CN1956935B - 氧化物磁性材料和烧结磁铁 - Google Patents

氧化物磁性材料和烧结磁铁 Download PDF

Info

Publication number
CN1956935B
CN1956935B CN2005800164602A CN200580016460A CN1956935B CN 1956935 B CN1956935 B CN 1956935B CN 2005800164602 A CN2005800164602 A CN 2005800164602A CN 200580016460 A CN200580016460 A CN 200580016460A CN 1956935 B CN1956935 B CN 1956935B
Authority
CN
China
Prior art keywords
sintered magnet
hcj
magnetic material
quality
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2005800164602A
Other languages
English (en)
Other versions
CN1956935A (zh
Inventor
小林义德
细川诚一
丰田幸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of CN1956935A publication Critical patent/CN1956935A/zh
Application granted granted Critical
Publication of CN1956935B publication Critical patent/CN1956935B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • C04B2235/3277Co3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/605Making or treating the green body or pre-form in a magnetic field
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Magnetic Ceramics (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明的氧化物磁性材料,以具有六方晶的M型磁铅石结构的铁氧体为主相,具有如下组成:以式(1-x)CaO·(x/2)R2O3·(n-y/2)Fe2O3·yMO表示,R是选自La、Nd、Pr中的至少一种元素、且一定含有La,M是选自Co、Zn、Ni、Mn中的至少一种元素、且一定含有Co,表示摩尔比的x、y、n分别为0.4≤x≤0.6、0.2≤y≤0.35、4≤n≤6,并且满足关系式1.4≤x/y≤2.5。

