CN1665030A - 3d rram - Google Patents

3d rram Download PDF

Info

Publication number
CN1665030A
CN1665030A CN2004100104312A CN200410010431A CN1665030A CN 1665030 A CN1665030 A CN 1665030A CN 2004100104312 A CN2004100104312 A CN 2004100104312A CN 200410010431 A CN200410010431 A CN 200410010431A CN 1665030 A CN1665030 A CN 1665030A
Authority
CN
China
Prior art keywords
thickness
line
voltage
layer
position line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2004100104312A
Other languages
English (en)
Other versions
CN100382320C (zh
Inventor
许胜籐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allogeneic Development Co ltd
Eicke Fout Intellectual Property Co
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of CN1665030A publication Critical patent/CN1665030A/zh
Application granted granted Critical
Publication of CN100382320C publication Critical patent/CN100382320C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/101Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including resistors or capacitors only
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/30Resistive cell, memory material aspects
    • G11C2213/31Material having complex metal oxide, e.g. perovskite structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/77Array wherein the memory element being directly connected to the bit lines and word lines without any access device being used

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)
  • Hall/Mr Elements (AREA)

Abstract

在硅基底上与外围电路一起形成在3D RRAM中使用的存储器阵列层;沉积和形成氧化硅、底部电极材料、氧化硅、电阻器材料、氧化硅、氮化硅、氧化硅、顶部电极以及覆盖氧化物的层。多个存储器阵列层彼此层叠形成。本发明的RRAM可以在单步或两步编程过程中编程。

Description

3D RRAM
技术领域
本发明涉及用于非易失存储器阵列应用的薄膜电阻存储器件,尤其涉及一种无需有源器件的电阻存储器件。
背景技术
现有技术的电阻存储器件阵列需要在非易失存储元件上的有源器件。然而,在电阻存储器件的情况下,这些器件是一个电阻器、一个晶体管的阵列,或一个电阻器、一个二极管的阵列,这些阵列不适合在超高密度存储器集成的三维阵列中使用。在此公开的发明解决上述问题,因为该发明的存储器单元可以结合到大的存储器阵列中,并且无需有源器件。
发明内容
3D RRAM中使用的存储器阵列层在其上具有外围电路的硅基底上形成,该存储器阵列层包括沉积和平面化的第一氧化硅层;底部电极,由选自Pt、PtRhOx、PtIrOx以及TiN/Pt构成的材料组的材料形成;沉积的第二氧化物层,其厚度至少为底部电极厚度的1.5倍,其被平面化以达到暴露底部电极的水平;存储电阻器材料层;Si3N4层;第三氧化物层,其厚度大约为存储电阻器材料的厚度的1.5倍;进行CMP以暴露存储电阻器表面;顶部电极,由选自Pt、PtRhOxPtIrOx以及TiN/Pt构成的材料组的材料制成;覆盖氧化物层。多个存储器阵列层彼此层叠形成。
单步编程3D RRAM的方法包括:选择要写入的存储单元;将高电压编程脉冲施加到第一相关位线;将低电压编程脉冲施加到第二相关位线;浮动关联的字线;用半编程脉冲电压来偏置所有其它的字线;以及将所有未选位线偏置到地电位。
在两步操作中编程3D RRAM的方法包括:选择要写入的存储单元;将低电压编程脉冲施加到该存储单元中的第一存储电阻器;将高电压编程脉冲施加到该存储单元中的第二存储电阻器;将被选字线设置为地电位;将所有其它字线偏置到0.5VP;用脉冲幅度为-VP的负编程脉冲来偏置第一相关位线;用幅度为+VP的正编程脉冲来偏置第二相关位线;以及用0VP和0.5VP之间的编程电压来脉动所有未选存储电阻器。
通过将小的电压施加到未选位的字线以提高第一相关位线和第二相关位线之间的线电压差;以及将读取电压施加到与被选存储单元相关联的字线并且检测第一相关位线和第二相关位线之间的电压差,读取本发明的存储器单元。
本发明的一个目的是提供可靠的电阻性非易失存储器件,其适合无需有源器件的三维结构的超高密度的存储器阵列。
提供本发明的概述和目的是为了能够很快地理解本发明的本质。通过结合附图来参考本发明优选实施例的详细描述,可以获得对本发明更加彻底的理解。
附图说明
图1是本发明的方法的框图。
图2描述了将CMR存储电阻器编程到高电阻状态的条件。
图3描述了将CMR存储电阻器编程到低电阻状态的条件。
图4描述本发明的三端存储单元。
图5描述了本发明的两端存储单元。
图6是沿着字线的存储器阵列的剖面图。
图7是字线之间截取的存储器阵列的剖面图。
图8是沿着位线的存储器阵列剖面图。
图9是图6-8的3D存储器阵列的单级示意图。
图10是图9的电路的被选位的示意图,其描述了第一最坏情况读取方案。
图11是图9的电路的被选位的示意图,其描述了第二最坏情况读取方案。
图12是描述了最坏情况读取方案的曲线图。
具体实施方式
如先前所述,现有技术的电阻存储器阵列需要有源器件,诸如二极管或晶体管,以防止阵列的存储单元之间相互作用。所以,对于三维阵列来说,每一单元需要通常位于存储器阵列中第一层之上的多晶二极管或晶体管。多晶二极管和多晶晶体管表现出高的漏电流,并且因此不适合结合到大的阵列中。可以使多晶层结晶以提高有源器件的性能并且减少漏电流,然而,结晶需要的高温度处理可能损坏位于该多晶层下面的存储元件。本发明通过提供不需要有源器件的电阻器存储单元来解决上述问题。
现在参考图1,如图1所示的用于制作本发明的器件的步骤通常在10包括:首先根据任何现有技术工艺制备硅基底(12),以及在该硅基底上制作外围电路(14)。沉积厚度为大约100nm-1000nm的第一氧化硅层并通过化学机械抛光(CMP)处理将其平面化(16)。沉积并蚀刻底部电极(18),该底部电极具有厚度大约为50nm至300nm的Pt,或者在双层电极中,具有厚度大约为10nm至200nm的TiN以及厚度大约为10nm至100nm的Pt。底部电极的材料可以包括Pt、PtRhOx、PtIrOx以及TiN/Pt。沉积厚度至少为底部电极厚度的1.5倍的第二氧化物层并将其平面化到暴露底部电极的水平(20)。沉积并蚀刻厚度为20nm至150nm的存储电阻器材料,诸如超巨磁阻(CMR)材料或其它合适的存储电阻器材料(22)。沉积Si3N4薄层,该薄层具有例如大约10nm-30nm的厚度(24)。该制作阶段的形成侧壁的可选步骤包括掩模和蚀刻,以在存储电阻器上形成Si3N4侧壁。不管是否形成侧壁,接下来的步骤是沉积厚度为存储电阻器材料厚度1.5倍的第三氧化物层(26)。对该结构进行CMP以便暴露存储电阻器表面。沉积和刻蚀厚度大约为50nm-300nm的Pt顶部电极,或Pt和TiN的双金属顶部电极,其中Pt具有大约为10nm-100nm的厚度,TiN具有大约为10nm-200nm的厚度(28)。顶部电极的材料可以包括Pt、PtRhOx、PtIrOx以及TiN/Pt。沉积和平面化厚度大约为100nm-1000nm的另外的氧化物(30),之后沉积第二层存储器阵列的底部电极。然后重复所述过程(32),以完成存储器阵列的第二层和随后的层。理论上,能够在硅表面上制作的存储器阵列的数量没有限制。限制在于硅晶片(silicon wafer)表面上用于感应放大器和外围电路的区域。
如图2和3所示,很明显,编程CMR存储器电阻存在阈值电压。图2描述了将本发明的CMR存储电阻器编程到高电阻状态的条件。当施加的脉冲幅度小于4.5V时,该电阻器的电阻不改变。当施加的脉冲的幅度大于4.5V时,该电阻器的电阻随着脉冲幅度增加而增加。图3描述了将该电阻器的电阻编程到低电阻状态的条件。同样,很明显,对于每一脉冲宽度存在阈值脉冲幅度。高电阻状态和低电阻状态阈值脉冲幅度都随着CMR薄膜厚度的减少而减少。所以,能够选择一个编程脉冲幅度使得在该编程脉冲的二分之一,不管该电阻器处于高电阻状态还是处于低电阻状态,存储电阻器的电阻都不改变。
对于如图4所示的三端存储单元来说,通常在34在底部具有两个电极36、38,在顶部具有一个电极40,在两个底部电极之间施加编程脉冲,顶部电极浮动,例如开路,顶部电极和阴极之间的电阻增加到高电阻状态,同时顶部电极与阳极之间的电阻减小到低电阻状态,其中A是阴极,B是阳极,以及C是地;并且其中R(AC)=RH且R(BC)=RL。阈值编程幅度和三端存储电阻器提供了本发明无有源器件的存储单元的基本结构。感应(sensing)、编程以及其它支持电路在硅基底上制作。在两端存储单元的情况下,图5通常在50描述了这种单元,其中地C(52)覆盖在阳极A(54)和阴极B(56)上。
图6-8分别描述了本发明的三维存储器阵列沿着字线、字线之间以及沿着位线的剖面图。虽然所描述的阵列仅有三个垂直叠加的层,但是可以将任何数量的层结合到本发明的存储器阵列中。CMR电阻器用氧化物相隔离。在一些情况中可能需要氧扩散阻挡层,例如Si3N4、Al2O3、TiO2等等。本发明的目标仅在于阵列,因此,在此将不再讨论物理单元结构的细节。
图9描述了一个给定单级存储器阵列的等效电路。其是一个补充输出存储单元阵列。每一存储单元包括两个存储电阻器。每一补充位线连接到差分放大器的相应输入,该差分放大器未在该图中示出。该差分放大器的输出可以用于数字输出“0”或“1”状态连接到反相器。
参考图9,描述编程该阵列的存储器所的两种方法。用于三端存储单元的单步编程方法和适于三端和两端存储单元的两步编程方法。所述单步编程需要RRAM薄膜具有均匀的材料特性。所述两步编程可应用到任何特性非均匀的RRAM薄膜存储单元。
首选讨论单步编程过程。被选择的单元是W2B2,并且第一相关位线B2将被编程到高电压位,第二相关位线 B2将被编程到低电压位。字线W2浮动。用二分之一的编程脉冲电压来偏置所有其它的字线。位线B2接地。编程脉冲VP施加到 B2。所有其它位线偏置到地电位。因此,电阻器R22A处于低电阻状态并且电阻器R22B处于高电阻状态。用编程电压的一半来偏置除了连接到W2字线之外的位2上的所有存储电阻器。所以,没有电阻变化。类似,可以适当地偏置沿着W2的每一位线以每次编程一字。在编程之后,任何给定位内的两个存储单元电阻器分别处于高电阻状态和低电阻状态。
两步编程更加常规。在这个实例中再一次选择单元W2B2。分别将第一被选存储电阻器R22A和存储电阻器R22B编程为低电阻状态和高电阻状态。将被选择的字线W2设置为地电位,并且将所有其它字线偏置到0.5VP。将具有适当脉冲宽度的负编程脉冲和正编程脉冲被分别施加到位线B2和 B2,其中负编程脉冲的脉冲幅度为-VP,正编程脉冲的脉冲幅度为+VP。所述正和负编程脉冲没有必要同时施加,并且可以分开编程A电阻器和B电阻器。所以分别将存储电阻器R22A和R22B编程到低电阻状态RL和高电阻状态RH。所有其它存储电阻器可以用一半的编程脉冲电压来脉动,或者也可以不被脉动。所以,在该编程操作期间,未选择的存储电阻器的电阻将不改变。
通过向字线施加读电压并且检测(读取)共用该存储单元的位线之间的电压差来读取所述存储器阵列。因为未选择位的负载阻抗,给定存储器位的读取输出电压相当复杂,然而,可以将较小的电压施加到未选择的位的字线以提高位线电压差。存在两种极端的情况,这两种情况示于图9和10中,并且允许检测给定存储单元的位线之间的最小差分输出电压。
图10示出了被选位的等效电路,其中将连接到该位线的所有存储电阻器编程为低电阻状态,同时将未连接到该位线的存储电阻器编程为高电阻状态。假设该位线上负载电阻为RO,在该情况中,与被编程为RL的存储电阻器的该位线相关的负载电阻是最小的,并且与RH存储电阻器相关的负载电阻是最大的。所以,希望在不对未选字线施加偏压的情况下,该位线差分输出电压较小。该位线电压是:
V 1 V = 1 - ( R L n + R O - R O V W V ) R L ( R L + R O ) ( R L n + R O ) - R O 2 - - - ( 1 )
以及
V 2 V = 1 - ( R H n + R O - R O V W V ) R H ( R H + R O ) ( R H n + R O ) - R O 2 - - - ( 2 )
现在参考图11,当该给定位线上的被选择存储单元被编程为低电阻状态RL,并且连接到相同位线的所有未选存储单元被编程为RH时,出现第二种情况。图11示出了等效电路。与RL存储电阻器相关联的负载电阻器最大,同时与RH存储电阻器相关联的负载电阻器最小。所以,不对未选字线施加偏压,位线之间的差分电压最大。
V 1 V = 1 - ( R H n + R O - R O V W V ) R L ( R L + R O ) ( R H n + R O ) - R O 2 - - - ( 3 )
V 2 V = 1 - ( R L n + R O - R O V W V ) R H ( R H + R O ) ( R L n + R O ) - R O 2 - - - ( 4 )
图12描述了对于具有100个字线连接到给定位线的存储器阵列,构思归一化位线电压作为未选字线偏置电压的函数。高电阻状态是100K欧姆,低电阻状态是1K欧姆。数据表明:位线之间的差分电压,其中VLL(v)和VHH(v)之间的电压差分以及VLH(v)和VHL(v)之间的电压差分分别是图10和11的等效电路的差分输出电压。该差分输出电压随着RH/RL比的增加而增加。
所以,已经公开了3D RRAM。应当理解,在所附权利要求定义的本发明的范围内,可以对其进行进一步的改变和修改。

Claims (7)

1.一种3D RRAM中使用的存储器阵列层,在其上具有外围电路的硅基底上,包括:
沉积和平面化的第一氧化硅层;
采用选自Pt、PtRhOx、PtIrOx以及TiN/Pt组成的材料组中的材料所形成的底部电极;
第二氧化物层,厚度至少为底部电极厚度的1.5倍,被沉积并被平面化到暴露底部电极的水平;
存储电阻器材料层;
Si3N4层;
第三氧化物层,厚度大约为存储电阻器材料厚度的1.5倍;进行CMP以便暴露存储电阻器表面;
采用选自Pt、PtRhOx、PtIrOx以及TiN/Pt组成的材料组中的材料所形成的顶部电极;以及
覆盖氧化物层。
2.权利要求1的存储器阵列层,其中所述第一氧化硅层的厚度大约为100nm至1000nm;其中所述存储电阻器材料的厚度大约为20nm至150nm;所述Si3N4层的厚度大约为10nm至30nm;以及其中所述第三氧化物层的厚度大约为存储电阻器材料厚度的1.5倍。
3.权利要求1的存储器阵列层,其中所述底部电极和顶部电极对于选自Pt、PtRhOx、以及PtIrOx形成的电极组中的电极,厚度大约为50nm至300nm,或者对于双层TiN/Pt,TiN的厚度大约为10nm至200nm并且Pt的厚度为10nm至100nm。
4.一种编程3D RRAM的方法,包括:
选择要写入的存储单元;
将高电压编程脉冲施加到第一相关位线;
将低电压编程脉冲施加到第二相关位线;
浮动关联的字线;
用二分之一的编程脉冲电压来偏置所有其它的字线;以及
将所有未选位线偏置到地电位。
5.权利要求4的方法,其中读取存储单元包括
将小的电压施加到未选位的字线上,以提高第一相关位线和第二相关位线之间的线电压差;以及
将读取电压施加到与被选存储单元相关联的字线,并且检测第一相关位线和第二相关位线之间的电压差。
6.一种编程3D RRAM的方法,包括:
选择要写入的存储单元;
将低电压编程脉冲施加到存储器单元中的第一存储器电阻;
将高电压编程脉冲施加到存储器单元中的第二存储器电阻;
将被选字线设置为地电位;
将所有其它字线偏置到0.5VP
用脉冲幅度为-VP的负编程脉冲来偏置第一相关位线;
用幅度为+VP的正编程脉冲来偏置第二相关位线;以及
用0VP和0.5VP之间的编程电压来脉动所有未选存储电阻器。
7.权利要求4的方法,其中读取存储单元包括
将小的电压施加到未选字线上,以提高第一相关位线和第二相关位线之间的线电压差;以及
将读取电压施加到与被选存储单元相关联的字线,并且检测第一相关位线和第二相关位线之间的电压差。
CNB2004100104312A 2003-11-24 2004-11-24 存储阵列层和编程3d rram的方法 Expired - Fee Related CN100382320C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/720,890 US7009278B2 (en) 2003-11-24 2003-11-24 3d rram
US10/720890 2003-11-24

Publications (2)

Publication Number Publication Date
CN1665030A true CN1665030A (zh) 2005-09-07
CN100382320C CN100382320C (zh) 2008-04-16

Family

ID=34435828

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100104312A Expired - Fee Related CN100382320C (zh) 2003-11-24 2004-11-24 存储阵列层和编程3d rram的方法

Country Status (6)

Country Link
US (2) US7009278B2 (zh)
EP (1) EP1533815A3 (zh)
JP (2) JP4986394B2 (zh)
KR (2) KR100618372B1 (zh)
CN (1) CN100382320C (zh)
TW (1) TWI286837B (zh)

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8471263B2 (en) 2003-06-24 2013-06-25 Sang-Yun Lee Information storage system which includes a bonded semiconductor structure
US7381616B2 (en) * 2003-11-24 2008-06-03 Sharp Laboratories Of America, Inc. Method of making three dimensional, 2R memory having a 4F2 cell size RRAM
JP4499740B2 (ja) * 2003-12-26 2010-07-07 パナソニック株式会社 記憶素子、メモリ回路、半導体集積回路
US7339813B2 (en) * 2004-09-30 2008-03-04 Sharp Laboratories Of America, Inc. Complementary output resistive memory cell
JP4880894B2 (ja) 2004-11-17 2012-02-22 シャープ株式会社 半導体記憶装置の構造及びその製造方法
US8395199B2 (en) * 2006-03-25 2013-03-12 4D-S Pty Ltd. Systems and methods for fabricating self-aligned memory cell
KR101239962B1 (ko) * 2006-05-04 2013-03-06 삼성전자주식회사 하부 전극 상에 형성된 버퍼층을 포함하는 가변 저항메모리 소자
KR100785509B1 (ko) * 2006-06-19 2007-12-13 한양대학교 산학협력단 ReRAM 소자 및 그 제조 방법
KR100738116B1 (ko) 2006-07-06 2007-07-12 삼성전자주식회사 가변 저항 물질을 포함하는 비휘발성 메모리 소자
US7932548B2 (en) * 2006-07-14 2011-04-26 4D-S Pty Ltd. Systems and methods for fabricating self-aligned memory cell
US7515454B2 (en) * 2006-08-02 2009-04-07 Infineon Technologies Ag CBRAM cell and CBRAM array, and method of operating thereof
KR100827697B1 (ko) * 2006-11-10 2008-05-07 삼성전자주식회사 3차원 구조를 가지는 반도체 메모리 장치 및 셀 어레이구조
KR101206036B1 (ko) * 2006-11-16 2012-11-28 삼성전자주식회사 전이 금속 고용체를 포함하는 저항성 메모리 소자 및 그제조 방법
KR100881292B1 (ko) * 2007-01-23 2009-02-04 삼성전자주식회사 3차원 적층구조를 가지는 저항성 반도체 메모리 장치 및그의 제어방법
KR100850283B1 (ko) 2007-01-25 2008-08-04 삼성전자주식회사 3차원 적층구조를 가지는 저항성 반도체 메모리 장치 및그의 워드라인 디코딩 방법
KR100827448B1 (ko) * 2007-02-16 2008-05-07 삼성전자주식회사 저항체를 이용한 비휘발성 메모리 장치
KR101459312B1 (ko) * 2007-03-31 2014-11-10 쌘디스크 3디 엘엘씨 공간적으로 분산된 증폭기 회로
JP5175525B2 (ja) * 2007-11-14 2013-04-03 株式会社東芝 不揮発性半導体記憶装置
US7768812B2 (en) 2008-01-15 2010-08-03 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
US8034655B2 (en) 2008-04-08 2011-10-11 Micron Technology, Inc. Non-volatile resistive oxide memory cells, non-volatile resistive oxide memory arrays, and methods of forming non-volatile resistive oxide memory cells and memory arrays
US8211743B2 (en) * 2008-05-02 2012-07-03 Micron Technology, Inc. Methods of forming non-volatile memory cells having multi-resistive state material between conductive electrodes
US8134137B2 (en) * 2008-06-18 2012-03-13 Micron Technology, Inc. Memory device constructions, memory cell forming methods, and semiconductor construction forming methods
US9343665B2 (en) * 2008-07-02 2016-05-17 Micron Technology, Inc. Methods of forming a non-volatile resistive oxide memory cell and methods of forming a non-volatile resistive oxide memory array
US8004874B2 (en) * 2008-08-06 2011-08-23 Seagate Technology Llc Multi-terminal resistance device
US8072793B2 (en) * 2008-09-04 2011-12-06 Macronix International Co., Ltd. High density resistance based semiconductor device
US8045361B2 (en) * 2008-10-09 2011-10-25 Seagate Technology Llc Non-volatile memory cell with complementary resistive memory elements
US8351236B2 (en) 2009-04-08 2013-01-08 Sandisk 3D Llc Three-dimensional array of re-programmable non-volatile memory elements having vertical bit lines and a single-sided word line architecture
WO2010147073A1 (ja) * 2009-06-15 2010-12-23 株式会社村田製作所 抵抗スイッチング・メモリー素子
US8716780B2 (en) 2009-11-06 2014-05-06 Rambus Inc. Three-dimensional memory array stacking structure
US8817521B2 (en) 2009-11-24 2014-08-26 Industrial Technology Research Institute Control method for memory cell
TWI428929B (zh) * 2009-11-24 2014-03-01 Ind Tech Res Inst 控制方法
WO2011096940A1 (en) * 2010-02-08 2011-08-11 Hewlett-Packard Development Company, L.P. Memory resistor having multi-layer electrodes
US8437174B2 (en) 2010-02-15 2013-05-07 Micron Technology, Inc. Memcapacitor devices, field effect transistor devices, non-volatile memory arrays, and methods of programming
US8416609B2 (en) 2010-02-15 2013-04-09 Micron Technology, Inc. Cross-point memory cells, non-volatile memory arrays, methods of reading a memory cell, methods of programming a memory cell, methods of writing to and reading from a memory cell, and computer systems
US8411477B2 (en) 2010-04-22 2013-04-02 Micron Technology, Inc. Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells
US8427859B2 (en) 2010-04-22 2013-04-23 Micron Technology, Inc. Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells
US8289763B2 (en) 2010-06-07 2012-10-16 Micron Technology, Inc. Memory arrays
US8634224B2 (en) 2010-08-12 2014-01-21 Micron Technology, Inc. Memory cells, non-volatile memory arrays, methods of operating memory cells, methods of writing to and reading from a memory cell, and methods of programming a memory cell
US8619457B2 (en) 2010-09-13 2013-12-31 Hewlett-Packard Development Company, L.P. Three-device non-volatile memory cell
US8872153B2 (en) 2010-09-27 2014-10-28 Hewlett-Packard Development Company, L.P. Device structure for long endurance memristors
JPWO2012042828A1 (ja) 2010-09-27 2014-02-03 パナソニック株式会社 メモリ素子、半導体記憶装置、メモリ素子の製造方法および半導体記憶装置の読み出し方法
KR101722023B1 (ko) * 2010-09-30 2017-03-31 삼성전자 주식회사 비휘발성 메모리 장치의 프로그램 방법
US8759809B2 (en) 2010-10-21 2014-06-24 Micron Technology, Inc. Integrated circuitry comprising nonvolatile memory cells having platelike electrode and ion conductive material layer
US8526213B2 (en) 2010-11-01 2013-09-03 Micron Technology, Inc. Memory cells, methods of programming memory cells, and methods of forming memory cells
US8796661B2 (en) 2010-11-01 2014-08-05 Micron Technology, Inc. Nonvolatile memory cells and methods of forming nonvolatile memory cell
US9454997B2 (en) 2010-12-02 2016-09-27 Micron Technology, Inc. Array of nonvolatile memory cells having at least five memory cells per unit cell, having a plurality of the unit cells which individually comprise three elevational regions of programmable material, and/or having a continuous volume having a combination of a plurality of vertically oriented memory cells and a plurality of horizontally oriented memory cells; array of vertically stacked tiers of nonvolatile memory cells
US8525146B2 (en) * 2010-12-06 2013-09-03 Hewlett-Packard Development Company, L.P. Electrical circuit component
CN102568582A (zh) 2010-12-24 2012-07-11 三星电子株式会社 可变电阻器件、包括可变电阻器件的半导体器件及操作方法
US8431458B2 (en) 2010-12-27 2013-04-30 Micron Technology, Inc. Methods of forming a nonvolatile memory cell and methods of forming an array of nonvolatile memory cells
US8791447B2 (en) 2011-01-20 2014-07-29 Micron Technology, Inc. Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells
US8488365B2 (en) 2011-02-24 2013-07-16 Micron Technology, Inc. Memory cells
US8537592B2 (en) 2011-04-15 2013-09-17 Micron Technology, Inc. Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells
TWI506627B (zh) 2011-08-30 2015-11-01 Ind Tech Res Inst 電阻式記憶體及其寫入驗證方法
EP2608210B1 (en) * 2011-12-23 2019-04-17 IMEC vzw Stacked RRAM array with integrated transistor selector
KR101965686B1 (ko) 2012-02-27 2019-04-04 삼성전자주식회사 수직형 저항 메모리 장치의 읽기 방법
US9502642B2 (en) 2015-04-10 2016-11-22 Micron Technology, Inc. Magnetic tunnel junctions, methods used while forming magnetic tunnel junctions, and methods of forming magnetic tunnel junctions
US9530959B2 (en) 2015-04-15 2016-12-27 Micron Technology, Inc. Magnetic tunnel junctions
US9520553B2 (en) 2015-04-15 2016-12-13 Micron Technology, Inc. Methods of forming a magnetic electrode of a magnetic tunnel junction and methods of forming a magnetic tunnel junction
US9257136B1 (en) 2015-05-05 2016-02-09 Micron Technology, Inc. Magnetic tunnel junctions
US9960346B2 (en) 2015-05-07 2018-05-01 Micron Technology, Inc. Magnetic tunnel junctions
US9680089B1 (en) 2016-05-13 2017-06-13 Micron Technology, Inc. Magnetic tunnel junctions

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3767930B2 (ja) * 1995-11-13 2006-04-19 沖電気工業株式会社 情報の記録・再生方法および情報記憶装置
US6130835A (en) * 1997-12-02 2000-10-10 International Business Machines Corporation Voltage biasing for magnetic RAM with magnetic tunnel memory cells
US6034882A (en) * 1998-11-16 2000-03-07 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
JP4560847B2 (ja) * 1998-12-28 2010-10-13 ヤマハ株式会社 磁気抵抗ランダムアクセスメモリ
US6180456B1 (en) * 1999-02-17 2001-01-30 International Business Machines Corporation Triple polysilicon embedded NVRAM cell and method thereof
JP3803503B2 (ja) * 1999-04-30 2006-08-02 日本電気株式会社 磁気ランダムアクセスメモリ回路
US6317359B1 (en) * 1999-07-07 2001-11-13 Iowa State University Research Foundation, Inc. Non-volatile magnetic circuit
US6134138A (en) * 1999-07-30 2000-10-17 Honeywell Inc. Method and apparatus for reading a magnetoresistive memory
DE19942447C2 (de) * 1999-09-06 2003-06-05 Infineon Technologies Ag Speicherzellenanordnung und Verfahren zu deren Betrieb
US6303502B1 (en) * 2000-06-06 2001-10-16 Sharp Laboratories Of America, Inc. MOCVD metal oxide for one transistor memory
JP2002025245A (ja) * 2000-06-30 2002-01-25 Nec Corp 不揮発性半導体記憶装置及び情報記録方法
JP3672803B2 (ja) * 2000-07-28 2005-07-20 Necエレクトロニクス株式会社 不揮発性記憶装置
US6473332B1 (en) * 2001-04-04 2002-10-29 The University Of Houston System Electrically variable multi-state resistance computing
US6825058B2 (en) * 2001-06-28 2004-11-30 Sharp Laboratories Of America, Inc. Methods of fabricating trench isolated cross-point memory array
US6569745B2 (en) * 2001-06-28 2003-05-27 Sharp Laboratories Of America, Inc. Shared bit line cross point memory array
US6531371B2 (en) * 2001-06-28 2003-03-11 Sharp Laboratories Of America, Inc. Electrically programmable resistance cross point memory
US6693821B2 (en) * 2001-06-28 2004-02-17 Sharp Laboratories Of America, Inc. Low cross-talk electrically programmable resistance cross point memory
US6693826B1 (en) * 2001-07-30 2004-02-17 Iowa State University Research Foundation, Inc. Magnetic memory sensing method and apparatus
US6584029B2 (en) * 2001-08-09 2003-06-24 Hewlett-Packard Development Company, L.P. One-time programmable memory using fuse/anti-fuse and vertically oriented fuse unit memory cells
JP2003208784A (ja) * 2002-01-10 2003-07-25 Nec Corp 不揮発性磁気記憶装置
CN1215561C (zh) * 2002-01-11 2005-08-17 力晶半导体股份有限公司 可随机编程的非挥发半导体存储器
US6534326B1 (en) * 2002-03-13 2003-03-18 Sharp Laboratories Of America, Inc. Method of minimizing leakage current and improving breakdown voltage of polycrystalline memory thin films
JP2003304011A (ja) * 2002-04-09 2003-10-24 Matsushita Electric Ind Co Ltd 磁気抵抗効果素子および磁気抵抗効果メモリー素子
JP4282314B2 (ja) * 2002-06-25 2009-06-17 シャープ株式会社 記憶装置
US6583003B1 (en) * 2002-09-26 2003-06-24 Sharp Laboratories Of America, Inc. Method of fabricating 1T1R resistive memory array
US6723643B1 (en) * 2003-03-17 2004-04-20 Sharp Laboratories Of America, Inc. Method for chemical mechanical polishing of thin films using end-point indicator structures

Also Published As

Publication number Publication date
JP2011192380A (ja) 2011-09-29
CN100382320C (zh) 2008-04-16
KR100685701B1 (ko) 2007-02-26
EP1533815A3 (en) 2006-07-05
TWI286837B (en) 2007-09-11
US20060033182A1 (en) 2006-02-16
US7009278B2 (en) 2006-03-07
JP5216992B2 (ja) 2013-06-19
KR20060084828A (ko) 2006-07-25
TW200539426A (en) 2005-12-01
KR20050050044A (ko) 2005-05-27
US7342824B2 (en) 2008-03-11
EP1533815A2 (en) 2005-05-25
US20050110117A1 (en) 2005-05-26
KR100618372B1 (ko) 2006-08-30
JP4986394B2 (ja) 2012-07-25
JP2005159359A (ja) 2005-06-16

Similar Documents

Publication Publication Date Title
CN100382320C (zh) 存储阵列层和编程3d rram的方法
US10403361B2 (en) Memory cells, memory cell arrays, methods of using and methods of making
CN112219240B (zh) 用于对多电平自选择存储器单元进行编程的技术
US9715932B2 (en) Memory cells, memory cell arrays, methods of using and methods of making
US7521704B2 (en) Memory device using multi-layer with a graded resistance change
US8101983B2 (en) Nonvolatile memory device comprising one switching device and one resistant material and method of manufacturing the same
US7045840B2 (en) Nonvolatile semiconductor memory device comprising a variable resistive element containing a perovskite-type crystal structure
KR100558480B1 (ko) 자기터널 접합 구조체들 및 그 제조방법들
US6664579B2 (en) Magnetic random access memory using bipolar junction transistor
US20070240995A1 (en) Electro-resistance element, electro-resistance memory using the same and method of manufacturing the same
KR100663310B1 (ko) 불휘발성 메모리
US20060245241A1 (en) Two terminal memory array having reference cells
US8203875B2 (en) Anti-parallel diode structure and method of fabrication
US11508756B2 (en) Memory cell arrangement and methods thereof
KR20120038680A (ko) 반도체 메모리 장치
EP1544899A2 (en) Nonvolatile capacitor of a semiconductor memory device, and method of operating the same
US11532668B2 (en) Increasing selector surface area in crossbar array circuits
JP2001273761A (ja) メモリセルおよびメモリマトリクス中の強誘電性トランジスタから状態を読み出し、その中に状態を状態を記憶させるための方法
WO2021101582A1 (en) Electric field controllable spin filter tunnel junction magnetoresistive memory devices and methods of making the same
JP2004179620A (ja) 強誘電性抵抗器不揮発性メモリ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: ALLOGENE DEVELOPMENT CO., LTD.

Free format text: FORMER OWNER: ICAN TREFFERT INTELLECTUAL PROPERTY

Effective date: 20130206

Owner name: ICAN TREFFERT INTELLECTUAL PROPERTY

Free format text: FORMER OWNER: SHARP CORPORATION

Effective date: 20130206

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20130206

Address after: Delaware

Patentee after: Allogeneic Development Co.,Ltd.

Address before: Budapest

Patentee before: Eicke Fout intellectual property Co.

Effective date of registration: 20130206

Address after: Budapest

Patentee after: Eicke Fout intellectual property Co.

Address before: Osaka, Japan

Patentee before: Sharp Corp.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080416

CF01 Termination of patent right due to non-payment of annual fee