CZ6598A3 - Kompozice kabelových plášťů - Google Patents
Kompozice kabelových plášťů Download PDFInfo
- Publication number
- CZ6598A3 CZ6598A3 CZ9865A CZ6598A CZ6598A3 CZ 6598 A3 CZ6598 A3 CZ 6598A3 CZ 9865 A CZ9865 A CZ 9865A CZ 6598 A CZ6598 A CZ 6598A CZ 6598 A3 CZ6598 A3 CZ 6598A3
- Authority
- CZ
- Czechia
- Prior art keywords
- ethylene
- polymerization
- composition
- density
- polymer
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 90
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims abstract description 60
- 239000005977 Ethylene Substances 0.000 claims abstract description 60
- 229920000098 polyolefin Polymers 0.000 claims abstract description 43
- 239000000155 melt Substances 0.000 claims abstract description 29
- 230000002902 bimodal effect Effects 0.000 claims abstract description 28
- 229920003023 plastic Polymers 0.000 claims abstract description 28
- 239000004033 plastic Substances 0.000 claims abstract description 28
- 239000004711 α-olefin Substances 0.000 claims abstract description 6
- 238000004891 communication Methods 0.000 claims abstract description 5
- 229920000642 polymer Polymers 0.000 claims description 67
- 238000006116 polymerization reaction Methods 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 13
- 150000001336 alkenes Chemical class 0.000 claims description 5
- 125000004432 carbon atom Chemical group C* 0.000 claims description 5
- 238000010557 suspension polymerization reaction Methods 0.000 claims description 5
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 abstract description 22
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 abstract description 12
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 abstract description 8
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 abstract description 7
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 abstract description 7
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 abstract description 3
- OFHCOWSQAMBJIW-AVJTYSNKSA-N alfacalcidol Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C\C=C1\C[C@@H](O)C[C@H](O)C1=C OFHCOWSQAMBJIW-AVJTYSNKSA-N 0.000 abstract 1
- 239000000463 material Substances 0.000 description 32
- 239000007789 gas Substances 0.000 description 15
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000001125 extrusion Methods 0.000 description 10
- 239000012467 final product Substances 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 239000006229 carbon black Substances 0.000 description 8
- 229920002959 polymer blend Polymers 0.000 description 8
- 239000012925 reference material Substances 0.000 description 8
- 229920000573 polyethylene Polymers 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 229920001519 homopolymer Polymers 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- -1 polyethylene Polymers 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 230000006355 external stress Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 239000011257 shell material Substances 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000012685 gas phase polymerization Methods 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N n-decene Natural products CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- 210000002445 nipple Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- FBWNMEQMRUMQSO-UHFFFAOYSA-N tergitol NP-9 Chemical compound CCCCCCCCCC1=CC=C(OCCOCCOCCOCCOCCOCCOCCOCCOCCO)C=C1 FBWNMEQMRUMQSO-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/16—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0807—Copolymers of ethene with unsaturated hydrocarbons only containing four or more carbon atoms
- C08L23/0815—Copolymers of ethene with unsaturated hydrocarbons only containing four or more carbon atoms with aliphatic 1-olefins containing one carbon-to-carbon double bond
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2933—Coated or with bond, impregnation or core
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2933—Coated or with bond, impregnation or core
- Y10T428/2938—Coating on discrete and individual rods, strands or filaments
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2933—Coated or with bond, impregnation or core
- Y10T428/294—Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2933—Coated or with bond, impregnation or core
- Y10T428/294—Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
- Y10T428/2942—Plural coatings
- Y10T428/2947—Synthetic resin or polymer in plural coatings, each of different type
Landscapes
- Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Physics & Mathematics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Organic Insulating Materials (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Polymerisation Methods In General (AREA)
- Paints Or Removers (AREA)
- Insulated Conductors (AREA)
Description
Vynález se týká kompozic kabelových plášťů a rovněž jejich použití jako vnějších plášťů pro silové a komunikační kabely.
Dosavadní stav techniky
Kabely, kterými se rozumí vysokonapěťové, středněnapěťové a nízkonapěťové silové kabely a komunikační kabely, například optické kabely, koaxiální kabely a párové kabely, zpravidla obsahují jádro obklopené pláštěm, které je tvořeno jednou nebo více vrstvami. Vnější vrstva se označuje jako vnější plášť nebo plášťová vrstva a v současné době se vyrábí z polymerního materiálu, výhodně ethylenové umělé hmoty. Značně různorodá oblast použití plášťů pro různé typy kabelů, například pro telekomunikační kabely, včetně konvenčních měděných kabelů a kabelů tvořených optickými vlákny, a rovněž pro silové kabely, má za následek to, že materiál pláště musí splňovat celou řadu požadavků, pokud jde o vlastnosti tohoto materiálu, přičemž tyto požadavky jsou v určitých ohledech protichůdné. Důležitými vlastnostmi materiálů pro kabelové pláště jsou tedy dobrá zpracovatelnost, tj . materiál by měl být dobře zpracovatelný v širokém teplotním rozsahu, nízké smrštění, vysoká mechanická pevnost, vysoká jakost povrchu a odolnost proti popraskání v důsledku působení vnějšího tlaku (ESCR). Z
• · • · · · • · · · • · · · · těchto důvodů je tedy nesnadné nebo dokonce nemožné splnit všechny tyto požadavky, kladené na vlastnosti těchto materiálů, takže známé plášťové materiály jsou v podstatě výsledkem kompromisu. Dobré vlastnosti na jedné straně jsou získány na úkor zhoršení ostatních vlastností.
Takže by bylo velmi výhodné, pokud by se podařilo zmíněný kompromis mezi jednotlivými vlastnostmi materiálů kabelových plášťů redukovat nebo dokonce eliminovat. Zvláště výhodné by bylo, pokud by se podařilo zlepšit ESCR materiálu a redukovat smrštění při dané zpracovatelnosti.
Podstata vynálezu
Vynález těchto' cílů dosahuje pomocí kompozice kabelových plášťů, která je namísto unimodální polyethylenové umělé hmoty, používané u konvenčních kompozic kabelových plášťů, tvořena multimodální olefinovou polymerní směsí, mající určité dané hodnoty hustoty a rychlost proudění taveniny jak pokud jde o polymerní směs, tak pokud jde o polymery tvořící jeho část.
Vynález tedy poskytuje kompozici kabelového pláště, která je charakteristická tím, že je tvořena multimodální olefinovou polymerní směsí mající hustotu přibližně 0,915 až 0,955 g/cm3 a rychlost tečení taveniny přibližně 0,1 až 0,3 g/10 min, přičemž uvedená polymerní směs obsahuje alespoň první a druhý olefinový polymer, přičemž první z nich má hustotu a rychlost tečení taveniny zvolenou z (a) přibližně 0,930 až
0, 975 g/cm3 a přibližně 50 až 2000 g/10 min a (b) přibližně 0,88 až 0,93 g/cm3 a přibližně 0,1 až 0,8 g/10 min.
Vynález se dále týká použiti této kompozice kabelového pláště jako vnějšího pláště pro silový nebo komunikační kabel.
Další odlišnosti a výhody vynálezu vyplynou z následujícího popisu a přiložených patentových nároků.
Nicméně, ještě před samotným detailnějším popisem vynálezu je třeba definovat některé klíčové výrazy.
Výrazem „modalita polymerů se rozumí struktura distribuce molekulových hmotností polymeru, t j . vzhled křivky, vyjadřující počet molekul jako funkci molekulové hmotnosti. Pokud tato křivka vykazuje jedno maximum, potom se polymer označuje jako „unimolární, zatímco pokud křivka vykazuje velmi široké maximum nebo dvě, popřípadě více maxim, a polymer je tvořen dvěma nebo více frakcemi, potom se tento polymer označuje jako „bimodální nebo „multimodální atd.. V následující části jsou všechny polymery, jejichž distribuční křivka molekulové hmotnosti je velmi široká nebo má více než jedno maximum, označovány jako „multimodální.
„Rychlost tečení taveniny (MFR) polymeru se stanoví podle zkušební normy ISO 1133, podmínky 4 a je ekvivalentem dříve používaného, výrazu „tavný index. Rychlost tečení taveniny, která se vyjadřuje v g/10 min, je vyjádřením tekutosti a tedy zpracovatelnosti polymeru. Čím vyšší je rychlost tečení taveniny, tím nižší je viskozita polymeru.
• · * · · · ··· ·· · ···· • · ··· · · · · · ···· · • · · ··· · · · ·· ·· ·· ··· ·· ··
Výraz „odolnost proti praskání v důsledku vnějšího tlaku (ESCR) znamená odolnost polymeru proti vzniku prasklin v důsledku působení mechanického tlaku a reakčního činidla ve formě povrchově aktivního činidla.
ESCR se určuje podle zkušební normy ASTM D 1693 A, jako reakční činidlo se použil Igepal CO-630.
Výrazem „ethylenová umělá hmota se rozumí umělá hmota na bázi polyethylenu nebo kopolymery ethylenu, přičemž většinu hmoty tvoří ethylenový monomer.
Jak vyplývá z předcházejícího textu, kompozice kabelového pláště podle vynálezu se odlišuje od známých kompozic tím, že je tvořena multimodální olefinovou polymerní směsí se specifickou hustotou a rychlostí tečení taveniny.
Je známo, že se výroba multimodálních, zejména bimodálních olefinových polymerů, výhodně multimodálních ethylenových umělých hmot, provádí ve dvou nebo více reaktorech spojených do série. Tento způsob výroby multimodálních polymerů je například popsán v patentových dokumentech EP 040 992, EP 041 796,
EP 022 376 a WO 92/12182, které jsou zde zmíněny formou odkazů. Z těchto dokumentů vyplývá, že všechny polymerní stupně a jednotlivé polymerní stupně lze provádět v kapalné fázi, suspenzi nebo plynné fázi.
U způsobu podle vynálezu se hlavní polymerační stupně výhodně provádí jako kombinace suspenzní polymerace a polymerace v plynné fázi nebo pouze jako polymerace v plynných fázích. Suspenzní polymerace se výhodně provádí v tak zvaném smyčkovém reaktoru. Použití suspenzní polymerace v míchaném reakčním tanku
I · · · « » · 4 ·· ·· není v rámci vynálezu výhodné vzhledem k tomu, že tento způsob není dostatečně flexibilní pro produkci kompozice podle vynálezu a zahrnuje problémy spojené s rozpustností. Pro produkci sloučeniny podle vynálezu s vylepšenými vlastnostmi je flexibilní způsob žádoucí. Z tohoto důvodu je výhodné, aby se kompozice připravovala ve dvou hlavních polymeračních stupních v kombinaci smyčkového reaktoru a plynového reaktoru, nebo ve dvou plynových reaktorech. Zvláště výhodné je, pokud se kompozice připravuje ve dvou hlavních polymeračních stupních. V tomto případě se první stupeň provádí jako suspenzní polymerace ve smyčkovém reaktoru a druhý stupeň se provádí jako polymerace v plynné fázi v plynovém reaktoru. Případně může hlavním polymeračním stupňům předcházet předpolymerace, při které se připraví přibližně 20 hm. %, výhodně 1 až 10 hm. % celkového množství polymerů. Tato technika zpravidla poskytuje multimodální polymerní směs díky polymeraci a za použití chrómu, metallocenu nebo Ziegler-Nattova katalyzátoru v několika postupných polymeračních reaktorech. Při výrobě řečené bimodální ethylenové umělé hmoty, která je podle vynálezu výhodným polymerem, se nejprve v prvním reaktoru připraví za určitých podmínek, týkajících se monomerní kompozice, tlaku vodíku a plynu, teploty, tlaku atd., první ethylenový polymer. Po zpolymerování prvního reaktoru se reakční směs obsahující připravený polymer zavede do druhého reaktoru, přičemž další polymerace se provádí za dalších podmínek. V prvním reaktoru se zpravidla připravuje první polymer s vysokou rychlostí tečení taveniny (nízká molekulová hmotnost) a se středním nebo malým přídavkem komonomeru nebo s žádným přídavkem,
zatímco v druhém reaktoru se připravuje druhý polymer s nízkou rychlostí tečení taveniny (vysoká molekulová hmotnost) a s větším přídavkem komonomeru. Jako komonomer se při kopolymeraci ethylenu zpravidla použijí další olefiny mající až 12 atomů uhlíku, například a-olefiny mající tři až dvanáct atomů uhlíku, např. propen, buten, 4-methyl-l-penten, hexen, okten, deken, atd.. Výsledný finální produkt je tvořen dobře promísenou směsí polymerů, získaných ze dvou reaktorů, přičemž různé distribuční křivky molekulových hmotností těchto polymerů společně tvoří distribuční křivku molekulových hmotností, mající široké maximum nebo dvě maxima, tj . konečným produktem je bimodální polymerní směs. Vzhledem k tomu, že multimodální a zejména bimodální polymery, výhodně ethylenové polymery a jejich příprava spadají do známého stavu, nebudou zde již dále podrobněji popisovány.
V tomto bodu je třeba zdůraznit, že při produkci dvou nebo více polymerních složek v odpovídajícím počtu reaktorů spojených v sérii lze pouze v případě složky produkované v prvním reakčním stupni a v případě konečného produktu rychlost tečení taveniny, hustotu a další vlastnosti měřit přímo na izolovaném materiálu. Odpovídající vlastnosti polymerních složek, produkovaných v reakčních stupních následujících v prvním stupni, lze určit pouze nepřímo na základě odpovídajících hodnot materiálu zaváděného do příslušného reakčního stupně a odváděného z tohoto reakčního stupně.
Přestože multimodální polymery a jejich produkce jsou samy o sobě již známy, nebylo doposud známo • · · · 4 4 44 · · · · • 4 4 4 4 4 4 4 4 4 9 • · ··· · · · · · ··· 9 9 • · 4 4 4 · 4 4 4 ·· 44 44 ··· ·· 94 použití těchto multimodálních polymerních směsí v kompozicích kabelových plášťů. Především nebylo doposud známo použití multimodálních polymerních směsí, majících specifickou hodnotu hustoty a rychlosti tečení tekutiny podle vynálezu, v tomto kontextu.
Jak již bylo zmíněno, výhodně je multimodální olefinovou polymerní směsí v kompozici pro kabelový plášť podle vynálezu bimodální polymerní směs. Rovněž výhodné je, pokud se tato bimodální polymerní směs připravuje výše popsaným způsobem polymerace za různých polymeračních podmínek ve dvou nebo více polymeračních reaktorech spojených v sérii. Díky flexibilitě, pokud jde o takto získané reakční podmínky, je nejvýhodnější, pokud se polymerace provádí ve smyčkovém reaktoru a plynovém reaktoru, dvou různých plynových reaktorech nebo dvou různých smyčkových reaktorech jako polymerace jednoho, dvou nebo více olefinových monomerů, přičemž různé polymerační stupně mají různé obsahy komonomeru. Výhodně se polymerační podmínky u výhodného dvoustupňového způsobu zvolí tak, aby se v jednom stupni, výhodně v prvním stupni, díky vysokému obsahu látky způsobující přenos řetězce (plynný vodík) produkoval nízkomolekulární polymer mající střední, nízký nebo ve výhodném případě žádný obsah komonomeru, zatímco se bude v dalším stupni, výhodně v druhém stupni, produkovat vysokomolekulární polymer mající vysoký obsah komonomeru. Nicméně pořadí těchto stupňů může být převráceno.
Multimodální olefinovou polymerní směsí podle vynálezu je výhodně směs propylenových umělých hmot nebo nejvýhodněji ethylenová umělá hmota. Komonomer nebo komonomery se v rámci vynálezu zvolí ze skupiny ·· ·· ·· ·· » · 9 <
> · 9 9
99 zahrnující α-olefiny mající až 12 atomů uhlíku, což v případě ethylenových umělých hmot znamená, že se komonomer nebo komonomery zvolí z α-olefinů majících 3 až 12 atomů uhlíku. Zvláště výhodnými komonomery jsou buten, 4-methyl-l-penten, 1-hexen a 1-okten.
S přihlédnutím k výše uvedeným skutečnostem je výhodná ethylenová umělá hmota podle vynálezu tvořena nízkomolekulárním ethylenovým homopolymerem smíšeným s vysokomolekulárním kopolymerem ethylenu a butenem, 4-methyl-l-pentenem, 1-hexenem nebo 1-oktenem.
Vlastnosti jednotlivých polymerů v olefinové polymerní směsi podle vynálezu by měly být zvoleny tak, že finální olefinová polymerní směs má hustotu přibližně 0,915 až 0,955 g/cm3, výhodně přibližně 0,920 až 0,950 g/cm3, a rychlost tečení tekutiny přibližně 0,1 až 3,0 g/10 min, výhodně přibližně 0,2 až 2,0 g/10 min. Tohoto lze podle vynálezu výhodně dosáhnout pomocí olefinové polymerační směsi, obsahující první olefinový polymer mající hustotu přibližně 0,930 až 0,975 g/cm3, výhodně přibližně 0,955 až 0,975 g/cm3, a rychlost tečení tekutiny přibližně 50 až 2000 g/10 min, výhodně přibližně 100 až 1000 g/10 min, a nejvýhodněji přibližně 200 až 600 g/10 min, a alespoň druhý olefinový polymer, mající takovou hustotu a takovou rychlost tečení taveniny, že olefinová polymerní směs získá výše zmíněnou hustotu a rychlost tečení taveniny.
Pokud je multimodální olefinová polymerní směs bimodální, tj . pokud se jedná o směs dvou olefinových polymerů (první olefinový polymer a druhý olefinový polymer), potom se první olefinový polymer produkuje v • fa · · · · ·· · fafa fa • •fafa fafafa fafafafa • fa fafafa fafafa fafa fafafa fa fa • fa fafafafa fafafa
Q ·· , fa* fafa fafafa fafa fafa prvním reaktoru a má výše definovanou hustotu a rychlost tečení tekutiny, přičemž hustota a rychlost tečení tekutiny druhého olefinového polymeru, který se produkuje v druhém reakčním stupni, může být, jak již bylo naznačeno výše, určena nepřímo, na základě hodnot materiálu zaváděného a vypouštěného z druhého reakčního stupně.
V případě, že má olefinová polymerní směs a první olefinový polymer výše uvedené hodnoty hustoty a rychlosti tečení taveniny, potom výpočet naznačuje, že druhý olefinový polymer, produkovaný v druhém reakčním stupni, by měl mít hustotu řádově přibližně 0,88 až 0,93 g/cm3, výhodně 0,91 až 0,93 g/cm3, a rychlost tečení taveniny řádově přibližně 0,01 až 0,8 g/10 min, výhodně přibližně 0,05 až 0,3 g/10 min.
Jak již bylo naznačeno v předcházejícím textu, pořadí jednotlivých reákčníeh stupňů lze převrátit, což by mohlo znamenat, že pokud má konečná olefinová polymerní směs hustotu přibližně 0,915 až 0,955 g/cm3, výhodně přibližně 0,920 až 0,950 g/cm3, a rychlost tečení taveniny přibližně 0,1 až 3,0 g/10 min, výhodně přibližně 0,2 až 2,0 g/10 min, a první olefinový polymer, produkovaný v prvním stupni, má hustotu přibližně 0,88 až 0,93 g/cm3, výhodně přibližně 0,91 až 0,93 g/cm3 a rychlost tečení taveniny 0,01 až 0,8 g/10 min, výhodně přibližně 0,05 až 0,3 g/10 min, potom druhý olefinový polymer, produkovaný v druhém stupni dvoustupňového způsobu, by měl mít, podle výše zmíněných výpočtů hustotu, pohybující se řádově přibližně v rozmezí od 0,93 do 0,975 g/cm3, výhodně přibližně od 0,955 do 0,975 g/cm3 a rychlost tečení taveniny v rozmezí od 50 do 2000 g/10 min, výhodně ·· «* ·*» • · · · r · · • · · < · ·
9 999 9 9 9
9 9 9 9
99 99 9
99
Β · · I
Β · 9 9
9 9 9 Β • · « e· ·· přibližně od 100 do 1000 g/10 min, a nejvýhodněji přibližně od 200 do 600 g/10 min. Nicméně toto pořadí stupňů, použité při výrobě olefinové polymerní směsi podle vynálezu, je méně výhodné.
Aby se optimalizovaly vlastnosti kompozice kabelového pláště podle vynálezu, měly by být jednotlivé polymery v olefinové polymerní směsi přítomny v takovém hmotnostním poměru, aby se dosáhlo toho, že konečná olefinové polymerní směs bude vykazovat stejné vlastnosti, jako jednotlivé polymery obsažené v této směsi. Z toho vyplývá, že jednotlivé polymery by neměly být přítomny v příliš malých množstvích, tj. množstvích, představujících přibližně 10 hm. % nebo nižších, protože takto malá množství polymerů by neovlivnila vlastnosti olefinové polymerní směsi. Přesněji řečeno je výhodné, pokud množství olefinového polymeru, který má vysokou rychlost tečení taveniny (nízkou molekulovou hmotnost) dosahuje alespoň 25 hm. %, ale současně není vyšší než 75 hm. % celkového polymeru. Výhodné je, pokud se toto množství pohybuje v rozsahu od 35 do 55 hm. % celkového polymeru. V tomto případě dochází k optimalizaci vlastností konečného produktu.
Výše popsaná multimodální olefinové polymerní směs podle vynálezu může být připravena jinými způsoby než polymerací ve dvou nebo více polymeračních reaktorech spojených do série, ačkoliv je třeba uvést, že tento způsob je zvláště výhodným provedením podle vynálezu. Podle jednoho alternativního provedení vynálezu lze multimodální olefinovou polymerní směs připravit smísením jednotlivých polymerů v roztaveném stavu za
AA Α· AA • · A A AAA
AAAA A A A * A A· · A A
A A AAA
A A A A
A A A A
A A AA
A* A A A
A A A
A A A A vzniku části olefinové polymerní směsi. Tohoto smísení taveniny se výhodně dosahuje koextrudací jednotlivých polymerů, v jehož důsledku dochází k mechanickému směšování. Vzhledem k tomu, že u směšování taveniny je nesnadné dosažení dostatečné homogenity konečné olefinové polymerní směsi, je tento způsob přípravy multimodální olefinové polymerní směsi méně výhodný než výše popsaný výhodný způsob, zahrnující polymeraci v polymerních reaktorech spojených do série.
Použití multimodálních polymerních olefinových směsí výše popsaného typu v kompozicích kabelového pláště podle vynálezu způsobuje, že tyto kompozice mají lepší vlastnosti než běžné kompozice kabelového pláště, zejména pokud jde o smrštění, popraskání v důsledku působení vnějšího tlaku (ESCR) a pokud jde o zpracovatelnost. Zejména redukce smršťování kompozice kabelových plášťů podle vynálezu představuje velkou výhodu.
·· ·· ·* · ·· ·· ···· · · ·* ···· • · · · · · · ···· • ······ · · · ···· · ·· ···· · · · • · ·· ·· ··· · · ··
Příklady provedení vynálezu
Příklad 1
V polymeračním zařízení, tvořeném smyčkovým reaktorem spojeným v sérii s plynovým reaktorem a používajícím Ziegler-Nattův katalyzátor, se za následujících podmínek nechala zpolymerovat bimodální ethylenová umělá hmota.
První reaktor (smyčkový reaktor)
V tomto reaktoru se připravil polymerací ethylenu v přítomnosti vodíku (molární poměr vodíku ku ethylenu byl 0,38 : 1) první polymer (polymer 1). Výsledný ethylenový homopolymer měl hodnotu rychlosti tečení taveniny 492 g/10 min a hustoty 0,975 g/cm3.
Druhý reaktor (plynový reaktor)
V tomto reaktoru se připravil polymerací ethylenu a butenu (molární poměr v plynné fázi butenu ku ethylenu byl 0,22 : 1 a vodíku ku ethylenu byl 0,03 : 1) druhý polymer (polymer 2). Výsledný kopolymer ethylenu a butenu byl přítomen ve formě dokonale promíchané směsi s ethylenovým homopolymerem z prvního reaktoru, přičemž hmotnostní poměr polymeru 1 ku polymeru 2 byl 45 : 55.
Bimodální směs polymeru 1 a polymeru 2 měla hustotu 0,941 g/cm3 a hodnotu rychlosti tečení taveniny 0,4 g/10 min. Po sloučení se sazemi se získal finální produkt obsahující 2,5 hm. % sazí, čímž se dosáhlo finální hustoty 0,951 g/cm3. Tento finální produkt bude • · · · · · * ·· ·· ····> · · ·· ···· • · · · · · · ···· • · ··· · · · · · ··· · · • · ···· ··· • · · · ·· ··· · · · β v následující části označen jako bimodální ethylenová umělá hmota 1.
Bimodální ethylenová umělá hmota 1 se použila jako kompozice kabelového pláště a její stanovené vlastnosti se porovnaly s vlastnostmi konvenční kompozice kabelového pláště tvořené unimolární ethylenovou umělou hmotou (referenční kompozice 1). Referenční kompozice 1 měla hustotu 0,941 g/cm3 (po sloučení se sazemi jejich obsah představoval 2,5 hm. % a jejich hustota byla 0,951 g/cm3) a rychlost tečení taveniny 0,24 g/10 min.
V tomto příkladu, stejně jako v následujících příkladech, se smrštění kompozice stanovilo za použití zkušebního testu (dále označovaného jako UNI-5079), který byl vyvinut pro účely vyhodnocení tendencí plášťových materiálů smršťovat se. Smrštění se stanovilo následujícím způsobem.
Vzorky kabelu pro vyhodnocení se extrudovaly za následujících podmínek.
Vodič:
Tloušťka stěny:
Teplota, hlavy:
Vzdálenost mezi hlavou a vodní Teplota, vodní lázně: Lineární rychlost:
Typ hlavy:
Vsuvka:
Hlava:
Šroub:
Lamač
3,0 mm pevný, Al vodič 1,0 mm +210°C nebo +180°C lázní: 35 cm +23°C 75 m/min polotrubice 3,65 mm 5,9 mm Elise • · · · 9
Smrštění je vyjádřeno v procentech a měří se 24 hodin po vytlačení, v místnosti s konstantní teplotou (+23°C) a 24 hodin po vytlačení při teplotě +100°C.
K měření se použily vzorky kabelu, měřící přibližně 40 cm. Běžně se kabelový vzorek označí tak, aby bylo možné po kondiciování vzorku provést měření ve stejném místě vzorku.
Na kabelu se vyznačí značky ve vzdálenosti přibližně 40 cm, potom se kabel v místě značek přeřízne a získané vzorky se přeměří. Pro analyzování každého kabelu se použijí vždy dva vzorky. Vzorky se umístí na 24 hodin do místnosti s konstantní teplotou. Po uplynutí této doby se změří a vypočte hodnota smrštění v procentech.
Všechny vzorky se umístí na mastkové lože, kde se ponechají 24 hodin při 100°C. Po uplynutí této doby se vzorek změří a na základě počáteční délky se vypočte hodnota celkového smrštění v procentech.
Výsledky měření jsou shrnuty v níže uvedené tabulce 1.
Tabulka 1
Vlastnosti materiálu Bimodální 1 Referenční 1
Pevnost při přetržení v tahu (MPa)1 | 34 | 38 |
Protažení při přetržení (%)1 | 800 | 900 |
ESCR2 | 0/2000 hod | F20/550 hod |
Smrštění (%) při | ||
23°C/24 hod3 | 0,0 | 0,7 |
23°C/24 hod4 | 0,0 | 0,7 |
Smrštění (%) při | ||
100°C/24 hod3 | 1,0 | 2,0 |
100°C/24 hod4 | 0,9 | 2,3 |
Po extrudaci | při 180°C při | ||
15 m/min | 0-1 | 0 | |
35 m/min | 0-1 | 0 | |
75 m/min | 0 | 0 | |
140 m/min | 0 | 1 | |
Po extrudaci | při 210°C při | ||
15 m/min | - | 0 | |
35 m/min | 0-1 | 0 | |
75 m/min | 0-1 | 0 | |
140 m/min | 0 | 0-1 |
1: | K ISO | určení se 527-2 1993/5A. | použila | testovací | metoda |
2: | K | určení se | použila | testovací | metoda |
ASTM | D 1693/A, 10 | % Igepal. | Výsledky | vyj adřuj i | |
procento popraskaných vzorkových tyčí | v daném |
• « • · · · • · • · 4 čase. F20 znamená, že po určeném čase došlo k popraskání 20 % vzorkových tyčí.
3: Ke stanovení se použila testovací metoda UNI-5079 a stanovení se provedlo po extrudaci při 180°C.
4: Ke stanovení se použila testovací metoda UNI-5079 a stanovení se provedlo po extrudaci při 210°C.
5: Klasifikace: 0 = vynikající až 4 = nerovný.
Z hodnot shrnutých v tabulce 1 je zřejmé, že plášťový materiál podle vynálezu vykazuje lepší vlastnosti pokud jde o smršťování materiálu, zejména při pokojové teplotě, a odolnost proti popraskání v důsledku působení vnějšího tlaku (ESCR). Pokud jde o pevnost v tahu, dosahuje plášťový materiál podle vynálezu hodnot srovnatelných s referenčním materiálem 1. Rovněž zpracovatelnost, kterou lze odvodit z hodnoty rychlosti tečení tekutiny, plášťového materiálu podle vynálezu, je stejně dobrá jako zpracovatelnost referenčního materiálu 1. Je třeba zdůraznit, že zatím, co referenční materiál 1 má dobré zpracovatelské vlastnosti, získané na úkor většího smršťování, zejména při pokojové teplotě, má plášťový materiál podle vynálezu jak dobrou zpracovatelnost, tak dobré (nízké) smršťovací vlastnosti. To lze považovat za podstatnou výhodu, která je ještě zesílena zlepšením ESCR vlastností plášťového materiálu podle vynálezu.
• fl · ·
Příklad 2
V polymeračním zařízení z příkladu 1 se připravila za následujících podmínek bimodální ethylenová umělá hmota.
První reaktor (smyčkový reaktor)
V tomto reaktoru se připravil polymerací ethylenu v přítomnosti vodíku (molární poměr vodíku ku ethylenu byl 0,38 : 1) první polymer (polymer 1). Výsledný ethylenový homopolymer měl hodnotu rychlosti tečení taveniny 444 g/10 min a hustotu 0,975 g/cm3.
Druhý reaktor (plynový reaktor)
V tomto reaktoru se připravil polymerací ethylenu a butenu (molární poměr v plynné fázi butenu ku ethylenu byl 0,23 : 1 a vodíku ku ethylenu byl 0,09 : 1) druhý polymer (polymer 2). Výsledný kopolymer ethylenu a butenu byl přítomen ve formě dokonale promíchané směsi s ethylenovým homopolymerem z prvního reaktoru, přičemž hmotnostní poměr polymeru 1 ku polymeru 2 byl 40 : 60.
Bimodální směs polymeru 1 a polymeru 2 měla hustotu 0,941 g/cm3 (po přidání sazí se získal finální produkt obsahující 2,5 hm. % sazí, čímž se dosáhlo finální hustoty 0,951 g/cm3). Tento finální produkt bude v následující části označen jako bimodální ethylenová umělá hmota 2.
Podobným způsobem se připravila ještě další bimodální ethylenová umělá hmota (v následující části bude označována jako bimodální ethylenová hmota 3), ·· 00 • · · · • 0 0 0
• · · 0 0 00 • · ·· 0 0 0 0 • 0 · 0 0 00 • · · · ·000 0 • · · 0 0 0 ·· ·· · 00 00 přičemž molární poměr vodíku ku ethylenu v prvním reaktoru byl 0,39 : 1 a výsledný ethylenový homopolymer (polymer 1) v prvním reaktoru měl hodnotu rychlosti tečení taveniny 468 g/10 min a hustotu 0,962 g/cm3. V druhém reaktoru se připravil kopolymer ethylenu a butenu (polymer 2), přičemž molární poměr butenu ku ethylenu byl 0,24 : 1 a molární poměr vodíku ku ethylenu byl 0,07 : 1. Hmotnostní poměr polymeru 1 ku polymeru 2 byl 45 : 55. Finální produkt (bimodální ethylenová umělá hmota 4) měla hustotu 0,941 g/cm3 (po sloučení s 2,5 hm. % sazí 0,951 g/cm3) a hodnotu rychlosti tečení tekutiny 1,3 g/10 min. Bimodální ethylenová umělá hmota 2 a bimodální ethylenová umělá hmota 3 se použily jako kompozice kabelového pláště a vlastnosti těchto kompozic se po stanovení porovnaly s vlastnostmi známé plášťové kompozice (referenční kompozice 2). Referenční kompozicí 2 byla speciální kompozice, určená pro případy, ve kterých je žádoucí velmi nízké smrštění, například při aplikaci na optická vlákna, přičemž tato kompozice je tvořena tavnou směsí polyethylenové frakce, mající hustotu 0,960 g/cm3 a hodnotu rychlosti tečení taveniny 3,0 g/10 min, a další polyethylenovou frakcí, mající hustotu 0,920 g/cm3 a hodnotu rychlosti tečení taveniny 1,0 g/10 min. Výsledný produkt měl tedy hustotu 0,943 g/cm3 (po přidání 2,5 hm. % sazí 0,953 g/cm3) a hodnotu rychlosti tečení taveniny 1,7 g/10 min.
Výsledky měření vlastností tří kompozic kabelového pláště jsou shrnuty v níže uvedené tabulce 2.
·· ··
Tabulka 2
Vlastnosti materiálu Bimodální Referenční
3 2
Pevnost při přetržení v tahu (MPa)1 32 | 30 890 | 32 1150 | |
Protažení při přetržení (%)1 | 900 | ||
ESCR2 | 0/2000 | 0/2000 | F20/190 |
hod | hod | hod | |
Smrštění (%) při 23°C/24 hod4 | 0,0 | 0,0 | 0,1 |
Smrštění (%) při 100°C/24 hod4 | 0,8 | 1,0 | 0,8 |
Povrchová úprava5 | |||
Po extrudaci při 210°C při | |||
15 m/min | 2 | 2 | 3 |
35 m/min | 1-2 | 1 | 4 |
75 m/min | 0-1 | 0 | 4 |
140 m/min | 0-1 | 0 | 4 |
1: | K ISO | určení se 527-2 1993/5A. | použila | testovací | metoda |
2: | K | určení se | použila | testovací | metoda |
ASTM | D 1693/A, 10 | % Igepal. | Výsledky | vyj adřuj í | |
procento popraskaných vzorkových tyčí | v daném |
čase. F20 znamená, že po určeném čase došlo k popraskání 20% vzorkových tyčí.
4: Ke stanovení se použila testovací metoda UNI-5079 a stanovení se provedlo po extrudaci při 210°C.
5: Klasifikace: 0 = vynikající až 4 = nerovný.
44
9 4 4
9 99
9 9 9
9 9
44
9« ·· • 9 9 9 • 9 9 9 • 9 9 9 9
9 9
9
Z hodnot shrnutých v tabulce 2 je zřejmé, že speciální plášťový materiál známého stavu techniky (referenční materiál 2) má při pokojové teplotě dobré smršťovací vlastnosti. Těchto smršťovacích vlastností bylo však u referenčního materiálu 2 dosaženo za cenu zhoršení zpracovatelských vlastností, jak je patrné ze získaných hodnot pro povrchovou úpravu. Plášťový materiál, použitý jako referenční materiál 2 lze zpracovat pouze v úzkém „provozním okně, tj . v úzkém rozsahu provozních parametrů. Na rozdíl od referenčního materiálu 2 plášťové materiály podle vynálezu (bimodální umělé ethylenové hmoty 2a 3) vykazují stejně dobré smrštění jako referenční materiál 2 a současně lepší zpracovatelské vlastnosti (širší „provozní okno) a umožňují dosáhnout lepší povrchové úpravy kabelového pláště. Plášťové materiály podle vynálezu navíc vykazují lepší odolnost proti popraskání v důsledku vnějšího tlaku a dobrou pevnost v tahu.
Příklad 3
V polymeračním zařízení z příkladu 1 a 2 se připravila za následujících podmínek bimodální polyethylenová umělá hmota.
První reaktor (smyčkový reaktor)
V tomto reaktoru se připravil polymerací 1-butenu a plynného vodíku (molární poměr 1-butenu ku plynnému vodíku ku ethylenu byl 1,74 : 0,22 : 1) první polymer (polymer 1). Polymer 1 měl hodnotu rychlosti tečení taveniny 310 g/10 min a hustotu 0,939 g/cm3.
Druhý reaktor (plynový reaktor)
Polymer ze smyčkového reaktoru se přemístil do plynového reaktoru, ve kterém došlo k další polymeraci ethylenu s 1-butenem v přítomnosti plynného vodíku (molární poměr 1-butenu ku plynnému vodíku ku ethylenu byl 0,80 : 0,02 : 1), která měla za následek vznik nové polymerní složky (polymeru 2). Hmotnostní poměr polymeru 1 ku polymeru 2 byl 42 : 58. Hodnota rychlosti tečení taveniny výsledného finálního produktu byla 0,3 g/10 min a hodnota hustoty byla 0,922 g/cm3. V tomto případě, kdy obě polymerní složky obsahovaly 1-buten jako komonomer, se rovněž dosáhlo, jak je patrné z níže uvedené tabulky 3, vynikajících mechanických vlastností, dobré ESCR a dobrých smršťovacích vlastností.
Tabulka 3
Vlastnosti materiálu
Ethylenová umělá hmota 4
Pevnost při přetržení v tahu Protažení při přetržení ESCR
Smrštění (%) při
25,9 MPa 905 %
0/2000 hod
23°C/24 hod 100°C/24 hod
ΦΦ ·· φφφφ · φφφφ φ • φ · · · · · φ φ φ φ φφ φφ φ φ φ φ φ φφφ φφφφ φ φ φ φ
Příklad 4
Extrudací suchého, smíšeného granulátu, tvořeného 47 hmotnostními díly vysokohustotního polyethylenu, majících hustotu 0,968 g/cm3 a hodnotu tečení taveniny 500 g/10 min a 53 hmotnostními díly LLDPE, majícího hustotu 0,925 g/cm3 a hodnotu tečení taveniny 0,10 g/10 min, v laboratorním vytlačovacím stroji typu Buss-Kokneter se připravila bimodální ethylenová hmota (ethylenová umělá hmota 5). Do směsi se navíc přidalo 2000 ppm Irganoxu B 225FF jako stabilizačního činidla. Teplota šneku byla 80°C a teplota válce 140°C. Výsledná směs měla hustotu 0,949 g/cm3 a hodnotu rychlosti tečení taveniny 0,9 g/10 min. Materiál (bez přidání sazí) vykazoval následující vlastnosti.
Tabulka 4
Vlastnosti materiálu Pevnost při přetržení v tahu Protažení při přetržení ESCR
Smrštění (%) při
23°C/24 hod 100°C/24 hod
Povrchová úprava
Po extrudaci při 210°C při 15 m/min 35 m/min 75 m/min
140 m/min
Ethylenová umělá hmota 4 36,3 MPa 883 %
0/2000 hod %
1,0 %
0-1
00 • · · · 0 0 · » 4 · 4 0 0 • · 0 00 0 0 0 * · 4 · ·
40 04 · • 4 44
4 4 4
0 00
0 0 0 0
0 0
Tato vytlačovaná směs (ethylenová umělá hmota 5) vykazuje hodnoty mechanických vlastností smrštění ESCR a povrchové úpravy, které jsou srovnatelné s úpravami bimodálních materiálů produkovaných v reaktorech spojených v sériích.
Claims (10)
1. Kompozice kabelového pláště, vyznačená tím, že je tvořena multimodální olefinovou směsí, získanou polymerací alespoň jednoho α-olefinu ve více než jednom stupni a mající hustotu přibližně 0,915 až 0,955 g/cm3 a rychlost tečení taveniny přibližně 0,1 až 3,0 g/10 min, přičemž olefinová polymerní směs obsahuje alespoň první a druhý olefinový polymer, z nichž první má hustotu a rychlost tečení taveniny zvolené z (a) přibližně 0,930 až 0,975 g/cm3, resp. přibližně 50 až 2000 g/10 min a (b) přibližně 0,88 až 0,93 g/cm3, resp. přibližně 0,01 až 0,8 g/10 min.
2. Kompozice podle nároku 1, vyznačená tím, že první olefinový polymer má hustotu přibližně 0,930 až 0,975 g/cm3 a rychlost tečení taveniny přibližně 50 až 2000 g/10 min.
3. Kompozice podle nároku 1 nebo 2, vyznačená tím, že olefinová polymerní směs má hustotu přibližně 0,920 až 0,950 g/cm3 a rychlost teční taveniny přibližně 0,2 až 2,0 g/10 min.
00 00 • 0 0 · • · · · • 0 «0«
0 0 0
0 00 00 ·· 0000 • 0 0 0 0
0 · 000 0 0 • 0 0 0
4. Kompozice podle některého z nároku 1 až 3, vyznačená tím, že olefinová polymerní směs je směsí ethylenových umělých hmot.
5. Kompozice podle některého z nároku 1 až 4, vyznačená tím, že se získala koordinační katalyzovanou polymerací ethylenu, prováděnou alespoň ve dvou stupních, přičemž α-olefinový komonomer alespoň v jednom stupni má 3 až 12 atomů uhlíku.
6. Kompozice podle nároku 5, vyznačená tím, že polymerační stupně probíhají jako suspendní polymerace, polymerace v plynné fázi nebo jejich kombinace.
tím, že se polymerace provádí v procesu využívajícím smyčkový reaktor a plynný reaktor, ve kterém je alespoň za jeden smyčkový reaktor zařazen alespoň jeden plynný reaktor.
99 99 · 9 · 9*99 •999 9 9 ·· 9 9 9 9 • · · · ·· · · · ··
9 999999 9 9 · 9999 9
99 * 9 9 9 *9*
99 99 99 ·9» 99 99
9. Kompozice podle některého z nároků, vyznačená tím, směsí ethylenových umělých hmot.
předcházej ícich že je bimodální
10. Kompozice podle nároku 9, vy tím, že první ethylenová hmota 75 hm. % celkového množství polymerů v značená dosahuje 25 až dané kompozici.
11. Použití kompozice kabelového pláště podle některého z předcházejících nároků jako vnějšího pláště pro silový kabel.
12. Použití kompozice kabelového některého z předcházejících nároků vnějšího pláště pro komunikační kabel.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9502508A SE504455C2 (sv) | 1995-07-10 | 1995-07-10 | Kabelmantlingskomposition, dess användning samt sätt för dess framställning |
Publications (2)
Publication Number | Publication Date |
---|---|
CZ6598A3 true CZ6598A3 (cs) | 1998-04-15 |
CZ291053B6 CZ291053B6 (cs) | 2002-12-11 |
Family
ID=20398915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CZ199865A CZ291053B6 (cs) | 1995-07-10 | 1996-07-03 | Kompozice kabelových pláą»ů |
Country Status (22)
Country | Link |
---|---|
US (1) | US6329054B1 (cs) |
EP (1) | EP0837905B2 (cs) |
JP (1) | JP3088467B2 (cs) |
KR (1) | KR100294397B1 (cs) |
CN (1) | CN1094138C (cs) |
AR (1) | AR002792A1 (cs) |
AU (1) | AU693784B2 (cs) |
BR (1) | BR9609621A (cs) |
CA (1) | CA2225858C (cs) |
CZ (1) | CZ291053B6 (cs) |
DE (1) | DE69604296T3 (cs) |
ES (1) | ES2138357T5 (cs) |
HU (1) | HU218740B (cs) |
IN (1) | IN187867B (cs) |
MY (1) | MY138666A (cs) |
PL (1) | PL185886B1 (cs) |
RU (1) | RU2137788C1 (cs) |
SE (1) | SE504455C2 (cs) |
TW (1) | TW411353B (cs) |
UA (1) | UA68329C2 (cs) |
WO (1) | WO1997003124A1 (cs) |
ZA (1) | ZA965857B (cs) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CZ295900B6 (cs) * | 1998-07-06 | 2005-11-16 | Borealis Technology Oy | Polymerní kompozice pro výrobu trubek |
Families Citing this family (86)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE504455C2 (sv) | 1995-07-10 | 1997-02-17 | Borealis Polymers Oy | Kabelmantlingskomposition, dess användning samt sätt för dess framställning |
US5718974A (en) † | 1996-06-24 | 1998-02-17 | Union Carbide Chemicals & Plastics Technology Corporation | Cable jacket |
FI111166B (fi) * | 1997-01-10 | 2003-06-13 | Borealis Polymers Oy | Ekstruusiopäällystysrakenne |
US6165387A (en) * | 1997-02-04 | 2000-12-26 | Borealis A/S | Composition for electric cables |
GB9712663D0 (en) | 1997-06-16 | 1997-08-20 | Borealis As | Process |
FI111847B (fi) * | 1997-06-24 | 2003-09-30 | Borealis Tech Oy | Menetelmä propeenin kopolymeerien valmistamiseksi |
FI111845B (fi) * | 1997-06-24 | 2003-09-30 | Borealis Tech Oy | Menetelmä propeenin homopolymeerien ja iskulujuudeltaan modifioitujen polymeerien valmistamiseksi |
FI111848B (fi) * | 1997-06-24 | 2003-09-30 | Borealis Tech Oy | Menetelmä ja laitteisto propeenin homo- ja kopolymeerien valmistamiseksi |
SE9703798D0 (sv) | 1997-10-20 | 1997-10-20 | Borealis As | Electric cable and a method an composition for the production thereof |
SE513362C2 (sv) | 1997-11-18 | 2000-09-04 | Borealis As | Förfarande för minskning av reaktornedsmutsning |
FI980308A0 (fi) * | 1998-02-10 | 1998-02-10 | Borealis Polymers Oy | Polymerfilmer och foerfarande framstaellning daerav |
FI981034A7 (fi) * | 1998-05-08 | 1999-11-09 | Borealis Polymers Oy | HD-polyeteenikoostumukset ja menetelmä niiden valmistamiseksi |
SE9802087D0 (sv) * | 1998-06-12 | 1998-06-12 | Borealis Polymers Oy | An insulating composition for communication cables |
SE9802386D0 (sv) * | 1998-07-03 | 1998-07-03 | Borealis As | Composition for elektric cables |
SE9804407D0 (sv) | 1998-12-18 | 1998-12-18 | Borealis Polymers Oy | A multimodal polymer composition |
WO2004075213A1 (ja) * | 1999-01-29 | 2004-09-02 | Mutsuhiro Tanaka | シース付き電線およびケーブル |
DE19929812A1 (de) | 1999-06-30 | 2001-01-04 | Elenac Gmbh | Polyethylen Formmasse und daraus hergestelltes Rohr mit verbesserten mechanischen Eigenschaften |
US6658185B2 (en) | 1999-08-23 | 2003-12-02 | Pirelli Cavi E Sistemi S.P.A. | Optical fiber cable with components having improved compatibility with waterblocking filling compositions |
EP1214619B1 (en) * | 1999-08-23 | 2007-09-12 | Prysmian Cavi e Sistemi Energia S.r.l. | Optical fiber cable with components having improved compatibility with waterblocking filling compositions |
FR2798665B1 (fr) * | 1999-09-17 | 2003-08-29 | Sagem | Materiau thermoplastique extrudable et micromodule de fibre fabrique a partir d'un tel materiau |
RU2156003C1 (ru) * | 1999-12-28 | 2000-09-10 | Башкирский государственный университет (БашГУ) | Электроизоляционная композиция |
ES2255910T3 (es) * | 2000-04-13 | 2006-07-16 | Borealis Technology Oy | Composicion de polimero para tuberias. |
EP1231238A1 (en) * | 2001-02-08 | 2002-08-14 | Borealis Technology Oy | Multimodal polyethylene resin composition for fibre supporting elements for fibre optic cables |
ES2316558T3 (es) * | 2001-03-12 | 2009-04-16 | General Cable Technologies Corporation | Metodos para preparar composiciones que comprenden polimeros termoplasticos y curables y articulos preparados a partir de tales metodos. |
SE0101361D0 (sv) * | 2001-04-19 | 2001-04-19 | Borealis Tech Oy | Optical fibre submarine repeater cable with combined insulation/jacket and composition therefor |
EP1267189B1 (en) * | 2001-06-12 | 2009-11-18 | Borealis Technology Oy | Optical cable with improved tracking resistance |
CA2355972C (en) * | 2001-08-24 | 2009-11-17 | Shawcor Ltd. | Ionomer-insulated electrical connectors |
CA2457430C (en) | 2001-08-31 | 2011-10-18 | Dow Global Technologies Inc. | Multimodal polyethylene material |
SE0103425D0 (sv) * | 2001-10-16 | 2001-10-16 | Borealis Tech Oy | Pipe for hot fluids |
EP1310436A1 (fr) * | 2001-11-09 | 2003-05-14 | SOLVAY POLYOLEFINS EUROPE - BELGIUM (Société Anonyme) | Capsule à visser comprenant une composition à base de polymère de l'éthylène multimodal |
EP1327664B1 (en) | 2002-01-09 | 2012-08-08 | Borealis Technology Oy | Pigmented cable jacket comprising colour pigments |
DE60202660T3 (de) | 2002-02-04 | 2011-11-17 | Borealis Technology Oy | Film mit hoher Schlagfestigkeit |
WO2004031291A2 (en) * | 2002-10-01 | 2004-04-15 | Exxonmobil Chemical Patents Inc. | Polyethylene compositions for injection molding |
US7427649B2 (en) * | 2002-12-19 | 2008-09-23 | Basell Polyolefine Gmbh | Polyethylene blow molding composition for producing small containers |
PL377718A1 (pl) * | 2002-12-24 | 2006-02-06 | Basell Polyolefine Gmbh | Kompozycja polietylenowa do wytwarzania bębnów typu L-ring (z pierścieniem w kształcie L) |
JP2006512476A (ja) * | 2002-12-24 | 2006-04-13 | バーゼル・ポリオレフィン・ゲーエムベーハー | 大きな容器を製造するためのポリエチレン吹込成形用組成物 |
EP1578862B1 (en) * | 2002-12-24 | 2006-07-12 | Basell Polyolefine GmbH | Polyethylene blow moulding composition for producing jerry cans |
US6908687B2 (en) | 2002-12-30 | 2005-06-21 | Exxonmobil Oil Corporation | Heat-shrinkable polymeric films |
SE0300195D0 (sv) * | 2003-01-28 | 2003-01-28 | Borealis Tech Oy | Coating composition, method of preparation thereofand substrate coated therewith |
FR2852404B1 (fr) * | 2003-03-11 | 2005-05-20 | Cit Alcatel | Cable a fibre optique comprenant une couche isolante a base de polymeres |
EP1460105B1 (en) | 2003-03-20 | 2012-05-23 | Borealis Technology Oy | Polymer composition |
TW200504093A (en) | 2003-05-12 | 2005-02-01 | Dow Global Technologies Inc | Polymer composition and process to manufacture high molecular weight-high density polyethylene and film therefrom |
US6931184B2 (en) * | 2003-05-30 | 2005-08-16 | Corning Cable Systems Llc | Dry tube fiber optic assemblies, cables, and manufacturing methods therefor |
GB0317012D0 (en) | 2003-07-21 | 2003-08-27 | Borealis Tech Oy | Injection moulding polymer |
ATE495471T1 (de) * | 2003-08-28 | 2011-01-15 | Prysmian Spa | Optisches kabel und darin enthaltene optische einheit |
US8475920B2 (en) | 2004-06-28 | 2013-07-02 | Prysmian Cavi E Sistemi Energia Srl | Cable with environmental stress cracking resistance |
WO2006010139A2 (en) | 2004-07-08 | 2006-01-26 | Exxonmobil Chemical Patents Inc. | Olefin polymerization catalyst system and process for use thereof |
EP1634913B1 (en) * | 2004-09-10 | 2008-10-29 | Borealis Technology Oy | Semiconductive polymer composition |
PL1655336T3 (pl) | 2004-11-03 | 2007-07-31 | Borealis Tech Oy | Wielomodalna kompozycja polietylenowa do wytwarzania wtryskiwanych nakrywek i zamknięć |
DE102004055588A1 (de) * | 2004-11-18 | 2006-05-24 | Basell Polyolefine Gmbh | Polyethylen Formmasse für die Beschichtung von Stahlrohren |
BRPI0518320A2 (pt) * | 2004-11-18 | 2008-11-18 | Basell Polyolefine Gmbh | composiÇço de moldagem de polietileno, processo para a preparaÇço de uma composiÇço de moldagem de polietileno, uso de uma composiÇço de moldagem de polietileno, e, cabo de transmissço elÉtrica ou de informaÇÕes |
DE102004055587A1 (de) * | 2004-11-18 | 2006-05-24 | Basell Polyolefine Gmbh | Polyethylen Formmasse für die äußere Ummantelung von Elektrokabeln |
GB0425444D0 (en) * | 2004-11-18 | 2004-12-22 | Solvay | Multimodal composition for tapes, fibres and filaments |
DE102005009916A1 (de) | 2005-03-01 | 2006-09-07 | Basell Polyolefine Gmbh | Polyethylen Formmasse zum Herstellen von Blasfolien mit verbesserten mechanischen Eigenschaften |
DE102005009896A1 (de) * | 2005-03-01 | 2006-09-07 | Basell Polyolefine Gmbh | Polyethylen Formmasse zum Herstellen von Blasfolien mit verbesserten mechanischen Eigenschaften |
DE102005009895A1 (de) * | 2005-03-01 | 2006-09-07 | Basell Polyolefine Gmbh | Polyethylen Formmasse zum Herstellen von Blasfolien mit verbesserten mechanischen Eigenschaften |
EP1731565B2 (en) * | 2005-06-08 | 2019-11-06 | Borealis Technology Oy | Polyolefin composition for use as an insulating material |
PL1739691T3 (pl) * | 2005-06-30 | 2009-06-30 | Borealis Tech Oy | Zewnętrzne osłony dla kabli elektroenergetycznych lub telekomunikacyjnych |
DE102005030941A1 (de) | 2005-06-30 | 2007-01-11 | Basell Polyolefine Gmbh | Polyethylen Formmasse zur Herstellung von spritzgegossenen Fertigteilen |
EP1739110B2 (en) | 2005-06-30 | 2014-07-23 | Borealis Technology Oy | Polyethylene composition of improved processability |
DE102005040390A1 (de) | 2005-08-25 | 2007-03-01 | Basell Polyolefine Gmbh | Multimodale Polyethylen Formmasse zur Herstellung von Rohren mit verbesserten mechanischen Eigenschaften |
CN101273445B (zh) * | 2005-09-28 | 2012-07-25 | 大见忠弘 | 可控气氛的接合装置、接合方法及电子装置 |
RU2377677C1 (ru) * | 2005-10-25 | 2009-12-27 | Призмиан Кави Э Системи Энергиа С.Р.Л. | Силовой кабель, включающий в себя диэлектрическую жидкость и смесь термопластичных полимеров |
US7595364B2 (en) | 2005-12-07 | 2009-09-29 | Univation Technologies, Llc | High density polyethylene |
CN101356225B (zh) | 2006-05-02 | 2012-04-04 | 陶氏环球技术有限责任公司 | 高密度聚乙烯组合物、生产该组合物的方法、由此生产的金属线和电缆套、和生产上述金属线和电缆套的方法 |
EP1961777A1 (en) | 2007-02-26 | 2008-08-27 | Borealis Technology Oy | Polyolefin homo- or copolymer with decreased shrinkage sensivity and improved crystallization behavior |
WO2009000326A1 (en) | 2007-06-28 | 2008-12-31 | Prysmian S.P.A. | Energy cable |
JP5163237B2 (ja) * | 2008-04-01 | 2013-03-13 | 住友化学株式会社 | 電線被覆用又はシース用樹脂組成物、電線およびケーブル |
MX349957B (es) * | 2008-09-25 | 2017-08-21 | Basell Polyolefine Gmbh | Composicion de polietileno lineal de baja dencidad (lldpe) resistente a impactos y peliculas hechas de la misma. |
WO2011023440A1 (en) † | 2009-08-26 | 2011-03-03 | Borealis Ag | Cable and polymer composition |
CA2792990C (en) | 2010-03-17 | 2019-05-14 | Borealis Ag | Polyethylene polymer composition and power cable with improved electrical properties |
WO2011113685A1 (en) * | 2010-03-17 | 2011-09-22 | Borealis Ag | Polymer composition for w&c application with advantageous electrical properties |
EP2703445B1 (en) * | 2012-08-31 | 2017-05-17 | Borealis AG | A conductive jacket |
KR102239100B1 (ko) * | 2012-12-21 | 2021-04-12 | 다우 글로벌 테크놀로지스 엘엘씨 | 감소된 수축 및 향상된 가공성을 갖는 케이블 재킷용 폴리올레핀-기재 화합물 |
PL225220B1 (pl) | 2013-04-22 | 2017-03-31 | Rafał Juszko | Sposób wytwarzania samozwijalnego elementu podłużnego, zwłaszcza kabla elektrycznego i samozwijalny element podłużny, zwłaszcza kabel elektryczny |
US20140377577A1 (en) * | 2013-06-19 | 2014-12-25 | Equistar Chemicals, Lp | Blended polymer compositions suitable for use in wire and cable applications and methods of making the same |
EP3252085B1 (en) * | 2016-05-31 | 2022-11-09 | Borealis AG | Jacket with improved properties |
WO2018118741A2 (en) | 2016-12-19 | 2018-06-28 | Dow Global Technologies Llc | Conductor jacket and process for producing same |
EP3385959A1 (en) | 2017-04-06 | 2018-10-10 | Borealis AG | Cable jacket composition |
EP3385958B1 (en) | 2017-04-06 | 2023-05-31 | Borealis AG | Cable jacket composition |
EP3466708A1 (en) * | 2017-10-04 | 2019-04-10 | Borealis AG | Polyolefin composition for enhanced laser printing |
JP7410889B2 (ja) | 2018-06-15 | 2024-01-10 | ダウ グローバル テクノロジーズ エルエルシー | ケーブル被覆用のポリマー化合物及びその製造プロセス |
EP3838984A1 (en) | 2019-12-20 | 2021-06-23 | Borealis AG | Polymer composition and article |
PL3960800T3 (pl) | 2020-08-27 | 2025-01-20 | Borealis Ag | Zastosowanie sadzy technicznej do zmniejszenia skurczu kompozycji poliolefinowej |
US11971594B2 (en) * | 2021-12-28 | 2024-04-30 | Sterlite Technologies Limited | Flexible optical fiber cable |
WO2025068018A1 (en) * | 2023-09-29 | 2025-04-03 | Borealis Ag | Fibre optic cable |
Family Cites Families (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3125548A (en) | 1961-05-19 | 1964-03-17 | Polyethylene blend | |
BE794718Q (fr) | 1968-12-20 | 1973-05-16 | Dow Corning Ltd | Procede de reticulation d'olefines |
US3749629A (en) | 1971-03-12 | 1973-07-31 | Reynolds Metals Co | Method of making a decorative lamination |
US3914342A (en) † | 1971-07-13 | 1975-10-21 | Dow Chemical Co | Ethylene polymer blend and polymerization process for preparation thereof |
GB1526398A (en) | 1974-12-06 | 1978-09-27 | Maillefer Sa | Manufacture of extruded products |
JPS52126495A (en) | 1976-04-16 | 1977-10-24 | Sumitomo Chem Co Ltd | Novel ethylene copolymer and preparation thereof |
US4286023A (en) | 1976-10-04 | 1981-08-25 | Union Carbide Corporation | Article of manufacture, the cross-linked product of a semi-conductive composition bonded to a crosslinked polyolefin substrate |
US4413066A (en) | 1978-07-05 | 1983-11-01 | Mitsubishi Petrochemical Company, Ltd. | Crosslinkable polyethylene resin compositions |
JPS559611A (en) | 1978-07-05 | 1980-01-23 | Mitsubishi Petrochem Co Ltd | Cross-linkable polyethylene resin composition |
US4576993A (en) | 1978-09-20 | 1986-03-18 | Raychem Limited | Low density polyethylene polymeric compositions |
JPS5566809A (en) | 1978-11-13 | 1980-05-20 | Mitsubishi Petrochemical Co | Method of manufacturing crosslinked polyethylene resinncoated wire |
JPS5610506A (en) | 1979-07-09 | 1981-02-03 | Mitsui Petrochem Ind Ltd | Production of ethylene polymer composition |
JPS5665667A (en) | 1979-10-31 | 1981-06-03 | Mitsubishi Petrochem Co Ltd | Preparation of crosslinked polyolefin coated steel pipe |
JPS5693542A (en) | 1979-12-27 | 1981-07-29 | Mitsubishi Petrochemical Co | Bridged polyethylene resin laminated film or sheet |
JPS5695940A (en) | 1979-12-28 | 1981-08-03 | Mitsubishi Petrochem Co Ltd | Ethylene polymer composition |
JPS56166208A (en) | 1980-05-27 | 1981-12-21 | Mitsui Petrochem Ind Ltd | Gas-phase polymerization of olefin |
JPS56166207A (en) | 1980-05-27 | 1981-12-21 | Mitsui Petrochem Ind Ltd | Gas-phase polymerization of olefin |
JPS57207632A (en) | 1981-06-16 | 1982-12-20 | Mitsubishi Petrochem Co Ltd | Crosslinkable polyethylene resin composition |
JPS5861129A (ja) | 1981-10-08 | 1983-04-12 | Sekisui Plastics Co Ltd | 発泡体の製造法 |
US4547551A (en) * | 1982-06-22 | 1985-10-15 | Phillips Petroleum Company | Ethylene polymer blends and process for forming film |
JPH0615644B2 (ja) | 1985-02-25 | 1994-03-02 | 三菱油化株式会社 | シラン架橋性共重合体組成物 |
GB8514330D0 (en) | 1985-06-06 | 1985-07-10 | Bp Chem Int Ltd | Polymer composition |
JPH0725829B2 (ja) * | 1986-03-07 | 1995-03-22 | 日本石油株式会社 | エチレン重合体の製造方法 |
JPS63279503A (ja) | 1987-05-11 | 1988-11-16 | Furukawa Electric Co Ltd:The | 半導電性組成物 |
US4812505A (en) | 1987-05-18 | 1989-03-14 | Union Carbide Corporation | Tree resistant compositions |
US4795482A (en) | 1987-06-30 | 1989-01-03 | Union Carbide Corporation | Process for eliminating organic odors and compositions for use therein |
JPH01100803A (ja) | 1987-10-13 | 1989-04-19 | Hitachi Cable Ltd | 電線・ケーブル用電気絶縁体 |
JPH0625203B2 (ja) | 1987-11-19 | 1994-04-06 | 鐘淵化学工業株式会社 | 重合体スケールの付着防止方法 |
JP2604606B2 (ja) | 1987-11-24 | 1997-04-30 | 株式会社アドバンテスト | 回路試験装置 |
US4840996A (en) * | 1987-11-30 | 1989-06-20 | Quantum Chemical Corporation | Polymeric composition |
JPH01246707A (ja) | 1988-03-29 | 1989-10-02 | Hitachi Cable Ltd | 半導電性樹脂組成物 |
AU3669589A (en) | 1988-06-30 | 1990-01-04 | Kimberly-Clark Corporation | Absorbent article containing an anhydrous deodorant |
US5382631A (en) * | 1988-09-30 | 1995-01-17 | Exxon Chemical Patents Inc. | Linear ethylene interpolymer blends of interpolymers having narrow molecular weight and composition distributions |
US5149738A (en) * | 1988-11-16 | 1992-09-22 | Union Carbide Chemicals & Plastics Technology Corporation | Process for the in situ blending of polymers |
US5047468A (en) † | 1988-11-16 | 1991-09-10 | Union Carbide Chemicals And Plastics Technology Corporation | Process for the in situ blending of polymers |
JP2564644B2 (ja) | 1989-03-10 | 1996-12-18 | 日本製紙株式会社 | 紙容器用板紙素材、その製造法、及びその板紙素材を用いた紙容器 |
US5047476A (en) | 1989-05-12 | 1991-09-10 | Union Carbide Chemicals And Plastics Company Inc. | Process for crosslinking hydrolyzable copolymers |
JPH03127403A (ja) | 1989-09-29 | 1991-05-30 | Union Carbide Chem & Plast Co Inc | 絶縁電気導体 |
SE465165B (sv) | 1989-12-13 | 1991-08-05 | Neste Oy | Foernaetningsbar polymerkomposition innehaallande hydrolyserbara silangrupper och en syraanhydrid som katalysator |
SU1754737A1 (ru) * | 1990-04-02 | 1992-08-15 | Казанский инженерно-строительный институт | Полимерна композици |
US5028674A (en) | 1990-06-06 | 1991-07-02 | E. I. Du Pont De Nemours And Company | Methanol copolymerization of ethylene |
JPH0445110A (ja) | 1990-06-12 | 1992-02-14 | Japan Synthetic Rubber Co Ltd | エチレン系共重合体の製造方法 |
IT1243776B (it) | 1990-08-03 | 1994-06-28 | Ausidet Srl | Composizioni polimeriche reticolabili procedimento per la loro preparazione ed articoli con esse ottenuti |
FI86867C (fi) * | 1990-12-28 | 1992-10-26 | Neste Oy | Flerstegsprocess foer framstaellning av polyeten |
DE4100673A1 (de) | 1991-01-11 | 1992-07-23 | Ernst Lehrl | Verfahren zur erzielung gleichmaessiger fugenfaerbungen beim verlegen von keramikplatten |
SE467825B (sv) | 1991-01-22 | 1992-09-21 | Neste Oy | Saett att vid plastmaterial eliminera luktande/smakande aemnen |
CA2059107A1 (en) | 1991-01-28 | 1992-07-29 | John J. Kennan | Method for making silica reinforced silicone sealants |
JPH04353509A (ja) | 1991-05-31 | 1992-12-08 | Tosoh Corp | プロピレンブロック共重合体の製造方法 |
KR930006089A (ko) * | 1991-09-18 | 1993-04-20 | 제이 이이 휘립프스 | 폴리에틸렌 블렌드 |
FI90986C (fi) | 1991-10-15 | 1994-04-25 | Neste Oy | Ekstrudoitavan eteeni-hydroksiakrylaatti-sekapolymeerin käyttö |
US5582923A (en) * | 1991-10-15 | 1996-12-10 | The Dow Chemical Company | Extrusion compositions having high drawdown and substantially reduced neck-in |
SE469080B (sv) | 1991-10-28 | 1993-05-10 | Eka Nobel Ab | Foerpackningsmaterial, foerfarande foer framstaellning av foerpackningsmaterial, anvaendning av hydrofob zeolit foer framstaellning av foerpackningsmaterial samt anvaendning av foerpackningsmaterial |
JPH06340036A (ja) | 1992-11-10 | 1994-12-13 | Goyo Paper Working Co Ltd | 食品容器用包装材料及びその製造方法 |
WO1995010548A1 (en) * | 1993-10-15 | 1995-04-20 | Fina Research S.A. | Process for producing polyethylene having a broad molecular weight distribution |
SE9304201L (sv) | 1993-12-20 | 1994-11-21 | Neste Oy | Tennorganisk katalysator med ökad förnätningshastighet för silanförnätningsreaktioner |
US5582770A (en) | 1994-06-08 | 1996-12-10 | Raychem Corporation | Conductive polymer composition |
US5453322A (en) | 1994-06-03 | 1995-09-26 | Union Carbide Chemicals & Plastics Technology Corporation | Telephone cables |
FI942949A0 (fi) | 1994-06-20 | 1994-06-20 | Borealis Polymers Oy | Prokatalysator foer producering av etenpolymerer och foerfarande foer framstaellning daerav |
FI101546B (fi) † | 1994-12-16 | 1998-07-15 | Borealis Polymers Oy | Polyeteenikompositio |
US5574816A (en) | 1995-01-24 | 1996-11-12 | Alcatel Na Cable Sytems, Inc. | Polypropylene-polyethylene copolymer buffer tubes for optical fiber cables and method for making the same |
US5521264A (en) * | 1995-03-03 | 1996-05-28 | Advanced Extraction Technologies, Inc. | Gas phase olefin polymerization process with recovery of monomers from reactor vent gas by absorption |
UA47394C2 (uk) * | 1995-05-16 | 2002-07-15 | Юнівейшн Текнолоджіз, Ллс | Етиленовий полімер, який має підвищену придатність до обробки та вирiб, що містить етиленовий полімер |
US5719218A (en) | 1995-06-01 | 1998-02-17 | At Plastics Inc. | Water resistant electrical insulation compositions |
IT1276762B1 (it) | 1995-06-21 | 1997-11-03 | Pirelli Cavi S P A Ora Pirelli | Composizione polimerica per il rivestimento di cavi elettrici avente una migliorata resistenza al"water treeing"e cavo elettrico |
SE504455C2 (sv) | 1995-07-10 | 1997-02-17 | Borealis Polymers Oy | Kabelmantlingskomposition, dess användning samt sätt för dess framställning |
US5736258A (en) | 1995-11-07 | 1998-04-07 | Union Carbide Chemicals & Plastics Technology Corporation | Film extruded from an in situ blend of ethylene copolymers |
US5718974A (en) | 1996-06-24 | 1998-02-17 | Union Carbide Chemicals & Plastics Technology Corporation | Cable jacket |
US5731082A (en) * | 1996-06-24 | 1998-03-24 | Union Carbide Chemicals & Plastics Technology Corporation | Tree resistant cable |
US5807635A (en) | 1997-01-24 | 1998-09-15 | Union Carbide Chemicals & Plastics Technology Corporation | Telephone cables |
FI111372B (fi) | 1998-04-06 | 2003-07-15 | Borealis Polymers Oy | Olefiinien polymerointiin tarkoitettu katalyyttikomponentti, sen valmistus ja käyttö |
-
1995
- 1995-07-10 SE SE9502508A patent/SE504455C2/sv not_active IP Right Cessation
-
1996
- 1996-07-03 PL PL96324435A patent/PL185886B1/pl unknown
- 1996-07-03 CA CA002225858A patent/CA2225858C/en not_active Expired - Lifetime
- 1996-07-03 CN CN96195417A patent/CN1094138C/zh not_active Expired - Lifetime
- 1996-07-03 CZ CZ199865A patent/CZ291053B6/cs not_active IP Right Cessation
- 1996-07-03 RU RU98102358A patent/RU2137788C1/ru active
- 1996-07-03 JP JP09505747A patent/JP3088467B2/ja not_active Expired - Lifetime
- 1996-07-03 WO PCT/SE1996/000900 patent/WO1997003124A1/en active IP Right Grant
- 1996-07-03 BR BR9609621A patent/BR9609621A/pt not_active IP Right Cessation
- 1996-07-03 US US08/983,273 patent/US6329054B1/en not_active Expired - Lifetime
- 1996-07-03 KR KR1019980700128A patent/KR100294397B1/ko not_active Expired - Lifetime
- 1996-07-03 EP EP96923157A patent/EP0837905B2/en not_active Expired - Lifetime
- 1996-07-03 HU HU9802544A patent/HU218740B/hu not_active IP Right Cessation
- 1996-07-03 DE DE69604296T patent/DE69604296T3/de not_active Expired - Lifetime
- 1996-07-03 AU AU63748/96A patent/AU693784B2/en not_active Ceased
- 1996-07-03 ES ES96923157T patent/ES2138357T5/es not_active Expired - Lifetime
- 1996-07-04 IN IN1227CA1996 patent/IN187867B/en unknown
- 1996-07-08 TW TW085108225A patent/TW411353B/zh not_active IP Right Cessation
- 1996-07-08 MY MYPI96002815A patent/MY138666A/en unknown
- 1996-07-10 ZA ZA965857A patent/ZA965857B/xx unknown
- 1996-07-10 AR ARP960103510A patent/AR002792A1/es unknown
- 1996-10-07 UA UA98020615A patent/UA68329C2/uk unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CZ295900B6 (cs) * | 1998-07-06 | 2005-11-16 | Borealis Technology Oy | Polymerní kompozice pro výrobu trubek |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CZ6598A3 (cs) | Kompozice kabelových plášťů | |
KR100935044B1 (ko) | 전력 또는 통신 케이블용 외부 외장층 | |
CA2670047C (en) | Pipe having improved high temperature resistance | |
CA2574159C (en) | Cable with thermoplastic insulation | |
EP1093658B1 (en) | An insulating composition for communication cables | |
RU2425070C2 (ru) | Мультимодальная полиэтиленовая смола для трубы, полученная с помощью катализатора с единым центром полимеризации на металле | |
EP1739110B2 (en) | Polyethylene composition of improved processability | |
EP0492656A1 (en) | Polyethylene composition | |
US7714074B2 (en) | Polyethylene pipe fitting resins | |
KR20110084544A (ko) | 케이블 절연체의 제조에 유용한 다중상 중합체 조성물 | |
MXPA98000336A (en) | Composition of environment for ca | |
KR101374998B1 (ko) | 멀티모달 폴리에틸렌 조성물로 제조된 파이프용 층 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD00 | Pending as of 2000-06-30 in czech republic | ||
MM4A | Patent lapsed due to non-payment of fee |
Effective date: 20090703 |