Description

氧化物磁性材料和烧结磁铁
技术领域
本发明涉及含有具有M型磁铅石结构的铁氧体作为主相的氧化物磁性材料和烧结磁铁、以及它们的制造方法。
背景技术
铁氧体是由二价的阳离子金属氧化物和三价的铁所构成的化合物的总称,铁氧体磁铁用于各种旋转机械、扬声器等多种用途。作为铁氧体磁铁的材料,具有六方晶的磁铅石结构的Sr铁氧体(SrFe12O19)和Ba铁氧体(BaFe12O19)被广泛应用。这些铁氧体以氧化铁和锶(Sr)或钡(Ba)等的碳酸盐作为原料,通过粉末冶金法,比较便宜地制造。
近年来,已提出:在上述的Sr铁氧体中,用La等稀土元素置换Sr的一部分、用Co置换Fe的一部分,由此使矫顽力HcJ和剩余磁通密度Br提高(专利文献1、专利文献2)。
另外,已提出:与Sr铁氧体的情况同样地,在Ca铁氧体中也用La等稀土元素置换Ca的一部分、用Co等置换Fe的一部分(专利文献3)。
专利文献1:日本特开平10-149910号公报
专利文献2:日本特开平11-154604号公报
专利文献3:日本特开2000-223307号公报
就Ca铁氧体而言,已知CaO-Fe2O3或者CaO-2Fe2O3的结构是稳定的,通过添加La形成六方晶铁氧体。但是,所获得的磁特性和以往的Ba铁氧体的磁特性为同等程度,并不充分高。因此,专利文献3公开了为了提高剩余磁通密度Br和矫顽力HcJ、以及改善矫顽力HcJ的温度特性,而同时含有La和Co的Ca铁氧体(以下称为“CaLaCo铁氧体”)。
已报告:在专利文献3所公开的CaLaCo铁氧体中,用La等稀土元素置换Ca的一部分、用Co等置换Fe的一部分,就其各向异性磁场HA而言,最高能够获得比Sr铁氧体的各向异性磁场HA高10%以上的20kOe以上的值。
专利文献3公开的CaLaCo铁氧体,根据其实施例,在Ca1-x1Lax1(Fe12-x1Cox1)zO19中设x=y=0~1、z=1的情况下,当x=y=0.4~0.6时获得高特性,其值在大气中烧制时为Br=4.0kG(0.40T)、HcJ=3.7kOe(294kA/m),在氧中烧制(氧100%)时为Br=4.0kG(0.40T)、HcJ=4.2kOe(334kA/m)。
另外,在形成将上述组成式中的z值改变为0.85的组成的情况下(x=0.5、y=0.43、x/y=1.16),在大气中烧制时获得Br=4.4kG(0.44T)、HcJ=3.9kOe(310kA/m)的特性,在氧中烧制(氧100%)时获得Br=4.49kG(0.449T)、HcJ=4.54kOe(361kA/m)的特性。后者的特性是专利文献3中的最高特性。
根据专利文献1和专利文献2,用La等稀土元素置换Sr的一部分、用Co等置换Fe的一部分后形成的Sr铁氧体(以下称为“SrLaCo铁氧体”),由于磁特性优异,所以正逐渐代替目前的Sr铁氧体和Ba铁氧体而应用于多种用途。
铁氧体磁铁被利用最多的用途是电动机(motor).如果铁氧体磁铁的磁特性提高,则能够实现电动机输出的提高和电动机的小型化,因此,剩余磁通密度Br、矫顽力HcJ、最大磁能积(BH)max的提高是非常有效的,但是,矩形比(Hk/HcJ)也必须与这些特性同时提高.矩形比低时,极限退磁场强度减小,所以会引起容易退磁的问题.特别是在电动机中,将铁氧体磁铁插入磁路时退磁容易的问题受到重视,特别期望矫顽力HcJ(或者矫顽力HcJ和剩余磁通密度Br)和矩形比两者都处于高水平的高性能铁氧体磁铁.此外,为了求出矩形比而测定的参数Hk,是在4πI(磁化强度)-H(磁场强度)曲线的第二象限中,4πI成为0.95Br的值的位置的H轴的读取值.将该Hk除以退磁曲线的HcJ所得的值(Hk/HcJ)定义为矩形比.
上述专利文献3中的CaLaCo铁氧体,显示出和SrLaCo铁氧体相匹敌的优异的磁特性,是期待今后被应用的材料,但是有矩形比(Hk/HcJ)非常低的问题。如上所述,根据专利文献3,在该实施例2的表2中,获得Br=4.49kG(0.449T)、HcJ=4.54kOe(361kA/m)的特性,但是矩形比只获得80.6%。
在专利文献3的图14(实施例10)中,记载有在Ca1-x1Lax1Fe12-x1Cox1中设x1=0~1时的矩形比,但是在专利文献3中被设定为优选范围x=y=0.4~0.6中,矩形比为80%左右。x1为0.8时,矩形比大于85%,但是矫顽力HcJ急剧下降。
另外,在专利文献3的图15(实施例11)中,记载有在Sr0.4-x2Cax2La0.6Fe11.4Co0.6中设x2=0、0.2、0.4时的矩形比,在x2=0、0.2(Sr多的范围)时,矩形比超过90%,但是在x2=0.4(全量Ca)时,矩形比成为80%以下。此时,矫顽力HcJ显示出与矩形比相反的行为,在x2=0.4(全量Ca)时得到最高值。
这样,专利文献3中的CaLaCo铁氧体,各向异性磁场HA具有超过SrLaCo铁氧体的特性,Br和HcJ具有与SrLaCo铁氧体相匹敌的特性,但是矩形比非常差,无法满足高矫顽力和高矩形比两者,无法应用于电动机等各种用途。
发明内容
本发明的目的是提供一种消除目前的CaLaCo铁氧体的问题、提高Br和HcJ、并且显示出高矩形比的氧化物磁性材料和烧结磁铁。
上述目的能够通过下述任一方案而实现。
(1)一种氧化物磁性材料,以具有六方晶的M型磁铅石(magnetoplumbite)结构的铁氧体为主相,其特征在于,具有如下组成:
以式(1-x)CaO·(x/2)R2O3·(n-y/2)Fe2O3·yMO表示,R是选自La、Nd、Pr中的至少一种元素、且一定含有La,M是选自Co、Zn、Ni、Mn中的至少一种元素、且一定含有Co,
表示摩尔比的x、y、n分别为
0.4≤x≤0.6,
0.2≤y≤0.35,
4≤n≤6,
并且满足关系式1.4≤x/y≤2.5。
(2)如上述(1)所述的氧化物磁性材料,其特征在于,4.8≤n≤5.8。
(3)一种含有上述(1)或(2)的氧化物磁性材料的烧结磁铁。
(4)如上述(3)所述的烧结磁铁,其特征在于,矫顽力HcJ为370kA/m以上。
(5)如上述(3)所述的烧结磁铁,其特征在于,剩余磁通密度Br为0.45T以上。
(6)如上述(3)所述的烧结磁铁,其特征在于,矩形比Hk/HcJ为85%以上。
(7)如上述(6)所述的烧结磁铁,其特征在于,矩形比Hk/HcJ为90%以上。
(8)一种氧化物磁性材料的制造方法,用于制造上述(1)或(2)的氧化物磁性材料,其特征在于,在煅烧前和/或煅烧后添加0.2质量%以下的H3BO3
(9)一种烧结磁铁的制造方法,用于制造上述(3)的烧结磁铁,其特征在于,在微粉碎前,添加1.0质量%以下的SiO2、换算成CaO为1.5质量%以下的CaCO3
(10)一种氧化物磁性材料的制造方法,用于制造上述(1)或(2)的氧化物磁性材料,其特征在于,使煅烧气氛为氧浓度5%以上。
(11)一种烧结磁铁的制造方法,用于制造上述(3)的烧结磁铁,其特征在于,使烧结气氛为氧浓度10%以上。
(12)一种氧化物磁性材料,其特征在于,以Ca、La、Fe、Co为主要成分,以具有六方晶的M型磁铅石结构的铁氧体为主相,实质上不包含含有大量Co的异相。
根据本发明,能够提供具有高Br和高HcJ、并且具有高矩形比的氧化物磁性材料。
在以本发明的氧化物磁性材料制作烧结磁铁时所获得的矫顽力HcJ,在优选方案中能够达到370kA/m以上的值,剩余磁通密度Br在优选方案中能够达到0.45T以上的值。
