DE102005025071B4 - Verfahren zum Löten von Teilen aus Verbundwerkstoff, die mit einer Zusammensetzung auf Siliziumbasis abgedichtet sind - Google Patents

Verfahren zum Löten von Teilen aus Verbundwerkstoff, die mit einer Zusammensetzung auf Siliziumbasis abgedichtet sind Download PDF

Info

Publication number
DE102005025071B4
DE102005025071B4 DE102005025071.8A DE102005025071A DE102005025071B4 DE 102005025071 B4 DE102005025071 B4 DE 102005025071B4 DE 102005025071 A DE102005025071 A DE 102005025071A DE 102005025071 B4 DE102005025071 B4 DE 102005025071B4
Authority
DE
Germany
Prior art keywords
parts
silicon
ceramic material
layer
until
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102005025071.8A
Other languages
English (en)
Other versions
DE102005025071A1 (de
Inventor
Jacques Thebault
Clément Bouquet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Ceramics SA
Original Assignee
Herakles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Herakles SA filed Critical Herakles SA
Publication of DE102005025071A1 publication Critical patent/DE102005025071A1/de
Application granted granted Critical
Publication of DE102005025071B4 publication Critical patent/DE102005025071B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/08Soldering by means of dipping in molten solder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • C04B2237/083Carbide interlayers, e.g. silicon carbide interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/16Silicon interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/38Fiber or whisker reinforced
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/38Fiber or whisker reinforced
    • C04B2237/385Carbon or carbon composite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/52Pre-treatment of the joining surfaces, e.g. cleaning, machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/55Pre-treatments of a coated or not coated substrate other than oxidation treatment in order to form an active joining layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/59Aspects relating to the structure of the interlayer
    • C04B2237/592Aspects relating to the structure of the interlayer whereby the interlayer is not continuous, e.g. not the whole surface of the smallest substrate is covered by the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/72Forming laminates or joined articles comprising at least two interlayers directly next to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1062Prior to assembly

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Laminated Bodies (AREA)

Abstract

Verfahren zum Verbinden durch Löten von zwei Teilen (20, 30) aus Thermostrukturverbundwerkstoff (M), das einen vorherigen Schritt zum Abdichten zumindest der Oberflächen (S20, S30) der zusammenzufügenden Teile umfasst, wobei das Abdichten durch Imprägnieren der Teile mit Silizium oder einer Siliziumlegierung erfolgt, dadurch gekennzeichnet, dass nach dem Schritt des Abdichtens und vor dem Schritt des Lötens zumindest auf den Oberflächen (S20, S30) der zusammenzufügenden Teile eine Schicht aus feuerfestem Keramikmaterial (22, 32) gebildet wird, das bei Löttemperatur mit dem Silizium nicht reaktiv ist.

Description

  • Hintergrund der Erfindung
  • Die Erfindung betrifft das Verbinden durch Löten von Thermostrukturverbundwerkstoffen.
  • Strukturen aus Thermostrukturverbundwerkstoff mit komplexen Formen sind schwer direkt einstückig herzustellen. Im Allgemeinen wird bevorzugt, die Struktur aus Elementen einfacher Form herzustellen, die insbesondere durch Löten miteinander verbunden werden.
  • Im allgemeinen ist das Löten eine Verbindungstechnik, die darauf beruht, eine Zusammensetzung auf Metallbasis zwischen den zusammenzufügenden Materialien zu schmelzen. Ein Hauptvorteil des Lötens besteht darin, dass es - im Gegensatz zum herkömmlichen Schweißen - ein Zusammenfügen ohne Schmelzen der zusammenzufügenden Materialien ermöglicht. Beispielsweise sind unter den Lötzusammensetzungen oder -legierungen, die üblicherweise für das Verbinden von Thermostrukturverbundwerkstoffen verwendet werden, Legierungen aus Silizium und Metallsiliziden, legiertem oder unlegiertem Silizium und Germanium sowie Metallzusammensetzungen, die unter den Handelsnamen Cusil-ABA®, Ticusil®, Incusil® oder Brasic® bekannt sind, zu finden.
  • Thermostrukturverbundwerkstoffe sind für ihre guten mechanischen Eigenschaften sowie für ihre Fähigkeit, diese Eigenschaften bei hoher Temperatur zu bewahren, bekannt. Sie umfassen die Verbundwerkstoffe, die von einer Verstärkung aus feuerfesten Fasern gebildet sind, welche durch eine ebenfalls feuerfeste Matrix verdichtet ist. Als nicht erschöpfende Beispiele sind derartige Materialien C/C-Verbundwerkstoffe (Verstärkung aus Kohlenstoffasern, die durch eine Kohlenstoffmatrix verdichtet ist) und Verbundwerkstoffe mit Keramikmatrix (CMC), wie C/SiC-Verbundwerkstoffe (Verstärkung aus Kohlenstoffasern und Matrix aus Siliziumkarbid), SiC/SiC-Verbundwerkstoffe (Fasern und Matrix aus Siliziumkarbid), C/C-SiC-Verbundwerkstoffe (Verstärkung aus Kohlenstoffasern und Matrix mit einer Kohlenstoffphase, im allgemeinen so nahe wie möglich an den Fasern, und mit einer Siliziumkarbidphase), C/C-Verbundwerkstoffe, die durch gasförmiges SiO, durch flüssiges Si etc. silizidiert sind.
  • Die üblichen Verfahren zum Erhalt von Teilen aus Thermostrukturverbundwerkstoff sind das Flüssigverfahren und das Verfahren auf gasförmigem Weg.
  • Das Flüssigverfahren beruht darauf, einen Faservorformling auszubilden, der im Wesentlichen die Form eines herzustellenden Teils aufweist und dazu bestimmt ist, die Verstärkung des Verbundwerkstoffs zu bilden, sowie diesen Vorformling mit einer flüssigen Zusammensetzung, die einen Vorläufer des Materials der Matrix enthält, zu imprägnieren. Der Vorläufer liegt üblicherweise in Form eines Polymers, wie einem Harz vor, das eventuell in einem Lösungsmittel gelöst ist. Die Umwandlung des Vorläufers in eine feuerfeste Phase erfolgt durch Wärmebehandlung nach Entfernen des etwaigen Lösungsmittels und Vernetzung des Polymers. Es können mehrere aufeinanderfolgende Imprägnierungszyklen vollzogen werden, um den gewünschten Verdichtungsgrad zu erzielen. Beispielsweise können flüssige Vorläufer von Kohlenstoff Harze mit relativ hohem Koksanteil sein, wie zum Beispiel Phenolharze, während flüssige Vorläufer von Keramik, insbesondere SiC, Harze vom Typ Polycarbosilan (PCS) oder Polytitanocarbosilan (PTCS) oder Polysilazane (PSZ) sein können.
  • Das Verfahren auf gasförmigem Weg besteht in der chemischen Infiltration in der Dampfphase. Der Faservorformling, der einem herzustellenden Teil entspricht, wird in einem Ofen platziert, in dem eine Reaktionsgasphase zugeführt wird. Der Druck und die Temperatur, die in dem Ofen herrschen sowie die Zusammensetzung der Gasphase werden derart gewählt, dass die Diffusion der Gasphase innerhalb der Poren des Vorformlings ermöglicht wird, um dort durch Abscheidung - bei Kontakt mit den Fasern - eines festen Materials, das aus einer Zerlegung eines Bestandteils der Gasphase oder aus einer Reaktion zwischen mehreren Bestandteilen stammt, die Matrix zu bilden. Beispielsweise können gasförmige Vorläufer des Kohlenstoffs Kohlenwasserstoffe sein, die Kohlenstoff durch Spaltung liefern, wie zum Beispiel Methan, und ein gasförmiger Vorläufer von Keramik, insbesondere SiC, kann Methyltrichlorsilan (MTS) sein, das SiC durch Zerlegung von MTS (eventuell in Anwesenheit von Wasserstoff) ergibt.
  • Es gibt auch Mischverfahren, die sowohl flüssige als auch gasförmige Wege umfassen.
  • Ganz gleich jedoch welches Verdichtungsverfahren verwendet wird, die Teile aus Thermostrukturverbundwerkstoff weisen systematisch eine Porosität auf, die dadurch bedingt ist, dass die Verdichtung der Faservorformlinge in unvermeidbarer Weise unvollständig ist. Typischerweise weisen die Teile ohne besondere Behandlung während der Verdichtung mindestens einen Volumenanteil an Porosität in der Größenordnung von 10 % auf. Diese Porosität kommt durch das Vorhandensein von Poren und/oder Rissen mit mehr oder weniger großen Abmessungen zum Ausdruck, die untereinander in Verbindung stehen und an der Oberfläche des Teils zum Vorschein kommen.
  • Wie sehr schematisch in 1 dargestellt, wird das Verbinden zweier Teile 1 und 2 aus Thermostrukturverbundwerkstoff M durch Löten dadurch vollzogen, dass zwischen den Oberflächen S1 und S2 der zwei aneinanderzufügenden Teile eine Lötschicht 3 eingefügt wird. Jedoch dringt ein Teil des zwischen den Teilen 1 und 2 eingebrachten Lots 3 aufgrund der porösen Art des Materials der Teile über die an der Oberfläche der Teile zum Vorschein kommenden Löcher in die Poren P des Materials ein, wodurch örtlich Abschnitte 4 ohne Lot zwischen den beiden Oberflächen bleiben. Dieses Fehlen von Material führt zu Fehlern in der Verbindung zwischen den beiden Teilen und demzufolge zu einer Verschlechterung der Qualität der Verbindung.
  • Eine bekannte Lösung dieses Problems besteht darin, die Poren der Teile aus Thermostrukturverbundwerkstoff durch Silizidierung aufzufüllen, d.h. durch Einbringen einer schmelzflüssigen Zusammensetzung auf Siliziumbasis in das Material. Diese Art der Silizidierung ist an sich bekannt und ist insbesondere in den Dokumenten FR 2 653 763 , US 4 626 516 und EP 0 636 700 beschrieben.
  • Wenn auf diese Weise silizidierte Thermostrukturverbundwerkstoffe als hinreichend undurchlässig betrachtet werden können, um das Lot an ihrer Oberfläche zu halten, so wirft jedoch das Vorliegen einer oder mehrerer silizierter Phasen in dem Material ein neues Problem auf.
  • Denn die meisten der für das Löten verwendeten und weiter oben genannten Legierungen enthalten einen bedeutenden Prozentsatz an Metallbestandteilen, die Übergangsmetallen (beispielsweise Cu, Fe, Ni, Mn etc.) entsprechen, die mit dem Silizium reagieren, was in der Verbindung zur Bildung von Metallsiliziden zerbrechlicher Art führt.
  • Des Weiteren kommt es im Falle eines nicht reaktiven Lots oder eines Lots mit kontrollierter Reaktivität, wie demjenigen, das in der BraSiC®-Technologie eingesetzt wird, bei den Löttemperaturen (etwa 1400 °C) zu einer Interdiffusion zwischen dem Lot und dem in den Poren des Materials vorhandenen Silizium, so dass die erwartete physikalisch-chemische Umwandlung zur Bildung der Verbindung zwischen den Teilen nicht mehr kontrolliert ist. Der direkte Kontakt zwischen dem Silizium des Materials und dem Lot könnte in der Tat die Verhältnisse der Bestandteile des Lots durch Diffusion in flüssigem Zustand während des Lötens und somit seine Eigenschaften verändern.
  • Überdies kommt es bei silizidierten Thermostrukturverbundwerkstoffen, die durch Löten verbunden werden, zu einem weiteren Problem beim Ausbessern oder Reparieren der Verbindung. Denn wenn zwei Teile aus silizidiertem Thermostrukturverbundwerkstoff zu Beginn oder in Folge einer Schwächung oder eines Angriffs der Lötnaht schlecht zusammengefügt sind, muss das verbleibende Lot entfernt, die Teile gereinigt und erneut korrekt verlötet werden können. Das Entfernen des Lots und das Reinigen der Teile erfordern eine Behandlung mittels eines korrosiven (sauren oder alkalischen) Bades, das auch das verbleibende Silizium des silizidierten Teils angreift. Unter diesen Bedingungen macht jegliches Entfernen einer durch Löten hergestellten Verbindung zwischen zwei Teilen aus silizidiertem Thermostrukturverbundwerkstoff die Teile nicht wieder verwendbar, was in wirtschaftlicher Hinsicht und/oder hinsichtlich Recycling von Nachteil ist.
  • Aufgabe und Zusammenfassung der Erfindung
  • Ziel der Erfindung ist es, ein Verfahren anzugeben, das eine Lötverbindung zwischen Teilen aus Thermostrukturverbundwerkstoff ermöglicht, wobei zumindest die zusammenzufügenden Oberflächen durch Imprägnierung mit einer Zusammensetzung auf Siliziumbasis abgedichtet wurden, das nicht die vorgenannten Nachteile aufweist und das insbesondere die Reaktionen oder Diffusionen zwischen dem Lot und dem in dem Material der Teile vorhandenen Silizium verhindert.
  • Erreicht wird dieses Ziel mit einem Verfahren, bei dem gemäß der Erfindung nach dem Schritt des Abdichtens und vor dem Schritt des Lötens wenigstens auf den Oberflächen der zusammenzufügenden Teile eine Schicht aus feuerfestem Keramikmaterial gebildet wird, das bei Löttemperatur mit dem Silizium nicht reaktiv ist. Ein solches Material kann insbesondere aus den Keramiken ausgewählt werden, die Siliziumderivate sind, wie zum Beispiel Siliziumnitrid (Si3N4) oder Siliziumkarbid (SiC).
  • Auf diese Weise kann das Lot nicht mit dem Silizium oder anderen in dem Material vorhandenen Elementen in Kontakt gelangen, wobei eine feuerfeste Keramikschicht die Oberfläche des zu lötenden Materials schützt.
  • Die Risiken einer Reaktion oder Diffusion zwischen dem Lot und dem Silizium des Materials werden somit vermieden, wodurch es möglich ist, die Lötung besser zu kontrollieren und eine einheitliche Verbindung von guter Qualität zwischen den beiden Teilen zu erhalten.
  • Da Keramik, wie Siliziumkarbid, eine gute Korrosionsbeständigkeit aufweist, ist es weiterhin möglich, im Falle der Ausbesserung oder Reparatur der Verbindung das Lot mit korrosiven Produkten anzugreifen, ohne das Material der Teile zu zerstören.
  • Die Bildung der Keramikschicht kann durch chemische Abscheidung in der Dampfphase oder durch chemische Infiltration in der Gasphase erfolgen.
  • Die Oberfläche der auf den Oberflächen der Teile gebildeten Keramikschicht kann vor dem Löten geschliffen werden. Die Keramikschicht weist vorzugsweise eine durchschnittliche Dicke auf, die zwischen 1 µm und 100 µm, beispielsweise in der Größenordnung von 50 µm liegt.
  • Das verwendete Lot ist vorzugsweise eine Zusammensetzung auf Metallbasis, die mit dem Keramikmaterial, welches die Oberfläche der zusammenzufügenden Teile bedeckt, nicht reaktiv oder von kontrollierter Reaktivität ist.
  • Bei einer besonderen Durchführungsform wird vor dem Schritt des Lötens auf die nicht zu lötenden Teile der Teile ein Benetzungsschutzmittel aufgetragen, damit das Lot nur diejenigen Oberflächenteile benetzt, die verbunden werden sollen.
  • Bei einer weiteren Durchführungsform wird das flüssige Lot durch Kapillarwirkung mit Hilfe eines beispielsweise mit Kohlenstoffasern gebildeten Drains zwischen die zusammenzufügenden Teile befördert, um das Lot durch Kapillarwirkung zwischen die beiden zu verbindenden Teile zu leiten.
  • Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden rein beispielhaften und nicht-beschränkenden Beschreibung verschiedener Durchführungsformen erfindungsgemäßer Verfahren in Verbindung mit der Zeichnung.
  • Figurenliste
    • 1 zeigt, wie bereits eingangs beschrieben, stark schematisiert das Ergebnis, das nach dem Löten von zwei Teilen aus porösem Thermostrukturverbundwerkstoff erzielt wird.
    • 2 zeigt ein Ablaufdiagramm der aufeinanderfolgenden Schritte einer Durchführungsform eines erfindungsgemäßen Verfahrens.
    • 3 zeigt schematisch einen Abschnitt eines durch Silizidierung abgedichteten Teils aus Thermostrukturverbundwerkstoff nach Abscheiden einer Schicht aus Siliziumkarbid auf dessen Oberfläche.
    • 4 zeigt schematisch den in 3 gezeigten Abschnitt nach dem Schleifen der Siliziumkarbidschicht.
    • 5 zeigt eine Ausführungsform des Lötens zweiter Teile unter Verwendung eines Kapillardrains.
    • 6 zeigt schematisch die Struktur, die nach dem Löten von zwei Teilen gemäß einem Verfahren der Erfindung erhalten wird.
  • Detaillierte Beschreibung bevorzugter Durchführungsformen
  • Das Verfahren der Verbindung durch Löten gemäß der vorliegenden Erfindung ist auf jede Art von silizidiertem Thermostrukturverbundwerkstoff anwendbar, d.h. auf jeden Werkstoff, der von einer Verstärkung aus feuerfesten Fasern gebildet ist, die durch eine ebenfalls feuerfeste Matrix verdichtet ist, wie C/C-Werkstoffe oder CMC-Werkstoffe, insbesondere C/SiC, SiC/SiC, C/C-SiC etc.
  • Unter Bezugnahme auf 2 umfasst eine Form der Durchführung eines erfindungsgemäßen Verfahrens, um zwei Teile aus Thermostrukturverbundwerkstoff, die durch Silizidierung abgedichtet sind, durch Löten zu verbinden, die folgenden Schritte.
  • Der erste Schritt (Schritt 10) besteht darin, den Thermostrukturverbundwerkstoff der Teile wenigstens im Bereich der zu verbindenden Oberflächen dadurch abzudichten, dass seine Poren durch Imprägnieren mit einer Zusammensetzung auf der Basis von geschmolzenem Silizium aufgefüllt werden. Die Zusammensetzung auf Siliziumbasis ist von Silizium oder von einer Siliziumlegierung (zum Beispiel SiGe) und von wenigstens einem weiteren Material, das insbesondere aus Eisen, Kobalt, Titan, Zirkonium, Molybdän, Vanadium, Kohlenstoff oder Bor ausgewählt ist, gebildet. Die Imprägnierung der Thermostrukturverbundwerkstoffe mit einer Zusammensetzung auf Siliziumbasis ist an sich bekannt und ist insbesondere in den Dokumenten FR 2 653 763 , US 4 626 516 und EP 0 636 700 beschrieben.
  • Der zweite Schritt (Schritt 11) besteht darin, die Oberflächen der beiden Teile, die dazu bestimmt sind, zusammengefügt zu werden, zu präparieren. Zu diesem Zweck werden die Kontaktflächen eines jeden der Teile derart bearbeitet, dass die Geometrie der Kopplungsebene zwischen den beiden Teilen angepasst wird.
  • Sobald die Bearbeitung der Oberflächen abgeschlossen ist, wird eine Schicht aus feuerfester Keramik wenigstens auf den zu lötenden Oberflächen abgeschieden (Schritt 12). Was die feuerfeste Keramik anbelangt, so wird ein Material gewählt, das bei Löttemperatur mit dem Silizium nicht reaktiv ist. Im Allgemeinen können alle Keramiken, die Siliziumderivaten entsprechen, wie Si3N4 oder SiC verwendet werden, um die Oberflächen der zu lötenden Teile zu schützen. In dem hier betrachteten Beispiel wird SiC abgeschieden. Dieser Überzug kann durch chemische Abscheidung in der Dampfphase (CVD) oder durch chemische Infiltration in der Gasphase (CVI) erhalten werden. In beiden Fällen erfolgt das Abscheiden in einem Ofen, in dem ein gasförmiger Siliziumkarbidvorläufer, wie Methyltrichlorsilan (MTS) zugeführt wird, der Siliziumkarbid durch Zerlegung des MTS eventuell in Anwesenheit von Wasserstoffgas (H2) ergibt. Die Arten der gasförmigen Reaktionsphasen sowie die Druck- und Temperaturbedingungen, die für den Erhalt der Siliziumkarbidüberzüge durch chemische Abscheidung in der Dampfphase oder durch chemische Infiltration in der Gasphase erforderlich sind, sind an sich wohl bekannt.
  • Wie in 3, die einen Abschnitt eines Teils 20 aus Thermostrukturverbundwerkstoff M zeigt, dessen Poren beispielsweise durch Schmelzimprägnierung mit einer Zusammensetzung auf Siliziumbasis 21 aufgefüllt wurden, sehr schematisch dargestellt ist, ist die Oberfläche S20 des Teils 20, die dazu bestimmt ist, mit der entsprechenden Oberfläche eines weiteren Teils verlötet zu werden, nun mit einer Schicht aus Siliziumkarbid 22 überzogen.
  • Auf diese Weise wird auf den Oberflächen der Teile, die gelötet werden sollen, eine Schutzschicht gebildet, welche verhindern wird, dass das Lot während des späteren Lötvorganges mit dem an der Oberfläche der Teile vorhandenen Silizium in Kontakt gelangt.
  • Obwohl das Verfahren, das zur Herstellung des Keramiküberzugs verwendet wird (d.h. chemische Abscheidung in der Dampfphase oder chemische Infiltration in der Gasphase) die Kontrolle der Dicke des gebildeten Überzugs erleichtert, kann an der Oberfläche der so gebildeten Siliziumkarbidschicht 22 ein Mikrorelief 222 (knotige Oberfläche) entstehen.
  • In diesem Fall kann deren Oberfläche, sobald die Abscheidung der Keramikschicht abgeschlossen ist, geschliffen werden (Schritt 13), um die größten Unebenheiten durch Abtragen zu entfernen, ohne jedoch die dichte Keramikschicht stark anzugreifen, um sie nicht zu durchdringen. Wie in 4 dargestellt, wird nun eine im wesentlichen ebene Karbidschicht erhalten, die vorzugsweise eine durchschnittliche Dicke e aufweist, die zwischen 10 µm und 100 µm liegt und zum Beispiel etwa 50 µm beträgt. Eine solche Dicke wird dadurch erhalten, dass die abgeschiedene Keramikmenge, hier SiC, unter Berücksichtigung eventuell des Schleifens kontrolliert wird.
  • Anschließend werden die zwei Teile durch Löten zusammengefügt. In bekannter Weise umfasst der Vorgang des Lötens hauptsächlich zwei Schritte, nämlich das Einbringen eines Lots zwischen den Oberflächen der zusammengefügten Teile (Schritt 14) und eine Wärmebehandlung (Schritt 15), die einer Erhöhung der Temperatur über die Schmelztemperatur des Lots hinaus entspricht.
  • Nach einer ersten Löttechnik kann das Lot direkt auf den zusammenzufügenden Oberflächen abgeschieden werden. Nach einer weiteren Technik kann das Lot durch Kapillarwirkung zwischen die Teile befördert werden. Wie in 5 dargestellt, wird zu diesem Zweck zwischen zwei Teile 20 und 30 aus Thermostrukturverbundwerkstoff M, die mit einer Siliziumkarbidschicht 22, 32 überzogene Oberflächen S20 bzw. S30 aufweisen, eine „trockene“ (d.h. nicht imprägnierte) Armatur 50 beispielsweise aus Kohlenstoffasern eingefügt, die einen Drain bildet und deren eines Ende in einen eine Lötzusammensetzung 61 enthaltenden Tiegel 60 eingetaucht ist. Anschließend wird die Temperatur erhöht, bis die Lötzusammensetzung 61 verflüssigt wird, die nun durch Kapillarwirkung über die Armatur 50 angesaugt und über die gesamte, von der Armatur bedeckte Lötfläche zwischen den beiden Teilen verteilt wird.
  • Wie in 6 sehr schematisch dargestellt ist, wird auf diese Weise eine Lötnaht 40 zwischen den beiden Teile 20 und 30 erhalten, welche die Verbindung zwischen den beiden Teilen sicherstellt. Da gemäß der vorliegenden Erfindung die Oberflächen S20 und S30 des Teils 20 bzw. des Teils 30 vor dem Löten mit einer Schicht aus Siliziumkarbid 22, 32 beschichtet worden sind, gab es keinerlei Kontakt zwischen dem Lot und dem an der Oberfläche der Teile 20 und 30 vorhandenen Silizium 21, 31.
  • Im Fall einer Verbindung zwischen zwei Teilen, die unterbrochene Kontaktflächen oder Kontaktflächen von komplexer Geometrie aufweisen, kann auf den Bereichen der Teile, die nicht gelötet werden sollen, ein Benetzungsschutzmittel abgeschieden werden, um den Lotfluss zu beherrschen, damit er nur die Bereiche der Teile benetzt, die gelötet werden sollen. Das verwendete Benetzungsschutzmittel kann bzw. können beispielsweise in Form eines Aerosol aufbereitendes Bornitrid (BN), die sogenannten „Stop-Off-Produkte“, wie das Benetzungsschutzmittel Stopyt®, welches von der Gesellschaft Wesgo Metals in den Handel gebracht wird, oder die Produkte Nicrobraz® sein, die von der Gesellschaft Wall Colmonoy Limited vertrieben werden.
  • Ein solches Benetzungsschutzmittel kann beispielsweise bei der Herstellung von Wärmetauschern verwendet werden, wie denjenigen, die in den Wänden des divergenten Teils einer durch Flüssigkeitszirkulation gekühlten Triebwerksdüse eingesetzt werden. Diese Art von Wärmetauschern kann durch Lötverbindung zweier Platten aus Thermostrukturverbundwerkstoff erhalten werden, wobei wenigstens eine der beiden Platten Nuten aufweist, um Kanäle für die Zirkulation der Flüssigkeit zu bilden. Vor dem Arbeitsschritt des Lötens wird auf den Bereichen der Platten, die nicht gelötet werden sollen, wie den Nuten, ein Benetzungsschutzmittel abgeschieden. Das Lot kann nun grob auf den zu verbindenden Flächen abgeschieden werden, wobei dieses anschließend auf die Bereiche wandert, die nicht mit Benetzungsschutzmittel bedeckt sind. Das Benetzungsschutzmittel kann nach dem Löten durch Zirkulieren einer Säure oder eines anderen Mittels entsprechend den Angaben des Lieferanten des Benetzungsschutzmittels entfernt werden.
  • Die Wahl des Lots erfolgt insbesondere in Abhängigkeit von seiner Kompatibilität mit dem Siliziumkarbid, d.h. dass vorzugsweise eine Zusammensetzung gewählt wird, die mit dem Siliziumkarbid nicht reaktiv oder von kontrollierter Reaktivität ist. Es werden beispielsweise Zusammensetzungen auf Siliziumbasis verwendet, wie sie in den Patentanmeldungen EP 806 402 oder US 5 975 407 beschrieben sind, Legierungen aus Silizium und Metallsiliziden, legiertes oder unlegiertes Silizium und Germanium sowie Metallzusammensetzungen, die unter den Handelsnamen Cusil-ABA®, Ticusil®, Incusil® oder Brasic® bekannt sind.
  • Demzufolge ermöglicht das Verfahren der Erfindung, Teile aus silizidiertem Thermostrukturverbundwerkstoff ohne das Risiko einer Wechselwirkung und/oder einer Diffusion zwischen dem Lot und dem in dem Material vorliegenden Silizium zu löten. So wird die Bildung einer Verbindung von guter Qualität zwischen den Teilen sichergestellt.
  • Außerdem ermöglicht es die Beschichtung aus feuerfester Keramik, das Material der Teile an der Oberfläche gegenüber einer Oxidation zu schützen, indem kein sichtbares Silizium mehr gelassen wird. Wenn die auf der Oberfläche der Teile abgeschiedene Keramik höheren Temperaturen standhält als das Silizium, ist es zudem möglich, Lote zu verwenden, die höhere Schmelztemperaturen als in dem Fall aufweisen, in dem das Silizium direkt an der Oberfläche der Teile offen liegt.

Claims (11)

  1. Verfahren zum Verbinden durch Löten von zwei Teilen (20, 30) aus Thermostrukturverbundwerkstoff (M), das einen vorherigen Schritt zum Abdichten zumindest der Oberflächen (S20, S30) der zusammenzufügenden Teile umfasst, wobei das Abdichten durch Imprägnieren der Teile mit Silizium oder einer Siliziumlegierung erfolgt, dadurch gekennzeichnet, dass nach dem Schritt des Abdichtens und vor dem Schritt des Lötens zumindest auf den Oberflächen (S20, S30) der zusammenzufügenden Teile eine Schicht aus feuerfestem Keramikmaterial (22, 32) gebildet wird, das bei Löttemperatur mit dem Silizium nicht reaktiv ist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Keramikmaterial Siliziumkarbid oder Siliziumnitrid ist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass vor dem Schritt der Bildung der Schicht aus Keramikmaterial die Oberflächen (S20, S30) der zu verbindenden Teile (20, 30) bearbeitet werden, um die Geometrie des Kopplungsbereichs zwischen den beiden Teilen zu definieren.
  4. Verfahren nach irgendeinem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Bildung der Schicht aus feuerfestem Keramikmaterial (22, 32) durch chemische Abscheidung in der Dampfphase vollzogen wird.
  5. Verfahren nach irgendeinem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Bildung der Schicht aus feuerfestem Keramikmaterial (22, 32) durch chemische Infiltration in der Gasphase vollzogen wird.
  6. Verfahren nach irgendeinem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Oberfläche der auf den Oberflächen der Teile gebildeten Schicht aus feuerfestem Keramikmaterial (22, 32) geschliffen wird.
  7. Verfahren nach irgendeinem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Schicht aus feuerfestem Keramikmaterial (22, 32) eine durchschnittliche Dicke aufweist, die zwischen 1 µm und 100 µm liegt.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Schicht aus feuerfestem Keramikmaterial (22, 32) eine durchschnittliche Dicke von etwa 50 µm aufweist.
  9. Verfahren nach irgendeinem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das während des Lötschrittes verwendet Lot eine Zusammensetzung auf Metallbasis ist, die mit dem feuerfesten Keramikmaterial nicht reaktiv oder von kontrollierter Reaktivität ist.
  10. Verfahren nach irgendeinem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass es ferner vor dem Lötschritt das Aufbringen eines Benetzungsschutzmittels auf die nicht zu lötenden Teile der Teile umfasst.
  11. Verfahren nach irgendeinem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Lot während des Lötschrittes durch Kapillarwirkung mittels einer Armatur (50), die zwischen den Oberflächen (S20, S30) der zusammenzufügenden Teile angeordnet ist, befördert wird.
DE102005025071.8A 2004-06-24 2005-05-30 Verfahren zum Löten von Teilen aus Verbundwerkstoff, die mit einer Zusammensetzung auf Siliziumbasis abgedichtet sind Active DE102005025071B4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0406892 2004-06-24
FR0406892A FR2872072B1 (fr) 2004-06-24 2004-06-24 Procede de brasage de pieces en materiau composite thermostructural siliciure

Publications (2)

Publication Number Publication Date
DE102005025071A1 DE102005025071A1 (de) 2006-01-12
DE102005025071B4 true DE102005025071B4 (de) 2022-11-17

Family

ID=34834209

Family Applications (2)

Application Number Title Priority Date Filing Date
DE102005025071.8A Active DE102005025071B4 (de) 2004-06-24 2005-05-30 Verfahren zum Löten von Teilen aus Verbundwerkstoff, die mit einer Zusammensetzung auf Siliziumbasis abgedichtet sind
DE602005013245T Active DE602005013245D1 (de) 2004-06-24 2005-06-22 Verfahren zum löten von verbundmaterialteilen

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE602005013245T Active DE602005013245D1 (de) 2004-06-24 2005-06-22 Verfahren zum löten von verbundmaterialteilen

Country Status (12)

Country Link
US (2) US20060006212A1 (de)
EP (1) EP1786586B1 (de)
JP (2) JP4991529B2 (de)
KR (2) KR101153560B1 (de)
CN (2) CN100503119C (de)
AT (2) AT502103B8 (de)
DE (2) DE102005025071B4 (de)
FR (1) FR2872072B1 (de)
GB (1) GB2415401B (de)
IT (1) ITTO20050443A1 (de)
NO (2) NO340214B1 (de)
WO (1) WO2006010814A1 (de)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2872072B1 (fr) * 2004-06-24 2006-09-29 Snecma Propulsion Solide Sa Procede de brasage de pieces en materiau composite thermostructural siliciure
US20080029500A1 (en) * 2006-08-01 2008-02-07 United Technologies Corporation Brazing repairs
FR2939430B1 (fr) * 2008-12-04 2011-01-07 Snecma Propulsion Solide Procede pour le lissage de la surface d'une piece en materiau cmc
KR101050538B1 (ko) * 2009-06-16 2011-07-20 (주)피티앤케이 무선 전력 충전 시스템 및 그 충전 방법
JP2011062119A (ja) * 2009-09-16 2011-03-31 Seiko Epson Corp 生体試料定量用チップ
FR2957542B1 (fr) * 2010-03-16 2012-05-11 Commissariat Energie Atomique Procede d'assemblage de pieces en materiaux a base de sic par brasage non-reactif, compositions de brasure, et joint et assemblage obtenus par ce procede.
FR2957544B1 (fr) * 2010-03-16 2012-05-11 Commissariat Energie Atomique Procede d'assemblage de pieces en materiaux a base de sic par brasage non-reactif avec ajout d'un renfort, compositions de brasure, et joint et assemblage obtenus par ce procede.
US8727203B2 (en) 2010-09-16 2014-05-20 Howmedica Osteonics Corp. Methods for manufacturing porous orthopaedic implants
CN102009239B (zh) * 2010-10-15 2012-09-05 北京航空航天大学 一种用于碳基材料及其制品的连接方法
CN102357694A (zh) * 2011-09-02 2012-02-22 上海朝日低碳新能源有限公司 一种实现碳纤维与金属的焊接方法
DE102011083865A1 (de) * 2011-09-30 2013-04-04 Sgl Carbon Se Laserstrahllöten von Materialien auf Siliciumkarbidbasis zur Herstellung von keramischen Bauteilen
US9624137B2 (en) * 2011-11-30 2017-04-18 Component Re-Engineering Company, Inc. Low temperature method for hermetically joining non-diffusing ceramic materials
FR2993495B1 (fr) 2012-07-18 2014-08-22 Herakles Procede de brasage de pieces en materiau composite avec integration d'un pion dans la liaison
FR2993494B1 (fr) * 2012-07-18 2014-08-22 Herakles Procede de brasage de pieces en materiau composite avec ancrage du joint de brasure
FR2996478B1 (fr) 2012-10-09 2015-04-24 Commissariat Energie Atomique Procede de brasage de pieces en materiau a base de carbure de silicium avec serrage de maintien
US9573354B2 (en) 2013-03-15 2017-02-21 Rolls-Royce Corporation Layered deposition for reactive joining of composites
US9598321B2 (en) * 2013-03-15 2017-03-21 Rolls-Royce Corporation Melt infiltration wick attachment
US9573853B2 (en) 2013-03-15 2017-02-21 Rolls-Royce North American Technologies Inc. Melt infiltration apparatus and method for molten metal control
US9366140B2 (en) * 2013-03-15 2016-06-14 Rolls-Royce Corporation Ceramic matrix composite repair by reactive processing and mechanical interlocking
WO2014149094A1 (en) 2013-03-15 2014-09-25 Xu Raymond R Braze materials and method for joining of ceramic matrix composites
US9757802B2 (en) 2014-06-30 2017-09-12 General Electric Company Additive manufacturing methods and systems with fiber reinforcement
US9333578B2 (en) 2014-06-30 2016-05-10 General Electric Company Fiber reinforced brazed components and methods
US10364195B2 (en) 2014-07-28 2019-07-30 Rolls-Royce Corporation Braze for ceramic and ceramic matrix composite components
AT516750B1 (de) * 2014-12-18 2016-08-15 Zizala Lichtsysteme Gmbh Verfahren zur Voidreduktion in Lötstellen
US10471531B2 (en) * 2014-12-31 2019-11-12 Component Re-Engineering Company, Inc. High temperature resistant silicon joint for the joining of ceramics
US10293424B2 (en) 2015-05-05 2019-05-21 Rolls-Royce Corporation Braze for ceramic and ceramic matrix composite components
EP3466908A4 (de) * 2016-06-13 2020-01-29 IHI Corporation Komponente aus keramikmatrix-verbundstoff und verfahren zur herstellung davon
SG10201702694WA (en) * 2016-06-23 2018-01-30 Rolls Royce Corp Joint surface coatings for ceramic components
US10597335B2 (en) 2016-08-04 2020-03-24 General Electric Company Seal coats to prevent silicon loss during re-melt infiltration of Si containing composites
US20180200817A1 (en) * 2017-01-19 2018-07-19 General Electric Company Method of brazing and brazed article
US10947162B2 (en) 2017-04-13 2021-03-16 Rolls-Royce Corporation Braze alloys for joining or repairing ceramic matrix composite (CMC) components
CN107363382A (zh) * 2017-06-12 2017-11-21 中国航发哈尔滨东安发动机有限公司 一种利用陶瓷纤维实现镁合金铸件补焊衬垫方法
CN107415364A (zh) * 2017-07-24 2017-12-01 苏州宏久航空防热材料科技有限公司 一种C/SiC陶瓷基复合材料与金属混杂材料
CN108274086B (zh) * 2018-01-24 2022-03-01 哈尔滨工业大学 一种两步法高温钎焊碳纤维增强碳基复合材料的方法
CN110534876B (zh) * 2019-07-23 2021-06-11 西安空间无线电技术研究所 一种反射面天线的制备方法
CN113070543B (zh) * 2021-05-20 2022-06-21 哈尔滨工业大学 采用Ag-Cr复合钎料钎焊碳材料与镍基合金的方法
US11884597B2 (en) 2022-06-28 2024-01-30 General Electric Company Methods for joining ceramic components to form unitary ceramic components

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626516A (en) 1985-07-31 1986-12-02 General Electric Company Infiltration of Mo-containing material with silicon
FR2653763A1 (fr) 1989-10-31 1991-05-03 Gen Electric Materiau composite contenant un materiau fibreux.
EP0636700A2 (de) 1993-07-29 1995-02-01 Shin-Etsu Chemical Co., Ltd. Verfahren und Vorrichtung zur Herstellung von metallkeramischen Verbundwerkstoffen
EP0806402A1 (de) 1996-05-07 1997-11-12 Commissariat A L'energie Atomique Verbindung siliciumcarbidhaltiger keramischer Materialien durch Hartlötung
US5975407A (en) 1996-06-12 1999-11-02 Commissariat A L'energie Atomique Method using a thick joint for joining parts in SiC-based materials by refractory brazing and refractory thick joint thus obtained
DE602004004075T2 (de) 2003-01-30 2007-11-15 Snecma Propulsion Solide Verfahren zur behandlung der oberfläche eines teils aus einem wärmestrukturierten verbundwerkstoff und verwendung davon beim hartverlöten von teilen aus einem wärmestrukturierten verbundwerkstoff

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2739375A (en) * 1952-09-12 1956-03-27 Handy & Harman Joining of non-metallic materials and brazing filler rods therefor
US3222774A (en) * 1961-03-01 1965-12-14 Curtiss Wright Corp Method of brazing porous materials
US3187426A (en) * 1962-03-19 1965-06-08 Sperry Rand Corp Method of making printed circuit assemblies
US3848307A (en) * 1972-04-03 1974-11-19 Gen Electric Manufacture of fluid-cooled gas turbine airfoils
US3925577A (en) * 1972-11-24 1975-12-09 Westinghouse Electric Corp Silicon carbide coated graphite members and process for producing the same
US4055451A (en) * 1973-08-31 1977-10-25 Alan Gray Cockbain Composite materials
US4120731A (en) * 1976-02-23 1978-10-17 General Electric Company Method of making molten silicon infiltration reaction products and products made thereby
JPS5554262A (en) * 1978-10-16 1980-04-21 Hitachi Ltd Brazing method
US4204021A (en) * 1978-12-26 1980-05-20 Ferro Corporation Article of manufacture having composite layer affording abrasion resistant and release properties
US4353953A (en) * 1978-12-29 1982-10-12 General Electric Company Integral composite of polycrystalline diamond and/or cubic boron nitride body phase and substrate phase
US4460382A (en) * 1981-12-16 1984-07-17 General Electric Company Brazable layer for indexable cutting insert
JPS6077178A (ja) * 1983-09-30 1985-05-01 株式会社東芝 窒化物セラミックス接合体およびその製造方法
DE3422097A1 (de) * 1984-06-14 1985-12-19 Klöckner-Humboldt-Deutz AG, 5000 Köln Verbindung von hochverschleissfesten platten, insbesondere keramikplatten, mit einem vor verschleiss zu schuetzendem traeger
US4737328A (en) * 1985-07-29 1988-04-12 General Electric Company Infiltration of material with silicon
JPS62156069A (ja) * 1985-12-26 1987-07-11 Hitachi Cable Ltd ろう接方法
JPS62212056A (ja) * 1986-03-13 1987-09-18 Nasu Bankin Kogyo:Kk 金属板の接合方法
JPS6390358A (ja) * 1986-09-30 1988-04-21 Showa Alum Corp アルミニウム鋳物のろう付方法
JPH0768066B2 (ja) * 1987-12-25 1995-07-26 イビデン株式会社 耐熱性複合体及びその製造方法
US4858310A (en) * 1988-04-12 1989-08-22 W. L. Gore & Associates, Inc. Method for soldering a metal ferrule to a flexible coaxial electrical cable
AU634803B2 (en) * 1989-08-14 1993-03-04 De Beers Industrial Diamond Division (Proprietary) Limited Abrasive body
JPH03115636A (ja) * 1989-09-27 1991-05-16 De-A Gaisou Kk 笠木装置
JPH03115636U (de) * 1990-03-13 1991-11-29
AT393651B (de) * 1990-06-28 1991-11-25 Plansee Metallwerk Hochtemperaturbestaendiger verbundkoerper
JPH04265281A (ja) * 1991-02-20 1992-09-21 Toshiba Corp セラミックスと金メッキ部品の接合方法
JP3119906B2 (ja) * 1991-09-02 2000-12-25 石原薬品株式会社 炭素系材料と金属の接合体
DE4237890C1 (en) * 1992-04-03 1993-06-17 Degussa Ag, 6000 Frankfurt, De Wear part useful in machine building - has coating of hard substances on sealing surface sliding on another surface
JPH06177506A (ja) * 1992-12-10 1994-06-24 Tanaka Kikinzoku Kogyo Kk 回路基板の製造方法及び回路基板製造用複合ろう材
JPH06267963A (ja) * 1993-03-17 1994-09-22 Rohm Co Ltd 半導体部品におけるバンプ電極の形成方法
US5505367A (en) * 1994-11-02 1996-04-09 At&T Corp. Method for bumping silicon devices
US5806588A (en) * 1995-05-16 1998-09-15 Technical Research Associates, Inc. Heat transfer apparatus and method for tubes incorporated in graphite or carbon/carbon composites
KR0165868B1 (ko) * 1995-05-22 1999-01-15 김은영 탄화규소 반응소결체의 제조장치 및 그의 연속제조방법
US5968653A (en) * 1996-01-11 1999-10-19 The Morgan Crucible Company, Plc Carbon-graphite/silicon carbide composite article
JPH09314323A (ja) * 1996-05-28 1997-12-09 Mitsubishi Heavy Ind Ltd ろう付方法
DE19621638C2 (de) * 1996-05-30 2002-06-27 Fraunhofer Ges Forschung Offenzellige Schaumkeramik mit hoher Festigkeit und Verfahren zu deren Herstellung
US5840221A (en) * 1996-12-02 1998-11-24 Saint-Gobain/Norton Industrial Ceramics Corporation Process for making silicon carbide reinforced silicon carbide composite
JPH10277732A (ja) * 1997-04-07 1998-10-20 Suzuki Motor Corp 超音波はんだ付方法
FR2785664B1 (fr) * 1998-11-05 2001-02-02 Snecma Echangeur de chaleur en materiau composite et procede pour sa fabrication
FR2787737B1 (fr) * 1998-12-23 2001-01-19 Commissariat Energie Atomique Composition de brasure, procede d'assemblage de pieces en materiaux a base d'alumine par brasage refractaire avec ladite composition de brasure, assemblage et joint refractaire ainsi obtenus
JP2000277900A (ja) * 1999-03-26 2000-10-06 Furukawa Electric Co Ltd:The 半田コート複合回路基板の製造方法
US6524707B1 (en) * 1999-07-09 2003-02-25 Powerstor Corporation Carbon-bonded metal structures and methods of fabrication
JP2001048667A (ja) * 1999-08-13 2001-02-20 Asahi Glass Co Ltd セラミックス部品の接合方法
FR2806405B1 (fr) * 2000-03-14 2002-10-11 Commissariat Energie Atomique Procede d'assemblage de pieces en materiaux a base de sic par brasage refractaire non reactif, composition de brasure, et joint et assemblage refractaires obtenus par ce procede
JP3980262B2 (ja) * 2000-10-31 2007-09-26 日本碍子株式会社 SiC質熱処理用治具
JP2002293654A (ja) * 2001-03-29 2002-10-09 Taiheiyo Cement Corp SiC−Si複合材料の接合体およびその製造方法
AT5079U1 (de) * 2001-04-30 2002-03-25 Plansee Ag Verfahren zum fügen eines hochtemperaturwerkstoff-bauteilverbundes
US6871395B2 (en) * 2001-08-06 2005-03-29 Siemens Technology-To-Business Center, Llc. Methods for manufacturing a tactile sensor using an electrically conductive elastomer
DE10204860A1 (de) * 2002-02-06 2003-08-14 Man Technologie Gmbh Faserverbundkeramik mit hoher Wärmeleitfähigkeit
US6780028B1 (en) * 2002-12-06 2004-08-24 Autosplice Systems Inc. Solder reserve transfer device and process
FR2850741B1 (fr) * 2003-01-30 2005-09-23 Snecma Propulsion Solide Procede de fabrication d'un panneau de refroidissement actif en materiau composite thermostructural
FR2850742B1 (fr) * 2003-01-30 2005-09-23 Snecma Propulsion Solide Panneau de refroidissement actif en materiau composite thermostructural et procede pour sa fabrication
FR2851244B1 (fr) * 2003-02-17 2005-06-17 Snecma Propulsion Solide Procede de siliciuration de materiaux composites thermostructuraux et pieces telles qu'obtenues par le procede
US7011898B2 (en) * 2003-03-21 2006-03-14 Air Products And Chemicals, Inc. Method of joining ITM materials using a partially or fully-transient liquid phase
FR2872072B1 (fr) * 2004-06-24 2006-09-29 Snecma Propulsion Solide Sa Procede de brasage de pieces en materiau composite thermostructural siliciure
US20060213957A1 (en) * 2005-03-26 2006-09-28 Addington Cary G Conductive trace formation via wicking action

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626516A (en) 1985-07-31 1986-12-02 General Electric Company Infiltration of Mo-containing material with silicon
FR2653763A1 (fr) 1989-10-31 1991-05-03 Gen Electric Materiau composite contenant un materiau fibreux.
EP0636700A2 (de) 1993-07-29 1995-02-01 Shin-Etsu Chemical Co., Ltd. Verfahren und Vorrichtung zur Herstellung von metallkeramischen Verbundwerkstoffen
EP0806402A1 (de) 1996-05-07 1997-11-12 Commissariat A L'energie Atomique Verbindung siliciumcarbidhaltiger keramischer Materialien durch Hartlötung
US5975407A (en) 1996-06-12 1999-11-02 Commissariat A L'energie Atomique Method using a thick joint for joining parts in SiC-based materials by refractory brazing and refractory thick joint thus obtained
DE602004004075T2 (de) 2003-01-30 2007-11-15 Snecma Propulsion Solide Verfahren zur behandlung der oberfläche eines teils aus einem wärmestrukturierten verbundwerkstoff und verwendung davon beim hartverlöten von teilen aus einem wärmestrukturierten verbundwerkstoff

Also Published As

Publication number Publication date
KR20060046480A (ko) 2006-05-17
US20060006212A1 (en) 2006-01-12
CN1988977A (zh) 2007-06-27
NO20070438L (no) 2007-01-23
JP4991529B2 (ja) 2012-08-01
ATE424962T1 (de) 2009-03-15
KR101153560B1 (ko) 2012-06-13
DE102005025071A1 (de) 2006-01-12
DE602005013245D1 (de) 2009-04-23
NO340214B1 (no) 2017-03-20
FR2872072B1 (fr) 2006-09-29
KR101092189B1 (ko) 2011-12-13
JP2006008508A (ja) 2006-01-12
AT502103B8 (de) 2007-07-15
GB2415401A (en) 2005-12-28
GB2415401B (en) 2008-12-17
JP4851125B2 (ja) 2012-01-11
NO20052650D0 (no) 2005-06-02
NO340661B1 (no) 2017-05-29
ITTO20050443A1 (it) 2005-12-25
JP2008503353A (ja) 2008-02-07
KR20070032025A (ko) 2007-03-20
CN1712167A (zh) 2005-12-28
EP1786586B1 (de) 2009-03-11
FR2872072A1 (fr) 2005-12-30
CN100503119C (zh) 2009-06-24
US20080190552A1 (en) 2008-08-14
CN100525979C (zh) 2009-08-12
GB0511696D0 (en) 2005-07-13
WO2006010814A8 (fr) 2006-03-16
AT502103B1 (de) 2007-05-15
EP1786586A1 (de) 2007-05-23
WO2006010814A1 (fr) 2006-02-02
NO20052650L (no) 2005-12-27
AT502103A1 (de) 2007-01-15

Similar Documents

Publication Publication Date Title
DE102005025071B4 (de) Verfahren zum Löten von Teilen aus Verbundwerkstoff, die mit einer Zusammensetzung auf Siliziumbasis abgedichtet sind
DE10327708B4 (de) Verfahren zur Herstellung von gasdichten und hochtemperaturbeständigen Verbindungen von Formteilen aus nichtoxidischer Keramik mittels Laser
DE102005021006A1 (de) Verfahren zur Herstellung eines Teils aus dichtem thermostrukturellem Verbundwerkstoff
DE3324661C2 (de)
AT501341A1 (de) Verfahren zur herstellung einer kühltafel aus thermostruktur-kompositwerkstoff
EP1287941B1 (de) Flussmittelzusammensetzungen zum Hartlöten von Teilen, insbesondere auf der Basis von Aluminium als Grundmaterial, sowie deren Verwendung
DE102004004424A1 (de) Aktive Kühltafel aus Thermostruktur-Kompositwerkstoff und Verfahren zur Herstellung selbiger
WO2018029060A1 (de) Verfahren zum fügen von werkstoffen und werkstoffverbund
DE4433514C2 (de) Produkt mit einer selbstregenerierenden Schutzschicht zur Verwendung in einer reaktiven Umgebung
EP1432847B1 (de) Verfahren zur entfernung von zumindest einem schichtbereich eines bauteils aus metall oder einer metallverbindung
AT409547B (de) Bauelement und verfahren zu dessen herstellung
DE2819856A1 (de) Verfahren und material zur erzeugung einer carbidschicht auf gegenstaenden aus kohlenstoffhaltiger eisenlegierung
DE102006050985A1 (de) Flüssigauftragbare verschleißbeständige Einbrennbeschichtung
DE19920567C2 (de) Verfahren zur Beschichtung eines im wesentlichen aus Titan oder einer Titanlegierung bestehenden Bauteils
EP3095544B1 (de) Verfahren zum verbinden von teilen aus schwer lötbaren materialien
DE4139421C2 (de) Verfahren zum Überziehen einer Substratoberfläche mit einer Sinterschicht und pulverförmiges Ausgangsmaterial dafür
EP0555760A2 (de) Verfahren zur Vergütung der Oberfläche eines Körpers
EP2129639B1 (de) Verfahren zur herstellung eines bauteils aus einer faserverstärkten keramik, insbesondere zur verwendung als triebwerkskomponente
DE102019114665A1 (de) Verbundstruktur, Fahrzeug und Verfahren zum Herstellen einer Verbundstruktur
DE102005045307B4 (de) Bearbeitungsverfahren für einen offenporösen kohlenstoffhaltigen Körper
DE4331307A1 (de) Herstellung eines mit Kohlenstoffasern verstärkten Verbundwerkstoffs
DE10320183B4 (de) Herstellung verschleiß- und bruchfester Gleitringe für mechanische Dichtungen
WO1991005025A1 (de) Ummantelte hartstoffteilchen, verfahren zu ihrer herstellung und verwendung zum herstellen von abtragungswerkzeugen
DE102014201731A1 (de) Bauteil hergestellt aus keramischem Werkstoff und Verfahren zu seiner Herstellung
DE102019216850A1 (de) VERFAHREN ZUR HERSTELLUNG EINES BAUTEILS FÜR EINE STRÖMUNGSMASCHINE AUS EINEM SiC/SiC - FASERVERBUNDWERKSTOFF

Legal Events

Date Code Title Description
8128 New person/name/address of the agent

Representative=s name: CBDL PATENTANWAELTE, 47051 DUISBURG

R012 Request for examination validly filed

Effective date: 20120215

R082 Change of representative

Representative=s name: CBDL PATENTANWAELTE, DE

R081 Change of applicant/patentee

Owner name: HERAKLES, FR

Free format text: FORMER OWNER: SNECMA PROPULSION SOLIDE, LE HAILLAN, FR

Effective date: 20130114

R082 Change of representative

Representative=s name: CBDL PATENTANWAELTE, DE

Effective date: 20130114

R016 Response to examination communication
R018 Grant decision by examination section/examining division
R082 Change of representative

Representative=s name: CBDL PATENTANWAELTE GBR, DE

R020 Patent grant now final