CN1841642B - 高负荷高亮度放电灯 - Google Patents

高负荷高亮度放电灯 Download PDF

Info

Publication number
CN1841642B
CN1841642B CN2006100738618A CN200610073861A CN1841642B CN 1841642 B CN1841642 B CN 1841642B CN 2006100738618 A CN2006100738618 A CN 2006100738618A CN 200610073861 A CN200610073861 A CN 200610073861A CN 1841642 B CN1841642 B CN 1841642B
Authority
CN
China
Prior art keywords
tungsten
metal oxide
concurrent
discharge lamp
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006100738618A
Other languages
English (en)
Other versions
CN1841642A (zh
Inventor
池内满
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Publication of CN1841642A publication Critical patent/CN1841642A/zh
Application granted granted Critical
Publication of CN1841642B publication Critical patent/CN1841642B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0735Main electrodes for high-pressure discharge lamps characterised by the material of the electrode
    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05BSEWING
    • D05B35/00Work-feeding or -handling elements not otherwise provided for
    • D05B35/10Edge guides
    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05BSEWING
    • D05B35/00Work-feeding or -handling elements not otherwise provided for
    • D05B35/02Work-feeding or -handling elements not otherwise provided for for facilitating seaming; Hem-turning elements; Hemmers

Abstract

本发明提供了一种高负荷的高亮度放电灯,其所具有的阴极中,不含钍的材料可以用于高热负荷的阴极材料,并能够实现与钍钨相当的长寿命、高稳定性。具有:密闭的透光性的容器、相对设置在该容器内的电极、以及为了气密性保持该透光性的容器而在该容器两端突出的封闭部,通过该封闭部对该电极供电,其特征在于:该电极中的至少一个,在以钨为主要成分的高熔点金属基体中,从镧等易于发射电子材料中选择的至少一种金属氧化物和从锆等稳定化材料中选择的至少一种金属氧化物共存,该易于发射电子材料和该稳定化材料共存的共存物的换算粒径为15μm以上,在该高熔点金属基体中存在多个该共存物。