使用氧化物磁性材料制作出烧结磁铁时的矩形比,在优选方案中能够达到85%以上,在更优选的方案中能够达到90%以上。
根据本发明,能够达到超过专利文献1和专利文献2中的SrLaCo铁氧体的Br和HcJ。
根据本发明,即使在比氧中烧制简单、且能够稳定生产的大气中烧制中,也能够获得对专利文献3的CaLaCo铁氧体进行氧中烧制(氧100%)时的Br和HcJ(专利文献3中的最高特性)同等以上的特性。
本发明的烧结磁铁,具有高Br和高HcJ,并且具有高矩形比,因此最适合用于电动机等用途。
附图说明
图1是表示在(1-x)CaO·(x/2)La2O3·(n-y/2)Fe2O3·yCoO的组成中,设n=5.4,使La的置换量x与Co的置换量y的比x/y在1.0~5.0之间变化,组成比x/y与烧结磁铁的剩余磁通密度Br、矫顽力HcJ和Hk/HcJ之间的关系的图。
图2是表示在(1-x)CaO·(x/2)La2O3·(n-y/2)Fe2O3·yCoO的组成中,设x=0.50、n=5.4,使y在0~0.50之间变化,组成y与烧结磁铁的剩余磁通密度Br、矫顽力HcJ和Hk/HcJ之间的关系的图。
图3是表示在(1-x)CaO·(x/2)La2O3·(n-y/2)Fe2O3·yCoO的组成中,设x=0.50、y=0.30,使n在3.6~6.0之间变化,组成n与烧结磁铁的剩余磁通密度Br、矫顽力HcJ和Hk/HcJ的关系的图。
图4是表示在(1-x)CaO·(x/2)La2O3·(n-y/2)Fe2O3·yCoO的组成中,0.00≤x≤1.0、y=0.3、n=5.2,组成x与烧结磁铁的剩余磁通密度Br、矫顽力HcJ和Hk/HcJ之间的关系的图。
图5是在(1-x)CaO·(x/2)La2O3·(n-y/2)Fe2O3·yCoO的组成中,x=0.50、y=0.30、x/y=1.67、n=5.2的烧结体的EPMA像,上段从左侧开始依次表示SEI、BEI像、和Fe的X射线图像,下段从左侧开始依次表示La、Ca、Co的X射线图像.
图6是在(1-x)CaO·(x/2)La2O3·(n-y/2)Fe2O3·yCoO的组成中,x=0.50、y=0.20、x/y=2.50、n=5.2的烧结体的EPMA像,上段从左侧开始依次表示SEI、BEI像、和Fe的X射线图像,下段从左侧开始依次表示La、Ca、Co的X射线图像。
图7是在(1-x)CaO·(x/2)La2O3·(n-y/2)Fe2O3·yCoO的组成中,x=y=0.5、x/y=1、n=5.4的烧结体的EPMA像,上段从左侧开始依次表示SEI、BEI像、和Fe的X射线图像,下段从左侧开始依次表示La、Ca、Co的X射线图像。
图8是表示H3BO3添加量与烧结磁铁的剩余磁通密度Br、矫顽力HcJ和矩形比Hk/HcJ之间的关系的图。
图9是表示CaO添加量和SiO2添加量与烧结磁铁的剩余磁通密度Br、矫顽力HcJ和矩形比Hk/HcJ之间的关系的图。
图10是表示y’(NiO量)与烧结磁铁的剩余磁通密度Br、矫顽力HcJ和矩形比Hk/HcJ之间的关系的图。
具体实施方式
本发明的氧化物磁性材料用以下的式子表示。
式(1-x)CaO·(x/2)R2O3·(n-y/2)Fe2O3·yMO
发明人着眼于CaLaCo铁氧体具有超过SrLaCo铁氧体的各向异性磁场HA,对CaLaCo铁氧体的高性能化做了深入研究。结果发现,在用上式表示的CaLaCo铁氧体中,摩尔比x(R)量、摩尔比y(M)量、和n值存在最适范围,同时发现,通过以x和y成为特定比率的方式含有R和M,能够获得具有高Br和高HcJ、并且具有高矩形比的氧化物磁性材料。关于R和M将在后面说明。
在专利文献3中记载有CaLaCo铁氧体,但是从其实施例的记载等来看,x和y的优选范围是0.4~0.6。而且,关于x和y的比率,基本上是x=y(x/y=1),在实施例中只举了x/y=1.05和1.16的例子。此外,在专利文献3中,用z表示组成式中Fe和Co的量,所以没有关于n值的记载。
如前所述,专利文献3的CaLaCo铁氧体虽然具有高Br和高HcJ,但是矩形比(Hk/HcJ)非常低。这可认为:在CaLaCo铁氧体的情况下,使x=y=0.4~0.6时,在结晶组织中生成含有大量Co的异相,该异相成为矩形比降低的原因。
本发明人研究了不使该异相生成的组成,结果发现,在将x设为0.4~0.6、将y设为比x小的0.2~0.35、将x和y的比设为x/y=1.4~2.5时,可获得具有高Br和高HcJ的材料,在本发明的优选方式中,将实现超过专利文献3所记载的最高特性的HcJ370kA/m以上、Br0.45T以上的特性。本发明人发现:根据本发明,在4≤n≤6的广阔范围内获得85%以上的矩形比,在4.8≤n≤5.8的范围内获得90%以上的矩形比,在5.0≤n≤5.4的范围内获得具有上述的高Br和高HcJ、并且矩形比为90%以上的材料。
本发明涉及CaLaCo铁氧体的改良,Ca是必须元素。在本发明中,只使用Ca代替Sr或Ba。
R是选自La、Nd、Pr中的至少一种元素,且一定含有La.除了上述元素以外,可以允许含有离子半径与Sr2+相近的元素,例如Ce、Sm、Eu、Gd。
M是选自Co、Zn、Ni、Mn中的至少一种元素,且一定含有Co。除了上述元素以外,可以允许含有作为不可避免的杂质混入的元素。
在本发明中,如上所述能够用Zn、Ni、Mn置换Co,无论置换为Zn、Ni、Mn中的哪一个,都能够达到超过专利文献1和专利文献2所公开的SrLaCo铁氧体的Br和HcJ。特别地,通过用Ni置换Co,能够降低制造成本而不降低磁特性。另外,用Zn置换Co时,HcJ稍微降低,但是能够提高Br。Zn、Ni、Mn的置换量,以摩尔比计,为Co的50%以下。
x表示R的含量,优选0.4≤x≤0.6。这是因为x小于0.4和超过0.6时,Br和矩形比降低。
y表示M的含量,优选0.2≤y≤0.35。如前所述,在CaLaCo铁氧体中,认为y的优选范围是0.4~0.6,但是在结晶组织中会生成含有大量Co的异相。在本发明中,其特征在于,将y的范围设为0.2≤y≤0.35,使后述的x与y为特定比率。y小于0.2时,Br和HcJ降低,超过0.35时,会生成含有大量Co的异相、且HcJ降低,所以不优选。
规定CaO、R2O3与Fe2O3、MO的比的n值优选为4≤n≤6,在该范围内,能够获得85%以上的矩形比(Hk/HcJ)。进一步优选为4.8≤n≤5.8,能够获得90%以上的矩形比。将n值设为该范围,将x和y设为上述优选范围时,获得Br=0.45T以上、HcJ=370kA/m(4.65kOe)以上的特性。另外,在最优选的范围内,能够在获得上述特性的同时,获得95%以上的矩形比。此外,由于矩形比在煅烧后的煅烧体中难以测定,所以是制成烧结磁铁时的值。
下面,对本发明的氧化物磁性材料的制造方法进行说明。
首先,准备CaCO3、Fe2O3、La2O3、Co3O4等原料粉末。根据上述组成式,配合所准备的粉末,使得x、y、n分别处于优选的范围内。此外,原料粉末除了氧化物和碳酸盐之外,可以是氢氧化物、硝酸盐、氯化物等,也可以是溶液状态。此外,在制造烧结磁铁时,CaCO3、Fe2O3和La2O3以外的原料粉末,可以从原料混合时预先添加,也可以在后述的煅烧后添加。例如,可以在将CaCO3、Fe2O3和La2O3配合、混合、煅烧后,添加Co3O4等,粉碎后进行成形和烧结。此外,为了促进煅烧时的反应性,根据需要,可以添加1质量%左右的含有B2O3、H3BO3等的化合物。
特别地,H3BO3的添加,对于提高HcJ和Br是有效的。H3BO3的添加量优选为0.2质量%以下。添加量的最优选值为0.1质量%附近,n值、x和y在上述优选范围内时,能够获得Br=0.45T以上、HcJ=370kA/m以上的特性。使H3BO3的添加量从0.1质量%减少时,Br显著提高;使其从0.1质量%增加时,HcJ显著提高。添加量超过0.2质量%时,Br降低,所以不优选。因此,在重视Br的用途中,优选添加0.05质量%~0.15质量%的H3BO3;在用于重视HcJ的用途时,优选添加0.10质量%~0.20质量%的H3BO3。此外,由于H3BO3具有控制烧结时的晶粒等效果,所以在煅烧后(微粉碎前或烧结前)添加也是有效的,也可以在煅烧前和煅烧后都添加。
原料粉末的配合,湿式、干式均可。将原料粉末与钢珠等介质一起搅拌时,能够更均匀地混合。湿式配合时,使用水作为溶剂。为了使原料粉末分散,可以使用聚羧酸铵、葡萄糖酸钙等公知的分散剂。混合后的原料浆料(slurry)脱水后成为混合原料粉末。
使用电炉、燃气炉等加热混合原料粉末,通过固相反应形成磁铅石型铁氧体化合物.该过程称为“煅烧”,所获得的化合物称为“煅烧体”.
煅烧工序优选在氧浓度5%以上的气氛中进行。这是因为氧浓度小于5%时,固相反应难以进行。更优选氧浓度为20%以上。
在煅烧工序中,随着温度的上升,通过固相反应形成铁氧体相,在大约1100℃下完成,但是在该温度以下,残存有未反应的赤铁矿(氧化铁),磁铁特性低。超过1100℃时,产生本发明的效果。另一方面,煅烧温度超过1450℃时,晶粒会过度生长,有可能产生在粉碎工序中需要很多时间进行粉碎等不利情况。因此,煅烧温度优选为1100℃~1450℃。更优选为1200℃~1350℃。此外,煅烧时间优选为0.5~5小时。
在煅烧前添加H3BO3时,上述反应受到促进,所以可以在1100℃~1300℃下进行煅烧。
通过上述煅烧工序获得的煅烧体,具有由以下的化学式表示的六方晶的M型磁铅石型铁氧体的主相,成为本发明的氧化物磁性材料。
式(1-x)CaO·(x/2)R2O3·(n-y/2)Fe2O3·yMO
0.4≤x≤0.6,0.2≤y≤0.35,4≤n≤6。
通过将这样的煅烧体粉碎和/或破碎,能够获得磁性粉末,能够将该磁性粉末应用于粘结磁体和磁记录介质等。此外,上述煅烧体的制造也可以采用喷雾热分解法、共沉淀法等公知的制造技术。
将磁性粉末应用于粘结磁体时,在磁性粉末中混合具有挠性(flexibility)的橡胶或硬质轻量的塑料等后,进行成形加工。成形加工可以通过注射成形、挤出成形、辊轧成形等方法进行。另外,将磁性粉末应用于粘结磁体时,为了缓和磁性粉末的结晶变形,优选在700℃~1100℃的温度范围内进行0.1~3小时左右热处理。更优选的温度范围为900℃~1000℃。
另外,将磁性粉末应用于磁记录介质时,在对磁性粉末进行上述热处理后,与公知的各种粘合剂混炼、并涂布在基板上,由此能够制造出涂布型的磁记录介质。另外,将本发明的氧化物磁性材料和使用该氧化物磁性材料的烧结磁铁作为靶使用,通过溅射法等,也能够形成用于磁记录介质的薄膜磁性层。
接下来,对使用上述氧化物磁性材料的烧结磁铁的制造方法进行说明。
利用振动磨碎机、球磨机和/或ァトラィタ一将上述煅烧体微粉碎,形成微颗粒。优选使微颗粒的平均粒径为0.4~0.8μm左右(空气透过法)。微粉碎工序可以是干式粉碎和湿式粉碎中的任一种,但是优选将两者组合进行。
在湿式粉碎时,可以使用水等水类溶剂或各种非水类溶剂(例如,丙酮、乙醇、二甲苯等有机溶剂)。通过湿式粉碎,生成溶剂与煅烧体混合后的浆料。优选以固态成分比率为0.2质量%~2.0质量%以下向浆料中添加公知的各种分散剂和表面活性剂。湿式粉碎后,优选对浆料进行浓缩和混炼。
在上述微粉碎工序中,为了提高磁特性,还可以向煅烧体中添加CaCO3、SiO2、Cr2O3、Al2O3等添加剂。在添加这些添加剂时,优选将CaCO3换算成CaO为0.3~1.5质量%、SiO2为0.2~1.0质量%、Cr2O3为5.0质量%以下、Al2O3为5.0质量%以下。
特别优选添加CaCO3和SiO2,通过与上述H3BO3的添加并用,能够获得高Br和高HcJ。此外,由于SiO2也有控制煅烧时的晶粒等效果,所以在煅烧前添加也是有效的,可以在煅烧前和微粉碎前都添加.
接下来,除去浆料中的溶剂,同时在磁场中或者不在磁场中进行加压成形。通过在磁场中进行加压成形,能够使粉末颗粒的结晶取向定向(取向)。通过在磁场中加压成形,能够使磁特性飞跃性地提高。为了进一步提高取向,也可以添加0.01~1.0质量%的分散剂和润滑剂。
通过加压成形所获得的成形体,根据需要进行脱脂工序后,进行烧结工序。烧结工序使用电炉、燃气炉等进行。
烧结工序优选在氧浓度为10%以上的气氛中进行。氧浓度小于10%时,会招致异常颗粒生长或者生成异相,磁特性劣化,因此不优选。更优选氧浓度为20%以上,最优选氧浓度为100%。
本发明的氧化物磁性材料,正如稍后说明的实施例那样,即使在大气中烧制,也显示出专利文献3中对CaLaCo铁氧体进行氧中烧制(氧100%)所得的特性同等以上的磁特性。因此,通过进行与专利文献3公开的氧中烧制相同的氧中烧制,能够获得更优异的磁特性。
烧结温度优选1150℃~1250℃。烧结时间优选0.5~2小时。通过烧结工序所获得的烧结磁铁的平均结晶粒径为约0.5~2μm。
在烧结工序之后,经过加工工序、清洗工序、检查工序等公知的制造工序,最终完成铁氧体烧结磁铁的制品。
实施例
[实施例1]
准备CaCO3粉末、La2O3粉末、Fe2O3粉末(粒径0.6μm)和Co3O4并配合各粉末,使得在式(1-x)CaO·(x/2)La2O3·(n-y/2)Fe2O3·yCoO中,x=0.5、1≤≤x/y、0≤y≤0.5、n=5.4。将所得到的原料粉末在湿式球磨机中混合4小时,进行干燥和整粒。接着,在大气中、在1300℃下煅烧3小时,获得粉末状的煅烧体。
接下来,向上述煅烧体中添加换算成CaO为0.6质量%的CaCO3粉末、0.45质量%的SiO2粉末,在以水作为溶剂的湿式球磨机中进行微粉碎,直到空气透过法的平均粒度达到0.55μm。除去所获得的微粉碎浆料中的溶剂,同时在磁场中进行加压成形。以加压的加压方向和磁场方向平行的方式进行加压成形,磁场强度为13kOe。将所获得的成形体在大气中、在1150℃下烧结1小时,获得烧结磁铁。
测定所获得的烧结磁铁的磁特性。图1所示为以x和y(La和Co)的相对比x/y作为横轴的剩余磁通密度Br、矫顽力HcJ、矩形比Hk/HcJ的测定结果。图2所示为以y的添加量作为横轴的Br、HcJ、Hk/HcJ的测定结果。
由图1可知,x/y过小时,因为存在异相,所以HcJ、Hk/HcJ降低,x/y在大约1.25以下时,HcJ低于340kA/m(4.27kOe),在1.4以下时,Hk/HcJ低于85%。x/y过大时,Br、HcJ降低,x/y在大约2.5以上时,Br低于0.44T、HcJ低于340kA/m(4.27kOe)。以往,因La、Co的电荷补正的关系,x/y在1附近为最佳,但是可知本发明的CaLaCo铁氧体在1.4≤x/y≤2.5附近获得高磁特性。
另外,由图2可知:Co的置换量过少时,Br、HcJ降低,y在大约0.2以下时,Br低于0.44T、HcJ低于340kA/m(4.27kOe).y的量过多时,因为异相的存在,所以HcJ、Hk/HcJ降低,y在大约0.4以上时,HcJ低于340kA/m(4.27kOe),在大约0.35以上时,Hk/HcJ低于85%.根据本发明可知,在0.20≤y≤0.35附近获得高磁特性.
[实施例2]
在式(1-x)CaO·(x/2)La2O3·(n-y/2)Fe2O3·yCoO中,使x=0.5、y=0.3、x/y=1.67、3.6≤n≤6.0,除此之外,与实施例1同样地操作,制作出烧结磁铁。测定所获得的烧结磁铁的磁特性。图3所示为以n值作为横轴的剩余磁通密度Br、矫顽力HcJ、矩形比Hk/HcJ的测定结果。
由图3可知,在4.0≤n≤6.0的范围内,显示出85%以上的高矩形比,在4.8≤n≤5.8的范围内,显示出90%以上的高矩形比,进一步,在5.0≤n≤5.4的范围内,获得Br为0.44T以上、HcJ为340kA/m(4.27kOe)以上的高磁特性,在n=5.2时,获得HcJ为370kA/m以上、Br为0.45T以上的特性。
[实施例3]
在实施例2中,采用n=5.2的组成,使烧结温度在1150℃~1190℃之间变化时的磁特性如表1所示。
[表1]
由表1可知,烧结温度在低温侧时,获得370kA/m(4.65kOe)的高HcJ、95%以上的Hk/HcJ,在高温侧时,获得0.46T以上的高Br、90%以上的Hk/HcJ。
[实施例4]
在式(1-x)CaO·(x/2)La2O3·(n-y/2)Fe2O3·yCoO中,使0≤x≤1、y=0.3、n=5.2,除此之外,与实施例1同样地操作,制作出烧结磁铁。测定所获得的烧结磁铁的磁特性。图4所示为以x的添加量作为横轴的剩余磁通密度Br、矫顽力HcJ、矩形比Hk/HcJ的测定结果。
由图4可知,x的量无论过少还是过多,Br、Hk/HcJ都极度劣化。可知在0.4≤x≤0.6附近获得95%的高Hk/HcJ以及高Br和HcJ。
[实施例5]
在式(1-x)CaO·(x/2)La2O3·(n-y/2)Fe2O3·yCoO中,使x=0.5,y=0.3、0.2,x/y=1.67、2.5,n=5.2,除此之外,与实施例1同样地操作,制作出烧结磁铁。通过EPMA对所获得的烧结磁铁进行成分分析。分析结果如图5(x/y=1.67时)和图6(x/y=2.5时)所示。EPMA分析使用EPMA装置(SHIMADZU生产的EPMA1610),在加速电压15kV、试样电流0.1μA、照射范围Φ100μm(电子束直径)的条件下进行。
由图5和图6可知,在本发明的烧结磁铁中,看不到含有大量Co的异相。因此,获得如上述实施例1~4所示的高磁特性。
[比较例1]
在式(1-x)CaO·(x/2)La2O3·(n-y/2)Fe2O3·yCoO中,使x=0.5、y=0.5、x/y=1、n=5.4,除此之外,与实施例1同样地操作,制作出烧结磁铁。通过EPMA对所获得的烧结磁铁进行成分分析。分析结果如图7所示。EPMA的条件和实施例5相同。
由图7可知,在比较例的烧结磁铁中,能够看到很多含有大量Co的异相(图7的下段右端的照片中的斑点部分)。测定该烧结磁铁的磁特性,Br=0.441T、HcJ=325.5kA/m(4.09kOe)、Hk/HcJ=63%,Hk/HcJ特别劣化。认为这是由于存在含有大量Co的异相。
[实施例6]
准备CaCO3粉末、La2O3粉末、Fe2O3粉末(粒径0.6μm)和Co3O4粉末,配合各粉末,使得在式(1-x)CaO·(x/2)La2O3·(n-y/2)Fe2O3·yCaO中,x=0.5、y=0.3、x/y=1.67、n=5.2,进一步向配合粉末中添加0~0.2质量%的H3BO3。将所得到的原料粉末在湿式球磨机中混合4小时,进行干燥和整粒。接着,在大气中、在1150℃下煅烧3小时,获得粉末状的煅烧体。
接下来,向上述煅烧体中添加换算成CaO为0.6质量%的CaCO3粉末、0.45质量%的SiO2粉末,在以水作为溶剂的湿式球磨机中进行微粉碎,直到空气透过法的平均粒度达到0.55μm。除去所获得的微粉碎浆料中的溶剂,同时在磁场中进行加压成形。以加压的加压方向和磁场方向平行的方式进行加压成形,磁场强度为13kOe。将所获得的成形体在大气中、在1200℃下烧结1小时,获得烧结磁铁。
测定所获得的烧结磁铁的磁特性。图8所示为以H3BO3添加量作为横轴的剩余磁通密度Br、矫顽力HcJ、矩形比Hk/HcJ的测定结果。
由图8可知,H3BO3为0.1质量%时,获得Br和HcJ两者都优异的特性。H3BO3从0.1质量%减少时,Br提高、HcJ降低。相反,可知,从0.1质量%增加时,HcJ提高、Br降低。具有85%以上的矩形比。
[实施例7]
添加0.1质量%的H3BO3粉末、换算成CaO为0.5~0.9质量%的CaCO3粉末、0.3~0.9质量%的SiO2粉末,除此之外,与实施例6同样地操作,制作出烧结磁铁。测定所获得的烧结磁铁的磁特性。图9所示为以SiO2的添加量作为横轴的剩余磁通密度Br、矫顽力HcJ、矩形比Hk/HcJ的测定结果。图中,黑圆点表示CaO为0.5质量%的情况,黑三角表示CaO为0.7质量%的情况,黑方块表示CaO为0.9质量%的情况。
由图9可知,在本发明的CaLaCo铁氧体中,CaCO3的添加量换算成CaO在0.7质量%附近、SiO2的添加量在0.6重量附近,显示出优异的特性。
[实施例8]
添加0.1质量%的H3BO3粉末、换算成CaO为0.7质量%的CaCO3粉末、0.6质量%的SiO2粉末,将煅烧温度设为1225℃,将烧结温度设为1190℃、1200℃,除此之外,与实施例1同样地操作,制作出烧结磁铁。表2所示为所获得的烧结磁铁的磁特性的测定结果。
[表2]
可知,通过在实施例7中优选的CaCO3和SiO2的添加量下、将煅烧温度和烧结温度设为优选的条件,能够获得更加优异的Br和HcJ。
[实施例9]
准备CaCO3粉末、La2O3粉末、Fe2O3粉末(粒径0.6μm)、NiO粉末和Co3O4粉末,配合各粉末,使得在式(1-x)CaO·(x/2)La2O3·(n-y/2)Fe2O3·yCaO·y’NiO中,x=0.5、y+y’=0.3、y’=0~0.1、x/y=1.67、n=5.2,进一步向配合粉末中添加0.1质量%的H3BO3粉末。将所得到的原料粉末在湿式球磨机中混合4小时,进行干燥和整粒。接着,在大气中、在1150℃下煅烧3小时,获得粉末状的煅烧体。
接下来,向上述煅烧体中添加换算成CaO为0.7质量%的CaCO3粉末、0.6质量%的SiO2粉末,在以水作为溶剂的湿式球磨机中进行微粉碎,直到空气透过法的平均粒度达到0.55μm。除去所获得的微粉碎浆料中的溶剂,同时在磁场中加压成形。以加压的加压方向和磁场方向平行的方式进行加压成形,磁场强度为13kOe。将所获得的成形体在大气中、在1190℃下烧结1小时,获得烧结磁铁。
测定所获得的烧结磁铁的磁特性。图10所示为以y’(NiO量)作为横轴的剩余磁通密度Br、矫顽力HcJ、矩形比Hk/HcJ的测定结果。
由图10可知,即使用Ni置换Co,也没有看到Br和HcJ大幅降低。因为Ni比Co便宜,所以通过用Ni置换Co,能够降低制造成本而不降低磁特性。
产业上的可利用性
本发明的氧化物磁性材料,不但剩余磁通密度Br和矫顽力HcJ高,而且矩形比也高,因此适合应用于高性能的电动机。

Claims (10)

1.一种氧化物磁性材料,以具有六方晶的M型磁铅石结构的铁氧体为主相,其特征在于,具有如下组成:
以式(1-x)CaO·(x/2)R2O3·(n-y/2)Fe2O3·yMO表示,R是选自La、Nd、Pr中的至少一种元素、且一定含有La,M是选自Co、Zn、Ni、Mn中的至少一种元素、且一定含有Co,
表示摩尔比的x、y、n分别为
0.4≤x≤0.6,
0.2≤y≤0.35,
4.8≤n≤5.8,
并且满足关系式1.4≤x/y≤2.5。
2.一种含有权利要求1的氧化物磁性材料的烧结磁铁。
3.如权利要求2所述的烧结磁铁,其特征在于,矫顽力HcJ为370kA/m以上。
4.如权利要求2所述的烧结磁铁,其特征在于,剩余磁通密度Br为0.45T以上。
5.如权利要求2所述的烧结磁铁,其特征在于,矩形比Hk/HcJ为85%以上。
6.如权利要求5所述的烧结磁铁,其特征在于,矩形比Hk/HcJ为90%以上。
7.一种氧化物磁性材料的制造方法,用于制造权利要求1的氧化物磁性材料,其特征在于,在煅烧前添加相对于配合粉末为0.2质量%以下的H3BO3
8.一种烧结磁铁的制造方法,用于制造权利要求2的烧结磁铁,其特征在于,在微粉碎前,添加相对于煅烧体为1.0质量%以下的SiO2、换算成CaO相对于煅烧体为1.5质量%以下的CaCO3
9.一种氧化物磁性材料的制造方法,用于制造权利要求1的氧化物磁性材料,其特征在于,使煅烧气氛为氧浓度5%以上。
10.一种烧结磁铁的制造方法,用于制造权利要求2的烧结磁铁,其特征在于,使烧结气氛为氧浓度10%以上。
CN2005800164602A 2004-09-10 2005-09-08 氧化物磁性材料和烧结磁铁 Active CN1956935B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004264568 2004-09-10
JP264568/2004 2004-09-10
PCT/JP2005/016548 WO2006028185A1 (ja) 2004-09-10 2005-09-08 酸化物磁性材料および焼結磁石

Publications (2)

Publication Number Publication Date
CN1956935A CN1956935A (zh) 2007-05-02
CN1956935B true CN1956935B (zh) 2010-05-05

Family

ID=36036466

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800164602A Active CN1956935B (zh) 2004-09-10 2005-09-08 氧化物磁性材料和烧结磁铁

Country Status (7)

Country Link
US (2) US7758767B2 (zh)
EP (1) EP1808422B1 (zh)
KR (1) KR100910048B1 (zh)
CN (1) CN1956935B (zh)
BR (1) BRPI0508979B1 (zh)
MX (1) MXPA06015044A (zh)
WO (1) WO2006028185A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456870B (zh) * 2006-03-10 2014-10-11 Hitachi Metals Ltd 肥粒鐵燒結磁鐵之製造方法
WO2010003926A1 (en) * 2008-07-08 2010-01-14 Technical University Of Denmark Magnetocaloric refrigerators
EP2450922B1 (en) 2009-06-30 2018-07-25 Hitachi Metals, Ltd. Ferrite sintered magnet producing method and ferrite sintered magnet
JP5626211B2 (ja) * 2009-07-08 2014-11-19 Tdk株式会社 フェライト磁性材料
BR112012022418A2 (pt) 2010-03-10 2024-03-12 Hitachi Metals Ltd Eletroíma de ferrita sinterizado e seu método de produção
KR101858484B1 (ko) * 2010-12-28 2018-06-27 히타치 긴조쿠 가부시키가이샤 페라이트 소결 자석 및 그 제조 방법
SI2881956T1 (sl) 2012-07-31 2017-10-30 Hitachi Metals, Ltd. Sintran feritni magnet in postopek njegove izdelave
KR101836964B1 (ko) 2012-08-31 2018-03-09 히타치 긴조쿠 가부시키가이샤 페라이트 하소체, 페라이트 소결 자석의 제조 방법 및 페라이트 소결 자석
EP2905790B1 (en) * 2012-09-28 2024-02-07 Proterial, Ltd. Ferrite sintered magnet and method for producing same
CN103848622A (zh) * 2012-11-30 2014-06-11 日立金属株式会社 铁氧体化合物
GB2509753A (en) 2013-01-14 2014-07-16 Bae Systems Plc Ferrite Fibre Composites
JP6596829B2 (ja) 2014-03-07 2019-10-30 Tdk株式会社 フェライト焼結磁石及びそれを備えるモータ
KR102277414B1 (ko) 2015-10-16 2021-07-14 유니온머티리얼 주식회사 페라이트 자성재료 및 페라이트 소결자석
KR102407046B1 (ko) 2016-06-20 2022-06-10 유니온머티리얼 주식회사 페라이트 자성재료 및 페라이트 소결자석
KR102588230B1 (ko) 2016-06-20 2023-10-13 유니온머티리얼 주식회사 페라이트 자성재료 및 페라이트 소결자석
KR102588231B1 (ko) 2016-06-20 2023-10-13 유니온머티리얼 주식회사 페라이트 자성재료 및 페라이트 소결자석
JP7247467B2 (ja) * 2017-03-23 2023-03-29 株式会社プロテリアル フェライト焼結磁石の製造方法及びフェライト焼結磁石
KR102258552B1 (ko) 2017-03-31 2021-06-01 유니온머티리얼 주식회사 페라이트 자성재료 및 페라이트 소결자석
US11289250B2 (en) 2017-05-24 2022-03-29 Hitachi Metals, Ltd. Sintered ferrite magnet
KR102166901B1 (ko) * 2017-05-24 2020-10-16 히타치 긴조쿠 가부시키가이샤 페라이트 소결 자석
CN110323025B (zh) * 2018-03-28 2021-12-10 Tdk株式会社 铁氧体烧结磁铁
JP7047530B2 (ja) * 2018-03-28 2022-04-05 Tdk株式会社 フェライト焼結磁石及びフェライト焼結磁石の製造方法
JP7000954B2 (ja) * 2018-03-28 2022-01-19 Tdk株式会社 フェライト焼結磁石
JP7338361B2 (ja) 2019-09-25 2023-09-05 Tdk株式会社 フェライト焼結磁石
JP7347296B2 (ja) * 2020-03-30 2023-09-20 Tdk株式会社 フェライト焼結磁石および回転電気機械

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033432A1 (fr) * 2001-10-19 2003-04-24 Ugimag Sa Aimants de type ferrite economiques et a proprietes ameliorees
CN1455938A (zh) * 2000-12-15 2003-11-12 住友特殊金属株式会社 永磁体及其制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182820A (ja) 1991-12-27 1993-07-23 Hitachi Metals Ltd 異方性フェライト磁石の製造方法
JP2922864B2 (ja) 1996-11-18 1999-07-26 日立金属株式会社 フェライト磁石およびその製造方法
DE69824362T2 (de) * 1997-02-25 2005-06-16 Tdk Corp. Magnetisches Oxidmaterial, Ferritteilchen, gesinterter Magnet, Verbundmagnet, magnetischer Aufzeichnungsträger und Motor
EP0940823B1 (en) * 1997-09-19 2008-03-05 TDK Corporation Sintered magnet
JP3181559B2 (ja) * 1997-09-19 2001-07-03 ティーディーケイ株式会社 酸化物磁性材料、フェライト粒子、ボンディット磁石、焼結磁石、これらの製造方法および磁気記録媒体
CN103310934B (zh) 1997-09-19 2016-05-04 Tdk株式会社 磁体粉末、烧结磁体,其制造工艺、粘结磁体、马达和磁记录介质
WO2000031756A1 (fr) * 1998-11-26 2000-06-02 Sumitomo Special Metals Co., Ltd. Poudre ferromagnetique et aimant utilisant ladite poudre, et procede de fabrication associe
JP3682850B2 (ja) 1999-06-23 2005-08-17 日立金属株式会社 回転機
JP2002313618A (ja) * 2001-02-07 2002-10-25 Sumitomo Special Metals Co Ltd 永久磁石、およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1455938A (zh) * 2000-12-15 2003-11-12 住友特殊金属株式会社 永磁体及其制造方法
WO2003033432A1 (fr) * 2001-10-19 2003-04-24 Ugimag Sa Aimants de type ferrite economiques et a proprietes ameliorees

Also Published As

Publication number Publication date
BRPI0508979B1 (pt) 2016-07-12
EP1808422A1 (en) 2007-07-18
EP1808422A4 (en) 2011-04-13
BRPI0508979A (pt) 2007-08-28
KR20060132917A (ko) 2006-12-22
US7758767B2 (en) 2010-07-20
KR100910048B1 (ko) 2009-07-30
CN1956935A (zh) 2007-05-02
WO2006028185A1 (ja) 2006-03-16
US20070194269A1 (en) 2007-08-23
MXPA06015044A (es) 2007-04-25
EP1808422B1 (en) 2012-06-06
US20100237273A1 (en) 2010-09-23

Similar Documents

Publication Publication Date Title
CN1956935B (zh) 氧化物磁性材料和烧结磁铁
JP4919636B2 (ja) 酸化物磁性材料および焼結磁石
CN101351853B (zh) 氧化物磁性材料
JP5873333B2 (ja) フェライト焼結磁石の製造方法及びフェライト焼結磁石
JP4367649B2 (ja) フェライト焼結磁石
US9401235B2 (en) Sintered ferrite magnet and its production method
CN104900362B (zh) 铁氧体烧结磁铁以及具备其的电动机
JPWO2007060757A1 (ja) 酸化物磁性材料及びその製造方法、並びにフェライト焼結磁石及びその製造方法
JP5408521B2 (ja) 焼結磁石の製造方法
JP4883334B2 (ja) フェライト焼結磁石及びその製造方法
JP6119752B2 (ja) フェライト仮焼体、フェライト焼結磁石の製造方法及びフェライト焼結磁石
JP2012209295A (ja) フェライト焼結磁石
JP5521622B2 (ja) 酸化物磁性材料、フェライト焼結磁石及びフェライト焼結磁石の製造方法
EP1150310A1 (en) Ferrite magnet powder and magnet using the magnet powder, and method for preparing them
JP2005259751A (ja) フェライト磁石およびその製造方法
CN1288573A (zh) 铁氧体磁铁粉末、用该磁铁粉末的磁铁及它们的制造方法
JP2008187184A (ja) フェライト磁石の製造方法
JP5499329B2 (ja) フェライト焼結磁石及びその製造方法
JP2001284113A (ja) 永久磁石およびその製造方法
JP2002260908A (ja) 永久磁石粉末、該永久磁石粉末を用いた磁石およびそれらの製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant