson Greatbatch Ltd. | Ultrasonically coated substrate for use in a capacitor |
EP0886288B1 (de) | 1997-06-20 | 2006-01-11 | Matsushita Electric Industrial Co., Ltd. | Elektrolytkondensator und dessen Herstellungsverfahren |
US5973913A (en) | 1997-08-12 | 1999-10-26 | Covalent Associates, Inc. | Nonaqueous electrical storage device |
EP0933790A1 (de) | 1998-02-02 | 1999-08-04 | Asahi Glass Company Ltd. | Elektrischer Doppelschichtkondensator |
JPH11274011A (ja) | 1998-03-23 | 1999-10-08 | Matsushita Electric Ind Co Ltd | アルミ電解コンデンサ |
US6051044A (en) | 1998-05-04 | 2000-04-18 | Cabot Corporation | Nitrided niobium powders and niobium electrolytic capacitors |
US6208502B1 (en) | 1998-07-06 | 2001-03-27 | Aerovox, Inc. | Non-symmetric capacitor |
ATE350757T1 (de) | 1998-08-28 | 2007-01-15 | Greatbatch W Ltd | Elektrolyt für einen kondensator |
US6416730B1 (en) | 1998-09-16 | 2002-07-09 | Cabot Corporation | Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides |
US6391275B1 (en) | 1998-09-16 | 2002-05-21 | Cabot Corporation | Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides |
US6072692A (en) | 1998-10-08 | 2000-06-06 | Asahi Glass Company, Ltd. | Electric double layer capacitor having an electrode bonded to a current collector via a carbon type conductive adhesive layer |
EP1575155A1 (de) * | 1998-10-21 | 2005-09-14 | Matsushita Electric Industrial Co., Ltd. | Schaltung zur steuerung von piezoelektrischen transformatoren |
JP2000223376A (ja) | 1998-11-25 | 2000-08-11 | Ngk Insulators Ltd | 電気化学キャパシタの製造方法 |
US6094339A (en) | 1998-12-04 | 2000-07-25 | Evans Capacitor Company Incorporated | Capacitor with spiral anode and planar cathode |
US6301093B1 (en) | 1999-01-14 | 2001-10-09 | Honda Giken Kogyo Kabushiki Kaisha | Electrochemical capacitor |
US6181546B1 (en) | 1999-01-19 | 2001-01-30 | Aktsionernoe Obschestvo Zakrytogo Tipa “Elton” | Double layer capacitor |
US6332900B1 (en) | 1999-02-08 | 2001-12-25 | Wilson Greatbatch Ltd. | Physical vapor deposited electrode component and method of manufacture |
US6375704B1 (en) | 1999-05-12 | 2002-04-23 | Cabot Corporation | High capacitance niobium powders and electrolytic capacitor anodes |
US6126097A (en) | 1999-08-21 | 2000-10-03 | Nanotek Instruments, Inc. | High-energy planetary ball milling apparatus and method for the preparation of nanometer-sized powders |
DE19941094A1 (de) * | 1999-08-30 | 2003-07-10 | Epcos Ag | Kondensator und Verfahren zum Herstellen eines Anodenkörpers und eines Anodenableiters hierfür |
JP2001185459A (ja) | 1999-10-15 | 2001-07-06 | Mitsubishi Chemicals Corp | 電気化学キャパシタ |
US6563695B1 (en) * | 1999-11-16 | 2003-05-13 | Cabot Supermetals K.K. | Powdered tantalum, niobium, production process thereof, and porous sintered body and solid electrolytic capacitor using the powdered tantalum or niobium |
US6283985B1 (en) * | 1999-12-01 | 2001-09-04 | Cardiac Pacemakers, Inc. | Reforming wet-tantalum capacitors in implantable defibrillators and other medical devices |
US6377442B1 (en) | 2000-09-21 | 2002-04-23 | Pacesetter, Inc. | Floating anode DC electrolytic capacitor |
JP2002203749A (ja) * | 2000-12-28 | 2002-07-19 | Daiso Co Ltd | 積層型電気二重層キャパシタ |
US6507480B2 (en) * | 2001-02-26 | 2003-01-14 | Matsushita Electric Industrial Co., Ltd. | Electric double layer capacitor |
US6562255B1 (en) * | 2001-03-19 | 2003-05-13 | Pacesetter, Inc. | Conductive electrolyte for high voltage capacitors |
KR100414357B1 (ko) * | 2001-07-13 | 2004-01-07 | 주식회사 네스캡 | 전도성 고분자를 코팅한 금속산화물 전기화학의사커패시터의 전극 및 이의 제조방법 |
US6576524B1 (en) * | 2001-07-20 | 2003-06-10 | Evans Capacitor Company Incorporated | Method of making a prismatic capacitor |
DE10203143A1 (de) * | 2002-01-28 | 2003-08-07 | Epcos Ag | Elektroden, deren Herstellung und Kondensatoren mit den Elektroden |
WO2003105251A2 (en) * | 2002-06-05 | 2003-12-18 | Reveo, Inc. | Layered electrochemical cell and manufacturing method therefor |
US7002790B2 (en) * | 2002-09-30 | 2006-02-21 | Medtronic, Inc. | Capacitor in an implantable medical device |
US7160615B2 (en) * | 2002-11-29 | 2007-01-09 | Honda Motor Co., Ltd. | Granules for formation of an electrode of an electric double layer capacitor, manufacturing method thereof, electrode sheet, polarized electrode, and electric double layer capacitor using a polarized electrode |
US6850405B1 (en) * | 2002-12-16 | 2005-02-01 | Wilson Greatbatch Technologies, Inc. | Dual anode capacitor interconnect design |
US6859353B2 (en) * | 2002-12-16 | 2005-02-22 | Wilson Greatbatch Technologies, Inc. | Capacitor interconnect design |
US6842328B2 (en) * | 2003-05-30 | 2005-01-11 | Joachim Hossick Schott | Capacitor and method for producing a capacitor |
US6859354B2 (en) * | 2003-05-30 | 2005-02-22 | Kemet Electronic Corporation | Low freezing electrolyte for an electrolytic capacitor |
US6721170B1 (en) * | 2003-06-11 | 2004-04-13 | Evans Capacitor Company, Inc. | Packaged hybrid capacitor |
US6888717B2 (en) * | 2003-06-13 | 2005-05-03 | Kemet Electronics Corporation | Working electrolyte for electrolytic capacitors |
JP2005045101A (ja) * | 2003-07-24 | 2005-02-17 | Japan Carlit Co Ltd:The | 電解コンデンサ用電解液及び電解コンデンサ |
US7169284B1 (en) * | 2003-09-22 | 2007-01-30 | Pacesetter, Inc. | High surface area cathode for electrolytic capacitors using conductive polymer |
KR100649580B1 (ko) * | 2003-12-15 | 2006-11-28 | 삼성전기주식회사 | 스핀코팅에 의한 적층세라믹 커패시터의 제조방법 및적층세라믹 커패시터 |
US7038901B2 (en) * | 2004-02-13 | 2006-05-02 | Wilson Greatbatch Technologies, Inc. | Silicate additives for capacitor working electrolytes |
EP1592031B1 (de) * | 2004-04-19 | 2016-04-13 | Greatbatch Ltd. | Gehäuse mit flacher rückseite für einen elektrolytkondensator |
JP2005333017A (ja) * | 2004-05-20 | 2005-12-02 | Japan Carlit Co Ltd:The | 電解コンデンサ用電解液及び電解コンデンサ |
CN101460540B (zh) * | 2006-06-07 | 2012-01-11 | 帝化株式会社 | 导电性高分子合成用催化剂、导电性高分子以及固体电解电容器 |
-
2007
- 2007-03-20 US US11/725,965 patent/US7460356B2/en active Active
-
2008
- 2008-02-05 GB GB0802095A patent/GB2447724B/en not_active Expired - Fee Related
- 2008-02-18 DE DE102008000330.1A patent/DE102008000330B4/de active Active
- 2008-03-19 JP JP2008071059A patent/JP5301181B2/ja not_active Expired - Fee Related
- 2008-03-19 KR KR1020080025316A patent/KR20080085754A/ko not_active Application Discontinuation
- 2008-03-19 CN CNA2008100854745A patent/CN101271769A/zh active Pending
Patent Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3345545A (en) | 1964-11-27 | 1967-10-03 | Johnson Matthey & Mallory Ltd | Solid electrolytic capacitor having minimum anode impedance |
US5230956A (en) | 1982-05-28 | 1993-07-27 | Amoco Corporation | Polyamide-imide sized fibers |
US5160653A (en) | 1990-02-28 | 1992-11-03 | Aerovox M, Inc. | Electrolytic capacitor and electrolyte therefor |
US5369547A (en) | 1993-03-22 | 1994-11-29 | The Evans Findings Co., Ltd. | Capacitor |
US6594140B1 (en) | 1993-03-22 | 2003-07-15 | Evans Capacitor Company Incorporated | Capacitor |
US5473503A (en) | 1993-07-27 | 1995-12-05 | Nec Corporation | Solid electrolytic capacitor and method for manufacturing the same |
US5457862A (en) | 1993-11-10 | 1995-10-17 | Nec Corporation | Method of manufacturing solid electrolytic capacitor |
US5729428A (en) | 1995-04-25 | 1998-03-17 | Nec Corporation | Solid electrolytic capacitor with conductive polymer as solid electrolyte and method for fabricating the same |
US5726118A (en) | 1995-08-08 | 1998-03-10 | Norit Americas, Inc. | Activated carbon for separation of fluids by adsorption and method for its preparation |
US5812367A (en) | 1996-04-04 | 1998-09-22 | Matsushita Electric Industrial Co., Ltd. | Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative |
US5858911A (en) | 1996-05-06 | 1999-01-12 | Agritec, Inc. | Method of producing activated carbon |
US5949639A (en) | 1996-09-27 | 1999-09-07 | Rohm Co., Ltd. | Capacitor element for solid electrolytic capacitor, device and process for making the same |
US6224985B1 (en) | 1997-05-01 | 2001-05-01 | Wilson Greatbatch Ltd. | One step ultrasonically coated substrate for use in a capacitor |
US6322912B1 (en) | 1998-09-16 | 2001-11-27 | Cabot Corporation | Electrolytic capacitor anode of valve metal oxide |
US6479581B1 (en) | 1999-03-12 | 2002-11-12 | Solvay Advanced Polymers, Llc | Aqueous-based polyamide-amic acid compositions |
US6191936B1 (en) | 1999-04-12 | 2001-02-20 | Vishay Sprague, Inc. | Capacitor having textured pellet and method for making same |
US20030158342A1 (en) | 2000-06-27 | 2003-08-21 | Asahi Glass Company, Limited | Activated carbon material, process for producing the same and electric double layer capacitor employing the same |
US6674635B1 (en) | 2001-06-11 | 2004-01-06 | Avx Corporation | Protective coating for electrolytic capacitors |
US20050094352A1 (en) | 2001-12-28 | 2005-05-05 | Akihito Komatsu | Electrolytic capacitor and electrolitic solution for driving electrolytic capacitor |
US20030142464A1 (en) | 2002-01-31 | 2003-07-31 | Yanming Liu | Electrolytes for capacitors |
US6743370B1 (en) | 2002-05-23 | 2004-06-01 | Pacesetter, Inc. | Conductive electrolyte for high voltage capacitors |
US20050270725A1 (en) | 2004-04-23 | 2005-12-08 | Hahn Randolph S | Fluted anode with minimal density gradients and capacitor comprising same |
US7099143B1 (en) | 2005-05-24 | 2006-08-29 | Avx Corporation | Wet electrolytic capacitors |
Also Published As
Publication number | Publication date |
---|---|
GB0802095D0 (en) | 2008-03-12 |
JP2008235895A (ja) | 2008-10-02 |
GB2447724B (en) | 2011-07-27 |
DE102008000330A1 (de) | 2008-09-25 |
US20080232029A1 (en) | 2008-09-25 |
JP5301181B2 (ja) | 2013-09-25 |
GB2447724A (en) | 2008-09-24 |
US7460356B2 (en) | 2008-12-02 |
CN101271769A (zh) | 2008-09-24 |
DE102008000330A9 (de) | 2009-01-08 |
KR20080085754A (ko) | 2008-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102008000330B4 (de) | Neutraler Elektrolyt für einen Nasselektrolytkondensator sowie Nasselektrolytkondensator | |
DE102008000334A1 (de) | Kathodenbeschichtung für einen Kondensator mit nassem Elektrolyten | |
DE102008000329A1 (de) | Kondensator mit nassem Elektrolyten, der eine Vielzahl an dünnen, aus Pulver geformten Anoden enthält | |
DE102008000333A9 (de) | Anode zur Verwendung in Elektrolytkondensatoren | |
DE102009027174A1 (de) | Substrat zur Verwendung bei einem Nass-Elektrolytkondensator | |
US6602741B1 (en) | Conductive composition precursor, conductive composition, solid electrolytic capacitor, and their manufacturing method | |
DE102009043507A1 (de) | Kathode zur Verwendung in einem Flüssigkeitskondensator | |
DE102007011361A9 (de) | Nass-Elektrolyt-Kondensator mit einer Kathodenbeschichtung | |
DE102010047087A1 (de) | Verfahren zur Verbesserung der elektrischen Kenngrößen in Kondensatoren enthaltend PEDOT/PSS als Feststoffelektrolyt durch ein Polyalkylenglykol | |
DE102011113165A1 (de) | Leitfähige Polymerbeschichtung für ein Flüssigelektrolytkondensator | |
DE102013214126A1 (de) | Festelektrolytkondensator mit verbesserten Eigenschaften bei hohen Spannungen | |
DE102013213723A1 (de) | Festelektrolytkondensator mit erhöhter Feucht-zu-Trocken-Kapazität | |
DE112006001194T5 (de) | Kondensatoren mit nassem Elektrolyten | |
DE102013213720A1 (de) | Temperaturstabiler Festelektrolytkondensator | |
DE102010012373A1 (de) | Elektrolytkondensator, der einen flüssigen Elektrolyten enthält | |
DE102011113166A1 (de) | Verfahren zur Bildung einer Kathode eines Flüssigelektrolytkondensators | |
DE102012004692A1 (de) | Zusatz von Polymeren zu Thiophen-Monomeren bei der In Situ-Polymerisation | |
DE102011105701A1 (de) | Festelektrolytkondensator, der einen verbesserten Manganoxid-Elektrolyten enthält | |
DE102010012374A1 (de) | Hochspannungs-Elektrolytkondensatoren | |
DE102014204610A1 (de) | Flüssigelektrolytkondensator | |
DE112020004416T5 (de) | Festelektrolytkondensator zur Verwendung bei hohen Spannungen | |
DE102011013068A1 (de) | Verfahren zur Verbesserung der elektrischen Kenngrößen in Kondensatoren enthaltend PEDOT/PSS als Feststoffelektrolyt durch Polyglycerin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8197 | Reprint of an erroneous patent document | ||
R082 | Change of representative |
Representative=s name: CANZLER & BERGMEIER PATENTANWAELTE, DE |
|
R081 | Change of applicant/patentee |
Owner name: AVX CORPORATION, FOUNTAIN INN, US Free format text: FORMER OWNER: AVX CORPORATION, MYRTLE BEACH, S.C., US Effective date: 20120711 |
|
R082 | Change of representative |
Representative=s name: PATENTANWAELTE CANZLER & BERGMEIER PARTNERSCHA, DE Effective date: 20120711 Representative=s name: CANZLER & BERGMEIER PATENTANWAELTE, DE Effective date: 20120711 |
|
R012 | Request for examination validly filed | ||
R079 | Amendment of ipc main class |
Free format text: PREVIOUS MAIN CLASS: H01G0009145000 Ipc: H01G0009035000 |
|
R012 | Request for examination validly filed |
Effective date: 20140910 |
|
R079 | Amendment of ipc main class |
Free format text: PREVIOUS MAIN CLASS: H01G0009145000 Ipc: H01G0009035000 Effective date: 20141014 |
|
R016 | Response to examination communication | ||
R081 | Change of applicant/patentee |
Owner name: KYOCERA AVX COMPONENTS CORPORATION (N. D. GES., US Free format text: FORMER OWNER: AVX CORPORATION, FOUNTAIN INN, SC, US |
|
R016 | Response to examination communication | ||
R018 | Grant decision by examination section/examining division | ||
R020 | Patent grant now final |