Description

高负荷高亮度放电灯
技术领域
本发明涉及高负荷的高亮度放电灯,更详细地说,涉及的高负荷的高亮度放电灯的优点在于:在用于高负荷的高亮度放电灯的阴极材料中使用了不含钍的材料。
背景技术
以往,在如氙短弧灯、超高压水银灯、稀有气体-水银短弧灯这样的电弧稳定度较高且要求长寿命的高负荷的高亮度放电灯中,作为阴极材料,一般采用钍化钨(含有钍氧化物的钨,化学符号为ThW,以下称为钍钨)材料。但是,在该阴极材料中所含的钍为发射性物质,从环境负担的观点考虑,是不希望使用的。
因此,研发了各种不含钍的阴极材料。例如,已知在如荧光灯或输入电力较低的高压水银灯那样的对电极的热负荷较低的放电灯中,作为该阴极材料,公知在易于发射电子物质中使用钡氧化物。作为这种技术,例如,存在特开平8—77967号。根据该公报,作为易于发射电子物质(易電子放射性物質)的发射体粉末,提出了含有钡且在该阴极的前端部插入含有该发射体材料的棒状体并进行烧结的所谓含浸阴极。但是,含有钡的该含浸阴极针对的是输入电力比较低的放电灯,若阴极温度较高,则钡会蒸发,因此,存在不能用于该电极的电流密度较高的大型放电灯,特别是输入电力为500W以上的放电灯的问题。
另一方面,针对输入电力为500W以上的比较大型的放电灯,进行了各种试验。一般情况下,众所周知,在以钨为主要成分的高熔点金属基体中,作为钍以外的易于发射电子的材料,含有从镧、铈、钇、钪以及钆中选择的至少一种的金属氧化物的材料能够表现出良好的电子发射特性。研发了将这些材料用作放电灯的阴极物质。作为这种技术,例如,具有特开平5—54854和特开平6—60806号。根据这些公报中公开的技术,公开了作为易于发射电子的材料,在放电灯的阴极材料中含有镧等的金属氧化物的内容,并记载了可以对输入电力1kW左右的放电灯提供点灯1000小时左右仍稳定的发射体。但是,在将由镧等易于发射电子的材料构成的金属氧化物用作如氙短弧灯、超高压水银灯、稀有气体-水银短弧灯那样的高负荷的高亮度放电灯的阴极材料时,相对于1KW以上的高输入电力或1000小时以上的长寿命要求,由于作用于该阴极材料的高热负荷,镧等会在早期蒸发,与在该阴极材料中使用钍钨的材料相比,灯的寿命较短且不实用。
另外,在特开平7—153421号中,公开了作为小型且输入电力较小的高压金属卤化物放电灯的电极材料,在第1金属氧化物中存在HfO2、ZrO2,在第2金属氧化物中存在Y2O3、La2O3、Ce2O3、Sc2O3。另外,还公开了通过第1金属氧化物,第2金属氧化物相对于热负荷能够稳定。但是,即使通过该第1金属氧化物使该第2金属氧化物相对于热负荷稳定,若用于施加在阴极材料上的热负荷非常高的上述高负荷的高亮度放电灯,易于发射电子的材料仍会在早期蒸发,结果,与将钍钨用于阴极的情况相比,存在灯的寿命短的问题。另外,在国际公开专利WO03/075310号中,记载了在短弧型放电灯的阴极中含有La2O3和HfO2或ZrO2。但是,在这种构成中,与前面所述的情况相同,若用于施加在阴极材料上的热负荷非常高的高负荷的高亮度放电灯,易于发射电子的材料仍会在早期蒸发,结果,与将钍钨用于阴极的情况相比,寿命变短。一般情况下,高压金属卤化物放电灯或高压水银灯的阴极的工作温度在前端附近,为大约2000℃。另一方面,如短弧灯、超高压水银灯、稀有气体-水银短弧灯那样的高负荷的高亮度放电灯的阴极工作温度高达2400℃~3000℃。因此,在该高压金属卤化物放电灯等中,能够抑制易于发射电子的材料蒸发,即相对于热负荷稳定即可,但在该高负荷的高亮度放电灯中,除了抑制易于发射电子物质蒸发以外,还要考虑因高温引发该易于发射电子物质本身枯竭的问题以及该枯竭会对灯的寿命产生较大影响。
专利文献1:特开平8—77967号
专利文献2:特开平5—54854号
专利文献3:特开平6—60806号
专利文献4:特开平7—153421号
专利文献5:国际公开专利WO03/075310号
发明内容
本发明所解决的课题为:在氙短弧灯、超高压水银灯、稀有气体-水银短弧灯等对阴极的热负荷较高的高负荷的高亮度放电灯中,提供一种高负荷的高亮度放电灯,其所具有的阴极中,不含钍的材料可以用于高热负荷的阴极材料,并且能够实现与钍钨相当的长寿命、高稳定性。
本发明发现:在钨中所含的镧等易于发射电子的材料的金属氧化物作为发射体工作时,脱离的氧会使钨氧化,该钨氧化物与例如镧的金属氧化物形成熔点较低的化合物,并形成液相,因此,发射体的输送速度急剧增加并被消耗,所以高负荷的高亮度放电灯的寿命缩短,为了抑制该金属氧化物形成液相,应使用稳定化材料。具体来说,使从用于实现稳定化的钛、锆、铪、铌以及钽中选择的金属氧化物与易于发射电子的氧化物共存,或为了抑制钨氧化物的生成而使从钛、锆、铪、铌以及钽中选择的金属与钨形成合金,从而起到吸氧剂的作用。
在本发明中记载的高负荷高亮度放电灯,具有:密闭的透光性的容器、相对设置在该容器内的阳极和阴极、以及为了气密性保持该透光性的容器而在该容器两端突出的封闭部,通过该封闭部对该阳极和该阴极供电,其特征在于:该阴极,在以钨为主要成分的高熔点金属基体中,从镧、铈、钇、钪以及钆中选择的至少一种的金属氧化物和从钛、锆、铪、铌以及钽中选择的至少一种金属氧化物共存,该共存物的换算粒径为15μm以上,在该高熔点金属基体中存在多个该共存物。
另外,在上述构成中,所述共存物含有钨氧化物。
另外,所述共存物在钨金属基体中所含的量为0.3重量%~5重量%。
另外,所述共存物,在该共存物中存在的从镧、铈、钇、钪以及钆中选择的至少一种金属氧化物AxOy和从钛、锆、铪、铌以及钽中选择的至少一种金属氧化物BzOt存在的摩尔比为A/B≦1.0。
根据本发明的高负荷高亮度放电灯,具有:密闭的透光性的容器、相对设置在该容器内的阳极和阴极、和为了气密性保持该透光性的容器而在该容器两端突出的封闭部,通过该封闭部对该阳极和该阴极供电,其特征在于:该阴极,在以钨为主要成分的高熔点金属基体中,含有从镧、铈、钇、钪以及钆中选择的至少一种金属氧化物,在该高熔点金属基体中的钨中,作为与该钨的合金,含有从钛、锆、铪、铌以及钽中选择的至少一种金属。
另外,所述阴极中至少靠近放电的前端部分为不含有包含该易于发射电子材料的金属氧化物的、且以钨为主要成分的金属,周围部分为含有包含易于发射电子材料的金属氧化物的、且以钨为主要成分的金属。
根据本发明中技术方案1记载的高负荷高亮度放电灯,作为钍以外的易于发射电子物质,包含从镧、铈、钇、钪以及钆中选择的至少一种金属氧化物,通过使该金属氧化物与从作为用于使其稳定的稳定化材料的钛、锆、铪、铌以及钽中选择的至少一种金属氧化物共存,从而与作为易于发射电子物质的金属氧化物以单体存在的情况相比,能够提高该氧化物形成液相的温度,因此,能够抑制因该易于发射电子物质的液化所引起的消耗速度。另外,通过使该易于发射电子物质与该稳定化材料的共存物的换算粒径达到15μm以上,因此,即使存在于该共存物中的该易于发射电子物质伴随点灯时间一起消耗,也不会易于形成液相,从而可以供给稳定的该易于发射电子物质。结果,作为利用不含钍的阴极材料的高负荷高亮度放电灯,其优点在于:即使在阴极前端施加较高的热负荷时,仍获得电弧稳定度较高且寿命较长的高负荷高亮度放电灯。
另外,本发明中的换算粒径是指,在沿中心轴将阴极切断为一半的截面中,作为存在于测定范围0.5mm2内的共存物,在将该共存物的面积换算为圆时的直径内,除最大直径以外的第2长度。在本发明中,该第2换算粒径的长度为15μm以上的共存物存在于该测定范围内。此处,测定范围采用了0.5mm2是因为,该阴极前端的锥部前端直径通常为0.5mm左右,在测定该锥部前端附近的情况下,易于将该面积作为图像处理而引入。另外,在测定换算粒径时,之所以采用除最大直径以外的第2长度,使因为要去除因某个原因而产生异常突出的值的情况来进行测定,其按照一般在统计处理中所用的方法。
根据本发明中技术方案2记载的发明,其优点在于:提供了一种长寿命的高负荷高亮度放电灯,其通过在该共存物中含有钨氧化物,能够抑制在该共存物周边生成钨氧化物的高浓度层,该共存物不会形成液相以致该易于发射电子物质早期枯竭,从而能够维持稳定的放电。具体来说,考虑了以下现象。该共存物在该易于发射电子的材料作为发射体工作时,氧从该易于发射电子的材料脱离,例如,镧原子等在作为高熔点金属基体的钨中移动,从而供给放电所必需的电子。所述氧与覆盖该共存物周围的钨相结合以形成钨氧化物。不久,在该共存物的周围形成薄皮状的高浓度钨氧化物层。若该钨的氧化物层达到高浓度,则熔点降低,即使在低温下,仍会形成液相。若发生所述液相,则该共存物自身会急剧消失。但是,通过在该共存物中含有钨氧化物,在该共存物周围生成的钨氧化物易于向该共存物内扩散,从而能够抑制因逐渐堆积在该共存物周边而生成熔点较低的高浓度钨氧化物。以此方式,结果具有以下优点:提供了一种长寿命的高负荷高亮度放电灯,不会因生成高浓度钨氧化物而发生该共存物周边的液相化,并且,该易于发射电子的材料不会由该共存物而早期枯竭,能够稳定供给,并维持稳定的放电。
根据本发明中技术方案3记载的发明,其优点在于提供了一种长寿命的高负荷高亮度放电灯,其中,钨不易于与作为该共存物的金属氧化物反应而生成低熔点的化合物,从而能够抑制该共存物形成液相。结果,该易于发射电子材料不会因该共存物而早期枯竭,而能够稳定供给,并维持稳定的放电。
另外,根据本发明中技术方案4记载的发明,由于该共存物相对于该钨金属基体的含量比在0.3重量%以上,因此,能够进行充分的该易于发射电子材料的供给,并维持高负荷高亮度放电灯的稳定放电。另外,由于该共存物的含量比在5重量%以下,因此,作为阴极材料,不会引发热传导性的低下,在点亮灯的情况下,阴极前端的锥部前端的温度上升,能够抑制该阴极的变形。结果,具有能够提供维持长时间稳定放电的高负荷高亮度放电灯的优点。
根据本发明的技术方案5记载的发明,作为钍以外的易于发射电子材料,含有从镧、铈、钇、钪以及钆中选择的至少一种金属氧化物,在该易于发射电子材料作为发射体作用的情况下,通过由比构成阴极的钨更易于与氧结合、且可以与氧稳定结合的材料,即钛、锆、铪、铌、钽构成的稳定材料,吸收从该易于发射电子材料脱离的氧原子,能够抑止由钨氧化物形成的液相。具体来说,在该易于发射电子材料的金属氧化物起到发射体作用的情况下,该金属氧化物的氧脱离,该易于发射电子材料以原子状态在钨金属基体中扩散。这时,脱离的氧与周边金属结合,生成金属氧化物。此处,作为稳定化材料,与钨形成合金的所谓钛、锆、铪、铌、钽的金属与钨相比,更易于与氧结合,从而起到吸氧剂的作用。因此,能够抑制使钨氧化而形成钨氧化物。结果,能够抑制熔点较低的钨氧化物在阴极的工作温度左右形成液相,由此能长时间地稳定供给该易于发射电子材料,从而能够长时间地维持稳定放电。另外,作为与钨形成合金的该稳定化材料的钛、锆、铪、铌、钽的金属一般与金属状态下的钨相比,熔点更低,从而存在因合金化而降低该钨金属基体本身熔点的情况。因此,希望该稳定化材料相对于钨的组成比为1原子%以下。即使是这种低浓度,在比较该稳定化材料和钨时,该稳定化材料非常易于与氧结合,从而作为吸氧剂起作用是非常有效的。
根据本发明的技术方案6记载的发明,由于在阴极的前端部,至少露于放电中的部分为钨金属,其周围部分在钨金属基体中含有包含易于发射电子物质的金属氧化物,因此,即使热负荷变高,仍能抑制钨本身的熔化或蒸发,另外,由于从该前端部周围,通过表面扩散能够供给易于发射电子物质,因此,具有没有该阴极前端的损耗,并能够维持稳定的放电的优点。另外,由于该阴极的前端部不含该金属氧化物,因此,不会因易于发射电子的金属氧化物液化,急速喷出或飞散而使该阴极先端变形。特别是,希望在该阴极前端,在工作温度超过2000℃的部分不存在该金属氧化物,通过这种构成,具有能够长时间防止该阴极前端变形的优点。另外,本构成中露于放电的部分通常为距离阴极锥部前端0.5mm~1.5mm的部分。
附图说明
图1为示意性剖视图,显示了本发明中高负荷的高亮度放电灯的概略形状。
图2为显示本发明的高负荷高亮度放电灯的效果的图表。
图3为说明图,其显示了存在于本发明的钨金属基体中的共存物。
图4为放大本发明的阴极形状的概略放大剖视图。
具体实施形式
本发明的高负荷高亮度放电灯无需在阴极材料中使用钍,通过形成由镧等易于发射电子物质构成的金属氧化物、和由起稳定化材料作用的锆等构成的金属氧化物共存的共存物,能够抑止该易于发射电子物质在低温下形成液相,即使对于由高输入电力驱动的情况或大型的高负荷高亮度放电灯而言,仍能实现与在该阴极中使用钍钨材料时相同的稳定放电和长寿命。
实施例1
在图1中显示了本发明中的高负荷高亮度放电灯的概略图。在图1中,作为稀有气体-水银短弧灯1,在石英玻璃制成的真空管4内,封装有氙等稀有气体。阴极2和阳极3对立设置。该阳极3例如采用了钨含量99.99重量%以上的纯钨,在阴极2中,以钨为主要成分,钨的含量为小98重量%,在该钨金属基体中,作为该易于发射电子材料,含有镧(La)的金属氧化物,作为使易于发射电子物质稳定的稳定化材料,含有锆(Zr)的金属氧化物或铪(Hf)的金属氧化物,例如,形成镧的金属氧化物与锆的金属氧化物共存的共存物,在阴极2中使用含有2重量%的该共存物的材料。该稀有气体-水银短弧灯1为输入电力2kW的稀有气体-水银短弧灯,电极间距离为7mm,作为稀有气体使用氙,氙的封装压力在常温下的压力为1.5个大气压,阴极的形状为直径8mm,长度20mm,前端的锥部的顶角60度,作为最前端的锥部前端的直径为0.5mm的形状。
在该钨金属基体中,作为所述易于发射电子材料,采用了镧(La)的金属氧化物,作为使该易于发射电子材料稳定的稳定化材料,在阴极中分别使用锆(Zr)的金属氧化物,铪(Hf)的金属氧化物,从而制成该高负荷高亮度放电灯,并与由钍钨材料制成的阴极进行比较试验。该比较试验用的所述该高负荷高亮度放电灯采用与上述高负荷高亮度放电灯相同的方式,使用了输入电力2kW的稀有气体-水银短弧灯。该高负荷高亮度放电灯为主要用于半导体曝光用光源等的灯,其由较高的电流驱动,并且,水银的封装量较少,对该阴极的热负荷非常大。作为被封装的稀有气体,虽然使用了氙,但是,也可以采用氙、氪、氩以及它们的混合气体。正常点亮该高负荷高亮度放电灯,作为所发射的光,例如,通过检测波长365nm的光的半导体监测器,测定从该高负荷高亮度放电灯发射的光的变化率。该变化率用于比较评价处于1%以上的变化的状态,所谓产生电弧不稳定之前的点灯时间。
图2所示为各种共存物的组成、该共存物的换算粒径、直至电弧不稳定发生的时间以及比较评价的结果。图2所示的基准试样1为以往通常使用的钍钨电极,作为易于发射电子材料,在阴极中使用了在钨金属基体中含有2重量%的钍的金属氧化物(ThO2)的材料。在以往使用钍钨的该基准试样1中,电弧不稳定发生在700个小时。以该时间为基准,对其它的样品进行比较评价。
作为进行比较评价的本发明的试样,对在钨金属基体中含有共存有作为所述易于发射电子材料的镧(La)的金属氧化物和作为稳定化材料的锆(Zr)的金属氧化物或铪(Hf)的金属氧化物的颗粒的情况进行确认。这些在钨金属基体中所含的金属氧化物与前面所述的钍钨电极的情况相同,作为该易于发射电子材料,镧以及稳定化材料构成的金属氧化物的共存物,在该钨金属基体中含有2重量%。在样品1~样品5采用锆(Zr)的金属氧化物的情况下,该共存物的组成例如为La2Zr2O7。另外,样品a~样品d在采用铪(Hf)的金属氧化物的情况下,该共存物的组成例如为La2Hf2O7。在图3中显示了用于说明含有该共存物的钨金属基体的概略图。另外,此处所示的金属氧化物的形状只是一个示意性的例子,存在的形状可根据材料或制造条件而不同。图3—a)为沿中心轴将用于稀有气体-水银短弧灯的阴极2切断为一半的剖视图,其由钨金属基体31和锥部32构成。在作为该锥部32前端的锥部前端33附近,通过虚线包围显示了测定该共存物的测定范围21,该测定范围21具有一边为0.5mm的正方形部分。图3—b)为显示扩大了该测定范围21的截面的说明用示意图。在该测定范围21中存在钨金属结晶晶界22,在该钨金属结晶晶界22上或钨金属结晶粒30中存在该共存物23。在该共存物23中,例如,混合有镧的金属氧化物和锆的金属氧化物。图3—c)为显示钍钨阴极时的该测定范围21的放大剖视图。在该钨金属结晶晶界22上或钨金属结晶粒30中,存在作为钍的金属氧化物的氧化钍(ThO2)的氧化钍颗粒24。该氧化钍颗粒24细微、均匀分散。
此处,图3-b)所示的作为存在于该共存物23中的易于发射电子材料的镧的金属氧化物和作为稳定化材料的锆的金属氧化物的存在比率最好采用以下的比率。即,希望该易于发射电子材料的金属氧化物AxOy与稳定化材料的金属氧化物BzOt的摩尔比为A/B≦1.0。其原因在于:若用于实现稳定的金属氧化物的比例很低,即A/B>1.0,则钨与作为该共存物23的金属氧化物反应而生成低熔点化合物。
另外,在本样品中,虽然该共存物23相对于该钨金属基体31的含量比为2重量%,但是,该共存物23的含量最好为0.3重量%~5重量%程度。若该共存物23少于0.3重量%,则该易于发射电子材料的供给不充分,从而在灯点亮时不能稳定放电。另外,在5重量%以上的情况下,电极材料的导热性低下,在灯点亮时,阴极前端的锥部前端33的温度上升,从而电极的寿命缩短。
在从图2所示的样品1至样品5所示的一组样品以及从样品a至样品d所示的一组样品中,除了由换算粒径所示的粒径不同以外,均处于相同的条件。此处,换算粒径表示在沿中心轴将该阴极切断为一半的截面中,作为存在于测定范围0.5mm2内的共存物,在将该共存物的面积换算为圆时的直径(相对于面积,若将直径定为L,则由S=(πL2/4)表示)内,除最大直径以外的第2长度。若以一个边0.5mm的正方形获得测定范围,则该阴极前端的锥部前端径长大多为0.5mm左右,从而能够简单地观察该锥部前端附近区域。
具体来说,以含有该阴极前端的整个锥部的方式,沿该阴极的中心轴切断成一半,并将该截面研磨平坦,通过光学显微镜或电子显微镜拍摄该截面图像,以便能够区分以该截面中的钨为主要成分的金属基体和以粒状存在于该金属基体中的该共存物,即金属氧化物。在该截面上对该拍摄图像等进行换算,以便针对存在于在一边为0.5mm的正方形内的测定范围中的该共存物,求出将该共存物的面积换算为圆形时的直径。此处,作为测定范围的析像度,将宽度0.5μm的正方形作为一个像素计量,通过钨金属基体和该共存物对数据进行2值化处理,并由图像处理数据换算该共存物的数据。换算式采用由上述面积S求出直径的公式,换算值通过四舍五入求到μm位。该直径内,将除测定范围内的最大直径以外的第2长度作为该测定范围内的该换算粒径。在实际中,针对该阴极前端的锥部,其中特别是针对其前端附近进行测定。
由图2的比较试样1所示的钍钨电极的换算粒径大于作为以往钍钨电极的基准试样1的换算粒径。在这种情况下,产生电弧不稳定的时间缩短至300小时。这是考虑:在采用钍钨的情况下,一般作为易于发射电子材料的金属氧化物细微分散,因为能够稳定地供给该易于发射电子材料,因而优选,对于加大了该换算粒径的比较试样1而言,该易于发射电子材料的供给不充分,从而会发生电弧不稳定。
另一方面,在样品1至样品5中,与采用钍钨电极时相反,随着该换算粒径加大,直至发生电弧不稳定的时间加长。特别是15μm以上的尺寸,可以维持与作为基准样品1的以往钍钨电极同等或其以上的稳定放电。另外,样品a至样品d也一样,在换算粒径12μm以上,可以长时间维持比作为基准样品1的以往钍钨电极稳定的放电。通过这些结果可知,与以往的钍钨电极相比,若该共存物的换算粒径为15μm以上,则能维持与该钍钨电极相同或其之上的稳定放电,从而能够提供长寿命的高负荷的高亮度放电灯。但是,若该共存物的该换算粒径超过100μm,则该阴极材料的机械强度降低,例如,在阴极加工时,会发生产生裂纹等不良情况。也就是希望该换算粒径在15μm~100μm的范围内。
在本实施例中,与上述钍钨电极的情况不同,虽然该共存物的换算粒径较大,但是,该高负荷的高亮度放电灯仍能够维持稳定放电,从而能够实现长寿命。其中,在该高负荷的高亮度放电灯工作时,由于阴极达到高温,从而使易于发射电子材料的金属氧化物还原。这时,氧从该金属氧化物中脱离,该易于发射电子材料在钨金属基体中扩散,从而被输送至该阴极前端,由于降低做功函数,易于放出热电子。
另一方面,脱离的氧与钨结合,生成钨氧化物。处于金属状态时不易于扩散至其它氧化物中的钨在形成钨氧化物时,开始易于扩散至其它氧化物内。在本实施例的情况下,在所生成的钨氧化物开始扩散至由易于发射电子材料构成的金属氧化物和作为稳定化材料的金属氧化物共存的共存物中。此处,若如镧、铈、钇、钪以及钆这样的易于发射电子材料的金属氧化物与钨氧化物共存,则存在随着该钨金属氧化物所占的比例提高,该金属氧化物的熔点降低的倾向。若含有较多的该钨氧化物,则即使在该阴极的工作温度以下,该金属氧化物仍会形成液相。一旦该共存物形成液相,与固体时相比,扩散速度会明显增加,通过迅速扩散,该易于发射电子材料向电极外部放出。之后,该易于发射电子材料达到枯竭的状态,从而供给量减少,不能维持稳定的放电。
钨氧化物扩散至作为该共存物的颗粒内部的量由该共存物的颗粒尺寸,即表面积决定。该共存物中的钨氧化物的比例由(共存物的体积)/(共存物的表面积)这样的关系式表示,该共存物的换算粒径越大,钨氧化物的含有比例就越低。若该共存物的颗粒尺寸加大,则该钨氧化物的比例保持较低,从而会抑制熔点低下,该共存物不会形成液相,因此,能够长时间地供给该易于发射电子材料,并维持稳定的放电。
这样,虽然该共存物的颗粒尺寸必须较大,但是,为了控制该共存物的颗粒尺寸,可采用各种手段。例如,由于作为该阴极材料的钨由粉末冶金法制成,因此,使添加至烧结前的最初原料粉末中的由该易于发射电子材料构成的金属氧化物的粉末粒径与起到稳定化材料功能的金属氧化物的密封粒径相一致,由此能够控制该共存物的颗粒的尺寸。另外,该共存物在烧结时决定气氛、温度、时间等条件,也可以使(最初粉末的粒径)/(共存物中较大颗粒的粒径)保持一定。进而,通过旋转锻造使含有该共存物的烧结体缩径,从而拉伸该共存物,并对其进行粉碎以使其变小。通过控制这时的烧结体的截面面积减少率,也能够控制该共存物的颗粒的尺寸。
针对镧的金属氧化物与锆的金属氧化物生成共存物的情况来说明制造实施例1中记载的阴极材料的方法的一个例子。首先,通过球磨机混合平均粒径20μm以下的镧的金属氧化物粉末和相同的平均粒径20μm以下的锆构成的金属氧化物粉末,在加压后,在大气中以大约1400℃进行烧结,之后,再次粉碎以获得镧的金属氧化物与锆的金属氧化物共存的氧化物粉末。对这种共存的氧化物粉末进行分级,获得粒径10~20μm的粉末。使这种粉末与纯度为99.5重量%以上的平均粒径2~20μm的钨粉末混合,进行加压,并在氢中对其进行临时烧结,之后,再通电以进行正式烧结。对烧结体进行模锻,获得理论密度95%以上的电极材料。通过将以此方式制造的该电极材料加工成所希望的电极形状,进而以1900℃在真空中加热1个小时,从而进行除气,并将其作为阴极装配在高负荷高亮度放电灯中。另外,若含有该共存物的该钨的理论密度不足95%,那么在装配在灯中并驱动的情况下,由于电极前端会收缩变形,或由热传导形成的电极锥部前端的损耗增加,因此,在烧结体的模锻时必须十分注意。
通过调整烧结后的模锻工序中的截面减少率等,还能够形成使钨的结晶粒沿电极轴向延伸的形态。通过形成使钨的结晶粒沿电极轴向延伸的形态,沿该结晶粒进行该易于发射电子材料的输送,由于该结晶粒向该电极前端形成,因此,可以向前端部稳定供给该易于发射电子材料。
同样,通过调整烧结后的模锻工序中的截面减少率等,还可以形成使存在于钨金属基体中的该共存物沿电极轴向延伸的形态。由于该共存物沿电极轴向延伸,在该易于发射电子材料的输送中,能够使该输送路径朝该电极前端形成,因此,可以向前端部稳定供给该易于发射电子材料。
另外,若在该电极材料中含有1重量ppm~100重量ppm的钾,则能够抑制钨金属本身的结晶粒生长,并可以稳定地保持该结晶粒的尺寸,且还能够稳定地保持沿该钨金属的结晶晶界输送该易于发射电子材料时的供给量。
实施例2
下面,作为第2实施例,说明了使用在该共存物中含有钨氧化物的阴极材料的高负荷高亮度放电灯。该阴极材料为存在混合有作为易于发射电子材料的镧的金属氧化物和作为稳定化材料的铪的金属氧化物以及钨氧化物的该共存物。通过在该共存物中含有钨金属氧化物,利用在作为该易于发射电子材料的镧的金属氧化物作为发射体工作时从该共存物脱离的氧,在该共存物周围生成的钨氧化物能够容易地扩散至该共存物内,从而能够抑制因逐渐聚集在该共存物周围而生成熔点较低的高浓度钨氧化物。因此,能够提供长寿命的高负荷高亮度放电灯,这种灯不会发生因生成高浓度钨氧化物而产生该共存物周边的液相化,该易于发射电子材料不会因该共存物而早期枯竭,从而能够稳定供给并维持稳定放电。
在该阴极材料的制作中,例如,以以下的顺序进行操作。通过球磨机混合平均粒径20μm以下的镧的金属氧化物粉末和平均粒径20μm以下的由铪构成的金属氧化物粉末、以及三氧化钨粉末(WO3),在加压后,在大气中以大约500℃进行烧结,之后,进行粉碎以获得该共存物的粉末。对该共存物的粉末进行分级以获得平均粒径10~20μm的混合粉末。在其后的工序中,采用与制造实施例1中的电极材料时相同的方式。以此方式,能够制造含有La2O3—HfO2-WO3的共存物的钨金属基体。利用该阴极制造输入电力为2kW的氙短弧灯。该阴极中该共存物的换算粒径为大约22μm,该阴极的直径为8mm,长度为20mm,该阴极前端的锥部的顶角为60度,该电极前端的锥部的直径为0.5mm。另外,在本实施例中,该共存物相对于钨金属基体,占4重量%。比较在该阴极材料中使用钍钨时的高负荷高亮度放电灯的照度维持率。在本实施例中,在通过屏幕投影装置将由该氙短弧灯发射的光照射在屏幕上时,通过目视测定达到闪烁发生时的时间。在本实施例中,与利用钍钨阴极的情况相同,在点灯1000小时时产生闪烁,从而能够获得与钍钨阴极同等的特性。
实施例3
本发明的第3实施例显示的情况为:使作为稳定化材料的锆在由钨构成的金属基体中合金化,在高负荷的高亮度放电灯中使用了在该金属基体中含有镧的金属氧化物作为该易于发射电子材料的阴极材料。在这种形式中,图3—b)中的钨结晶粒30形成钨与锆的合金。代替该共存物23,含有镧的金属氧化物的颗粒。在本实施例中,在作为该易于发射电子材料的镧的金属氧化物作为发射极工作时,氧从该镧的金属氧化物脱离,镧原子在作为高熔点金属基体的钨中移动,从而供给放电所必需的电子。此时,脱离的氧逐渐聚集在所述镧的金属氧化物的最表面。该氧与覆盖该镧的金属氧化物周围的钨相结合以形成钨氧化物。不久,在该共存物的周围形成薄皮状高浓度钨的氧化物层。若该钨的氧化物层达到高浓度,则熔点降低,即使在低温下,仍会形成液相。另外,在金属状态下在钨的金属氧化物内不扩散的钨,由于形成氧化物,该钨氧化物向该镧的金属氧化物的内扩散,从而形成镧的金属氧化物与钨氧化物的化合物,该化合物与镧的金属氧化物相比,熔点较低,从而在阴极的驱动温度左右就会形成液相。此处,作为稳定化材料,若锆以与钨的合金的形式存在于该金属基体中,则锆对于从易于发射电子材料脱离的氧而言,能够起到吸氧剂的作用,从而能够抑制钨氧化物的生成。结果,钨的金属氧化物向镧的金属氧化物中扩散,不会形成熔点较低的化合物,镧的金属氧化物不会形成液相,在用于高负荷高亮度放电灯的阴极的情况下,能够长时间地维持稳定放电。
在本实施例中,将锆与钨形成合金得到的上述阴极材料安装在超高压水银灯中,并与在阴极中使用钍钨的情况进行比较。该超高压水银灯为一般在制造液晶用彩色过滤器等中使用的灯,在输入电力为5kW的情况下,作为稀有气体,在常温下,以1个大气压封入氙,封装比较多的水银。该超高压水银灯的阴极的组成在钨(W)和锆(Zr)的合金中含有镧的金属氧化物(La2O3),该金属氧化物的颗粒尺寸按照换算粒径,为大约35μm。其形状为直径12mm,长度20mm,前端的锥部的顶角为80度,该锥部的前端部直径为0.6mm。将这种超高压水银灯中达到波长405nm的电弧发生不稳定情况的时间与钍钨阴极的情况进行比较。此处,电弧不稳定是指,通过检测波长为405nm的光的半导体监测器来测定由该高负荷高亮度放电灯发射的光的变化率,该变化率为1%以上变化的状态。在使用钍钨阴极的情况下,在点灯时间1000小时时会出现电弧不稳定。而在本实施例的情况下,也在点灯时间1000小时时产生电弧不稳定,从而表现出与钍钨阴极相同的特性。
在制造这种阴极材料时,通过球磨机混合平均粒径2~20μm的钨粉末和氢化锆粉末,进行加压,并在真空中加热至1200℃。在此阶段,使锆扩散至钨粉末中。将其粉碎以获得W—Zr合金粉末。粉碎该W—Zr合金粉末,混合分级后所得的平均粒径20μm以下的该W—Zr合金粉末和平均粒径10~20μm以下的镧氧化物的粉末,在加压成型后,在不活泼气体中以约1000℃临时烧结。之后,在不活泼气体中以1600℃进行烧结,进而在氢中进行通电烧结。对该烧结体进行模锻,以获得理论密度为95%以上的电极材料。在将该电极材料加工成所希望的电极形状后,在真空中进行1900℃、1个小时的加热,以进行脱气。将以此方式制成的阴极装配在高负荷高亮度放电灯中,并制造出上述样品。
实施例4
作为本发明的第4实施例,在图4中显示了该阴极2的概略剖视图。该阴极2以钨为主要成分,由含有钨与锆的合金的钨金属基体31、形成于该钨金属基体31前端的锥部32和埋入该锥部32前端、即锥部前端33的纯钨棒状体34形成。在该钨金属基体31中,作为共存物35,含有镧的金属氧化物和锆的金属氧化物共存的粒状部分。具体来说,钨金属基体31的直径为12mm,长度为30mm,锥部32的顶角36为80度,该锥部32的锥部前端33的直径为1.0mm,在该锥部32的锥部前端33上设有直径1.0mm、深度为3.0mm的孔,在该孔中压入该钨的棒状体34,通过激光熔化该锥部前端33,使其与该钨金属材料31形成一体。同时,在与该锥部前端33相距0.5mm左右,为不含金属氧化物的钨。这时的该共存物35的换算粒径为大约25μm,相对于该钨金属基体31的含有率为0.5重量%。作为装入以此方式制成的阴极2的高负荷高亮度放电灯,制成输入电力5kW的稀有气体-水银短弧灯。在该稀有气体-水银短弧灯中,作为稀有气体,以常温下的压力,以1个大气压封装入氩和氪的混合气。将钍钨阴极装入相同的该稀有气体-水银短弧灯中,进行与本实施例的比较。在评价方法中,以与实施例1相同的方式测定波长365nm下的变化率,以该变化率达到1%以上之前的点灯时间进行评价。本实施例的该稀有气体-水银短弧灯的点灯时间与在阴极材料中使用钍钨时相同。
在制造用于形成本实施例中的阴极2的钨金属基体31时,例如,存在以下方法。通过球磨机混合平均粒径2~20μm的钨粉末和氢化锆粉末,进行加压,并在真空中加热至1200℃。在该阶段,使锆扩散至钨粉末中。将其粉碎以获得W—Zr合金粉末。对其进行分级以获得平均粒径20μm以下的W—Zr合金粉末。接着,通过球磨机混合平均粒径20μm以下的镧的金属氧化物的粉末和锆的金属氧化物粉末,在加压后在大气中以大约1500℃进行烧结,并进行粉碎以获得共存的金属氧化物粉末。对这种共存的金属氧化物进行分级,获得粒径10~20μm的粉末。先前获得的W—Zr合金粉末和之后获得的共存的金属氧化物粉末混合,在加压成形后,在不活泼气体中以大约1000℃进行临时烧结。之后,在不活泼气体中以1600℃进行烧结,进而在氢中进行通电烧结。对烧结体进行模锻,以获得理论密度95%以上的电极材料。在将该电极材料加工成所希望的电极形状后,在真空中进行1900℃、1个小时的加热,以进行除气。
另外,在本实施例中使用的钨金属基体31,在以钨丝为主要成分的高熔点基体金属中,含有从易于发射电子的镧、铈、钇、钪、钆中选择的金属氧化物和从用于稳定化的钛、锆、铪、铌、钽选择的金属氧化物共存的共存物35,另外,还含有从钛、锆、铪、铌、钽中选择的金属与该钨金属基体31的钨形成合金的材料。虽然在由这种钨金属基体31形成的阴极2的前端,设有例如99.99重量%的钨棒状体34,但是也可以不使用该棒状体34,仅由该钨金属基体31形成阴极2。

Claims (5)

1.一种高负荷高亮度放电灯,具有:密闭的透光性的容器、相对设置在该容器内的阳极和阴极、以及为了气密性保持该透光性的容器而在该容器两端突出的封闭部,通过该封闭部对该阳极和该阴极供电,其特征在于:该阴极,在以钨为主要成分的高熔点金属基体中,从镧、铈、钇、钪以及钆中选择的至少一种金属氧化物和从钛、锆、铪、铌以及钽中选择的至少一种金属氧化物共存,该共存物的换算粒径为15μm以上,在该高熔点金属基体中存在多个该共存物。
2.根据权利要求1所述的高负荷高亮度放电灯,其特征在于:所述共存物含有钨氧化物。
3.根据权利要求1所述的高负荷高亮度放电灯,其特征在于:所述共存物在钨金属基体中所含的量为0.3重量%~5重量%。
4.根据权利要求1所述的高负荷高亮度放电灯,其特征在于:所述共存物,在该共存物中存在的从镧、铈、钇、钪以及钆中选择的至少一种金属氧化物AxOy和从钛、锆、铪、铌以及钽中选择的至少一种金属氧化物BzOt存在的摩尔比为A/B≤1.0。
5.根据权利要求1~4中任一项所述的高负荷高亮度放电灯,其特征在于:所述阴极中至少靠近放电的前端部分为不含有包含该易于发射电子材料的金属氧化物的、且以钨为主要成分的金属,周围部分为含有包含易于发射电子材料的金属氧化物的、且以钨为主要成分的金属。
CN2006100738618A 2005-03-31 2006-03-31 高负荷高亮度放电灯 Active CN1841642B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005101208A JP4815839B2 (ja) 2005-03-31 2005-03-31 高負荷高輝度放電ランプ
JP2005-101208 2005-03-31
JP2005101208 2005-03-31

Publications (2)

Publication Number Publication Date
CN1841642A CN1841642A (zh) 2006-10-04
CN1841642B true CN1841642B (zh) 2011-08-03

Family

ID=37030590

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006100738618A Active CN1841642B (zh) 2005-03-31 2006-03-31 高负荷高亮度放电灯

Country Status (5)

Country Link
US (1) US7569994B2 (zh)
JP (1) JP4815839B2 (zh)
KR (1) KR100909166B1 (zh)
CN (1) CN1841642B (zh)
TW (1) TW200634889A (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006061375B4 (de) * 2006-12-22 2019-01-03 Osram Gmbh Quecksilber-Hochdruckentladungslampe mit einer Wolfram und Kalium enthaltenden Anode, die eine Kornzahl größer 200 Körner pro mm2 und eine Dichte größer 19,05g/cm3 aufweist
JP4396752B2 (ja) * 2007-09-28 2010-01-13 ウシオ電機株式会社 放電ランプ装置
DE102008014096A1 (de) * 2008-03-05 2009-09-10 Osram Gesellschaft mit beschränkter Haftung Wolframelektrode für Hochdruckentladungslampen und Hochdruckentladungslampe mit einer Wolframelektrode
JP2009259790A (ja) * 2008-03-26 2009-11-05 Harison Toshiba Lighting Corp 高圧放電ランプ
WO2010067781A1 (ja) * 2008-12-08 2010-06-17 株式会社アライドマテリアル タングステン電極材料および熱電子放出電流測定装置
JP4486163B1 (ja) * 2008-12-08 2010-06-23 株式会社アライドマテリアル タングステン電極材料およびタングステン電極材料の製造方法
JP5233657B2 (ja) * 2008-12-22 2013-07-10 ウシオ電機株式会社 放電ランプ
JP5239828B2 (ja) * 2008-12-22 2013-07-17 ウシオ電機株式会社 放電ランプ
JP5293172B2 (ja) * 2008-12-26 2013-09-18 ウシオ電機株式会社 放電ランプ
JP2010165509A (ja) * 2009-01-14 2010-07-29 Ushio Inc 高圧水銀ランプ
DE102009021235B4 (de) * 2009-05-14 2018-07-26 Osram Gmbh Entladungslampe mit beschichteter Elektrode
JP5316436B2 (ja) 2010-01-28 2013-10-16 ウシオ電機株式会社 放電ランプ
JP5126332B2 (ja) * 2010-10-01 2013-01-23 ウシオ電機株式会社 ショートアーク型放電ランプ
DE102010043463A1 (de) 2010-11-05 2012-05-10 Osram Ag Verfahren zum Herstellen einer Elektrode für eine Hochdruckentladungslampe und Hochdruckentladungslampe mit mindestens einer derart hergestellten Elektrode
CN104115254B (zh) * 2012-02-15 2016-10-19 株式会社东芝 放电灯用阴极部件
EP2857534B1 (en) * 2012-05-29 2020-10-28 Kabushiki Kaisha Toshiba Tungsten alloy part, and discharge lamp, transmitting tube and magnetron using same, and use of the tungsten alloy part
JP5652430B2 (ja) * 2012-05-31 2015-01-14 ウシオ電機株式会社 ショートアーク型放電ランプ
CN103975414B (zh) * 2012-07-03 2017-03-08 株式会社东芝 钨合金部件、以及使用该钨合金部件的放电灯、发射管和磁控管
JP6219280B2 (ja) * 2012-07-31 2017-10-25 東芝マテリアル株式会社 放電ランプ用陰極およびその製造方法
WO2014208392A1 (ja) * 2013-06-24 2014-12-31 ウシオ電機株式会社 放電ランプ
WO2015128754A1 (en) * 2014-02-27 2015-09-03 Koninklijke Philips N.V. Electrode for a short-arc high pressure lamp
CN110520961B (zh) * 2017-03-31 2022-01-25 联合材料公司 钨电极材料

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1112285A (zh) * 1993-10-07 1995-11-22 菲利浦电子有限公司 高压金属卤化物放电灯

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2851727B2 (ja) 1991-08-23 1999-01-27 ウシオ電機株式会社 放電灯用電極
JP3034703B2 (ja) 1992-08-05 2000-04-17 ウシオ電機株式会社 放電灯用電極の製造方法
JP3156904B2 (ja) 1994-09-06 2001-04-16 ウシオ電機株式会社 水銀放電ランプ
US5627430A (en) 1994-06-29 1997-05-06 Ushiodenki Kabushiki Kaisha Discharge lamp having a cathode with a sintered tip insert
JP4648527B2 (ja) * 2000-08-31 2011-03-09 新日本無線株式会社 カソードの製造方法
JP2002110091A (ja) * 2000-09-29 2002-04-12 Toshiba Lighting & Technology Corp 電極材料、高圧放電ランプおよび照明装置
DE10209426A1 (de) 2002-03-05 2003-09-18 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Kurzbogen-Hochdruckentladungslampe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1112285A (zh) * 1993-10-07 1995-11-22 菲利浦电子有限公司 高压金属卤化物放电灯

Also Published As

Publication number Publication date
US20060220559A1 (en) 2006-10-05
CN1841642A (zh) 2006-10-04
JP2006286236A (ja) 2006-10-19
TW200634889A (en) 2006-10-01
US7569994B2 (en) 2009-08-04
KR20060106673A (ko) 2006-10-12
TWI371056B (zh) 2012-08-21
JP4815839B2 (ja) 2011-11-16
KR100909166B1 (ko) 2009-07-23

Similar Documents

Publication Publication Date Title
CN1841642B (zh) 高负荷高亮度放电灯
JP5316436B2 (ja) 放電ランプ
JP5293172B2 (ja) 放電ランプ
CN105340054B (zh) 放电灯
CN103703162B (zh) 用于钡-钪酸盐扩散阴极的靶
CN101794704B (zh) 放电灯
US20050134180A1 (en) Discharge lamp
JP2005183172A (ja) 放電ランプ
JP2011103240A (ja) タングステン電極およびそれを用いた放電ランプ
JP2003187741A (ja) 放電ランプ用電極
JP3078287B1 (ja) 電子放出材料の製造方法
JPH11154487A (ja) 放電管用陰極
JP2000090876A (ja) 低圧放電ランプ
EP1830387A3 (en) Metal electrodes for electric plasma discharge devices
JP3113186B2 (ja) 電極およびその製造方法
JPH10233188A (ja) 低圧放電ランプ
JP5672585B1 (ja) 放電ランプ
JP6048909B2 (ja) ショートアーク型放電ランプ
JP2010192136A (ja) 放電ランプ
JP2000348672A (ja) 電極および放電灯
JP2005183355A (ja) タングステン電極
JP2015005470A (ja) 放電ランプ
JP2003197099A (ja) 冷陰極の製造方法
JP2004200114A (ja) 冷陰極
JP2003051280A (ja) 冷陰極

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant