CN1501483A - 一种热界面材料及其制造方法 - Google Patents

一种热界面材料及其制造方法 Download PDF

Info

Publication number
CN1501483A
CN1501483A CNA021520038A CN02152003A CN1501483A CN 1501483 A CN1501483 A CN 1501483A CN A021520038 A CNA021520038 A CN A021520038A CN 02152003 A CN02152003 A CN 02152003A CN 1501483 A CN1501483 A CN 1501483A
Authority
CN
China
Prior art keywords
carbon nano
thermal interfacial
interfacial material
thermo
pipe array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA021520038A
Other languages
English (en)
Other versions
CN1296994C (zh
Inventor
范守善
刘保罗
黄华
李永德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CNB021520038A priority Critical patent/CN1296994C/zh
Priority to US10/404,392 priority patent/US6924335B2/en
Priority to JP2003159680A priority patent/JP4897188B2/ja
Publication of CN1501483A publication Critical patent/CN1501483A/zh
Application granted granted Critical
Publication of CN1296994C publication Critical patent/CN1296994C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/753Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc. with polymeric or organic binder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本发明是关于一种热界面材料,该热界面材料包括一聚合物材料和分布于该聚合物材料中的碳纳米管阵列,该碳纳米管阵列在垂直热界面材料方向形成导热通道,得到导热系数极高的热界面材料。另外,本发明还提供了该热界面材料的制造方法。

Description

一种热界面材料及其制造方法
【技术领域】
本发明关于一种热界面材料及其制造方法,尤指一种利用碳纳米管导热的热界面材料及其制造方法。
【背景技术】
近年来,随着半导体器件集成工艺的快速发展,半导体器件的集成化程度越来越高,而器件体积却变得越来越小,其散热成为一个越来越重要的问题,其对散热的要求也越来越高。为了满足这些需要,各种散热方式被大量的运用,如利用风扇散热、水冷辅助散热和热管散热等方式,并取得一定的散热效果,但由于散热器与半导体集成器件的接触界面并不平整,没有一个理想的接触界面,一般相互接触的只有不到2%面积,这从根本上极大的影响了半导体器件向散热器进行热传递的效果,从而在散热器与半导体器件的接触界面间增加一导热系数较高的热界面材料来增加界面的接触程度就显得十分必要。
传统的热界面材料是将一些导热系数较高的颗粒分散到聚合物材料中形成复合材料,如石墨、氮化硼、氧化硅、氧化铝、银或其它金属等。此种材料的导热性能在很大程度上取决于聚合物载体的性质。其中以油脂、相变材料为载体的复合材料因其使用时为液态而能与热源表面浸润故接触热阻较小,而以硅胶和橡胶为载体的复合材料的接触热阻就比较大。这些材料的一个普遍缺陷是整个材料的导热系数比较小,典型值在1W/mK,这已经越来越不能适应半导体集成化程度的提高对散热的需求,而增加聚合物载体中导热颗粒的含量使颗粒与颗粒尽量相互接触可以增加整个复合材料的导热系数,如某些特殊的界面材料因此可达到4-8W/mK,但当聚合物载体中导热颗粒的含量增加到一定程度时,会使聚合物失去所需的性能,如油脂会变硬,从而浸润效果会变差,橡胶也会变得硬,从而失去柔韧性,这都会使热界面材料性能大大降低。
近来有一种新的热界面材料,是将定向排列的导热系数约为1100W/mK的碳纤维一端或整个用聚合物固定在一起,从而在聚合物薄膜的垂直方向上形成定向排列的碳纤维阵列,这样每根碳纤维就可以形成一个导热通道,极大提高了这种聚合物薄膜的导热系数,可达到50-90W/mK。但这类材料的一个缺点是不能做得很薄,厚度必须在40微米以上,而整个材料的热阻与薄膜的厚度成正比,故它的热阻降低到一定的程度就难以再进一步降低。
为改善热界面材料的性能,提高其热传导系数,各种材料被广范的试验。Savas Berber等人2000年在美国物理学会上发表的一篇名为“Unusually High Thermal Conductivity of Carbon Nanotubes”的文章指出,“Z”形(10,10)碳纳米管在室温下导热系数可达6600W/mK,具体内容可参阅文献Phys.Rev.Lett,84,4613。
一种现有的利用碳纳米管导热特性的热界面材料由美国专利第6,407,922号揭示,其是将碳纳米管掺到基体材料中结成一体,然后通过模压方式制成热界面材料,该热界面材料的两导热表面的面积不相等,其中与散热器接触的一面面积大于与热源接触的一面的面积,这样可有利于散热器散热,但该方法制成的热界面材料有部分不足,其一,模压方式制成热界面材料较难做薄,一方面导致该热界面材料导热系数的降低,另一方面,增加该热界面材料的体积,不利于器件向小型化方向发展的需要,且使得热界面材料缺乏柔韧性;其二,该方法制成的热界面材料,碳纳米管没有有序的排列在基体材料中,其在基体材料中分布的均匀性较难得到保证,因而热传导的均匀性也受到影响,且也没有充分利用碳纳米管纵向导热的优势,影响了热界面材料的热传导系数。
因此,提供一种厚度薄、导热效果与柔韧性好且导热均匀的热界面材料十分必要。
【发明内容】
本发明的目的在于提供一种厚度薄、导热效果与柔韧性好,导热均匀的热界面材料。
本发明的另一目的是提供此种热界面材料的制造方法。
为实现上述目的,本发明提供一种热界面材料,其包括一聚合物材料和分布于该聚合物材料中的碳纳米管,其特征在于:该碳纳米管为一阵列结构,在该聚合物材料中沿同一方向平行排列。
其中,在该热界面材料中,碳纳米管阵列垂直于热界面材料的表面。
本发明的热界面材料的制造方法包括以下步骤:
(1)提供一碳纳米管阵列;
(2)将预聚物浸润于碳纳米管阵列;
(3)固化预聚物,生成分布有碳纳米管阵列的聚合物材料,形成热界面材料。
与现有技术相比较,本发明基于碳纳米管阵列导热的热界面材料具以下优点:其一,利用碳纳米管阵列制得的热界面材料,因碳纳米管阵列具有均匀、超顺、定向排列的优点,该热界面材料的每一根碳纳米管均在垂直热界面材料方向形成导热通道,使得碳纳米管的纵向导热特性得到最大限度的利用,因而可得到导热系数高且导热一致均匀的热界面材料;其二,利用本方法制得的热界面材料,因碳纳米管阵列的生长高度可任意控制,因而可以制得厚度极薄的热界面材料,一方面增加了热界面材料的导热效果,另一方面,增加了热界面材料的柔韧性,降低了热界面材料的体积及重量,利于整个器件安装向小型化方向发展的需要。
【附图说明】
图1是本发明中含有催化剂薄膜的基底的示意图。
图2是图1所示基底上生长定向排列的碳纳米管阵列的示意图。
图3是本发明碳纳米管阵列在预聚物中浸泡的示意图。
图4是本发明中浸有预聚物的碳纳米管阵列的固化的示意图。
图5是本发明中固化的碳纳米管阵列被揭起的过程示意图。
图6是本发明中含碳米管阵列的热界面材料的示意图。
图7是本发明的热界面材料应用示意图。
【具体实施方式】
本发明是将定向排列的碳纳米管阵列原位复合到聚合物中形成薄膜,使得碳纳米管定向均匀排列在聚合物中形成热界面材料。
请一并参阅图1和图2,首先是在一基底11上均匀形成一层催化剂薄膜12,其方法可利用热沉积、电子束沉积或溅射法来完成。基底11的材料可用玻璃、石英、硅或氧化铝。本实施例采用多孔硅,其表面有一层多孔层,孔的直径极小,一般小于3纳米。催化剂薄膜12的材料是铁,也可为其它材料,如氮化镓、钴、镍及其合金材料12的材料是铁,也可为其它材料,如氮化镓、钴、镍及其合金材料等。
然后,氧化催化剂薄膜12,形成催化剂颗粒(图未示),再将分布有催化剂的基底11放入反应炉中(图未示),在700~1000摄氏度下,通入碳源气,生长出碳纳米管阵列,其中碳源气可为乙炔、乙烯等气体,碳纳米管阵列的高度可通过控制生长时间来控制,一般的生长高度为1~100微米。有关碳纳米管阵列22生长的方法已较为成熟,具体可参阅文献Science,1999,283,512-414和文献J.Am.Chem.Soc,2001,123,11502-11503,此外美国专利第6,350,488号也公开了一种生长大面积碳纳米管阵列的方法。
请参阅图3,将预聚物32装进一容器30中,将已生长好的定向排列的碳纳米管阵列22连同基底11一起浸到预聚物32中,直至预聚物32完全浸润碳纳米管阵列22,预聚物32的完全浸润的时间同碳纳米管阵列22的高度、密度以及整个碳纳米管阵列22的面积相关。
请参阅图4、图5和图6,将被预聚物32浸润完全的碳纳米管阵列22连同基底11从容器30中取出,浸润在碳纳米管阵列22中的预聚物32在相对湿度≥40%条件下进行固化反应,24小时后,预聚物32固化形成聚合物34,再将该聚合物从基底11上进行脱膜,再经72小时后达到完全固化,形成热界面材料40,其厚度为100微米。
再请参阅图6,本方法形成热界面材料40,碳纳米管阵列22通过聚合物34固结在一体,使得碳纳米管阵列22在聚合物34中具有分布均匀、垂直排列的特点,在垂直薄膜方向形成导热通道,所形成的热界面材料40具有导热系数高、导热均匀的特点。
通过扫描电子显微镜图像已经证实,利用本方法制得的热界面材料40中原碳纳米管阵列22的形态基本未变,即碳纳米管阵列22的中碳纳米管的间距未变,且碳纳米管阵列没有聚集成束,保持了原有的定向排列的状态,并且此热界面材料40具有一般聚合物的良好柔韧性。
经检测,所合成的热界面材料40的抗拉强度为0.5~2MPa,断裂拉伸率为50~600%,同时具有耐油、耐热和抗老化的优良性能。
本发明中采用的预聚物32可为多元醇聚醚和异氰酸酯类化合物反应而成,其中多元醇聚醚的分子量范围在300~3000,官能度为2~4,异氰酸酯的分子量在100~300,官能度为2~3,其分子链节结构可以是脂肪族,也可为芳香族,通过调节多元醇聚醚和异氰酸酯的分子量和官能度比例,可以改变预聚物32的强度和韧性。
上述多元醇聚醚可以从以下所列方法中选取,但不限于这几种方法:(1)乙二醇为起始剂、经环氧乙烷或环氧丙烷扩链而成的聚醚二元醇;(2)甘油为起始剂、经环氧乙烷或环氧丙烷扩链而成的聚醚二元醇;(3)季戊四醇为起始剂,经环氧乙烷或环氧丙烷扩链而成的聚醚四元醇等。
上述异氰酸酯化合物可以从以下所列中选取:(1)芳香族的甲苯二异氰酸酯(TDI),二苯基甲烷二异氰酸酯(MDI);(2)脂肪族的已二异氰酸酯(HDI),异佛尔酮二异氰酸酯(IPDI);(3)由上述的二异氰酸酯与三羟甲基丙烷形成的具有三官能度的异氰酸酯。
预聚物32合成的具体步骤如下:
首先,将所用的多元醇聚醚在100℃以上、最好在110℃~140℃进行真空脱水2小时左右;
然后,将一定质量的二苯基甲烷二异氰酸酯加到装有搅拌器、温度计和带有干燥剂封端的冷凝器的反应瓶中搅拌,缓慢加热,待其融化后按理论计算比例加入混合多元醇聚醚以及部分经简单蒸馏脱水的乙酸乙酯,充分混合均匀。将温度缓慢升温至80-85℃左右反应。反应过程中每间隔一定时间取样,用AT-410型自动电位滴定仪进行电位滴定,测定反应体系的NCO(异氰酸根基团)含量。待该指标达到预定值后停止反应。
为了便于预聚物32充分浸润碳纳米管阵列22,其粘度的要求在100mps以下。调节预聚物32的粘度,可以在聚合体系中加入适量的惰性溶剂,在本实施例中加入惰性溶剂为乙酸乙酯,惰性溶剂也可为其它材料,包括低分子量的酯类,如乙酸丙酯、乙酸异戊酯等;酮类如丙酮、丁酮、环己酮等;卤代烃如二氯乙烷、三氯乙烷、四氯化碳等。惰性溶剂的用量可占预聚物32质量的0~20%,惰性溶剂的作用仅在于降低预聚物32的粘度,以利于对碳纳米管阵列22空隙的浸润。
请一并参阅图7,本发明制得的碳纳米管阵列热界面材料40具有极佳的导热系数,可广泛的应用在包括中央处理器(CPU)、功率晶体管、视频图形阵列芯片(VGA)、射频芯片在内的电子器件80中,热界面材料40置于电子器件80与散热器60之间,能提供电子器件80与散热器60之间一优良热接触,热界面材料40的第一表面42与电子器件80的表面(未标示)接触,与第一表面42相对应的热界面材料40的第二表面44与散热器60的底面(未标示)接触。由于本发明制得的碳纳米管阵列热界面材料40极薄,其厚度仅在微米级,具有较好的柔韧性,因而,即使在电子器件的表面参差不齐的情况下,本发明的热界面材料也能提供电子器件80与散热器60之间一良好的热接触。
为了装配配合的需要,本发明的包含碳纳米管阵列22的热界面材料40还可多层叠在一起使用,也能提供一较好的热传导效果。

Claims (12)

1.一种热界面材料,其包括一聚合物材料和分布于该聚合物材料中的碳纳米管,其特征在于:该碳纳米管为一阵列结构,在该聚合物材料中沿同一方向平行排列。
2.如权利要求1所述的热界面材料,其特征在于该碳纳米管阵列垂直于热界面材料的表面。
3.如权利要求1所述的热界面材料,其特征在于该热界面材料厚度在1~100微米。
4.一种如权利要求1所述的热界面材料的制造方法,其特征在于该方法包括以下步骤:
(1)提供一碳纳米管阵列;
(2)将预聚物浸润于碳纳米管阵列;
(3)固化预聚物,生成分布有碳纳米管阵列的聚合物材料,形成热界面材料。
5.如权利要求4所述的热界面材料制造方法,其特征在于该预聚物粘度在100mps以下。
6.如权利要求4所述的热界面材料制造方法,其特征在于该预聚物为多元醇聚醚和异氰酸酯类化合物反应而成。
7.如权利要求6所述的热界面材料制造方法,其特征在于该多元醇聚醚的分子量为300-3000,官能度为2~4。
8.如权利要求6或7所述的热界面材料制造方法,其特征在于该多元醇聚醚可为聚醚二元醇、聚醚三元醇、聚醚四元醇之一。
9.如权利要求6所述的热界面材料制造方法,其特征在于该异氰酸酯的分子量在100-300,官能度为2~3。
10.如权利要求6或9所述的热界面材料制造方法,其特征在于该异氰酸酯化合物可为芳香族的甲苯二异氰酸酯(TDI),二苯基甲烷二异氰酸酯(MDI),脂肪族的已二异氰酸酯(HDI),异佛尔酮二异氰酸酯(IPDI),或由上述二异氰酸酯与三羟甲基丙烷的形成的具有三官能度的异氰酸酯之一。
11.如权利要求4所述的热界面材料制造方法,其特征在于该碳纳米管阵列生长在一基底上。
12.如权利要求4所述的热界面材料制造方法,其特征在于步聚(3)之后有一脱膜过程。
CNB021520038A 2002-11-14 2002-11-14 一种热界面材料及其制造方法 Expired - Lifetime CN1296994C (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CNB021520038A CN1296994C (zh) 2002-11-14 2002-11-14 一种热界面材料及其制造方法
US10/404,392 US6924335B2 (en) 2002-11-14 2003-03-31 Thermal interface material and method for making same
JP2003159680A JP4897188B2 (ja) 2002-11-14 2003-06-04 熱伝導性界面材料及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB021520038A CN1296994C (zh) 2002-11-14 2002-11-14 一种热界面材料及其制造方法

Publications (2)

Publication Number Publication Date
CN1501483A true CN1501483A (zh) 2004-06-02
CN1296994C CN1296994C (zh) 2007-01-24

Family

ID=32235206

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021520038A Expired - Lifetime CN1296994C (zh) 2002-11-14 2002-11-14 一种热界面材料及其制造方法

Country Status (3)

Country Link
US (1) US6924335B2 (zh)
JP (1) JP4897188B2 (zh)
CN (1) CN1296994C (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100337981C (zh) * 2005-03-24 2007-09-19 清华大学 热界面材料及其制造方法
CN100358132C (zh) * 2005-04-14 2007-12-26 清华大学 热界面材料制备方法
CN100377340C (zh) * 2004-08-11 2008-03-26 鸿富锦精密工业(深圳)有限公司 散热模组及其制备方法
CN100376655C (zh) * 2004-06-30 2008-03-26 鸿富锦精密工业(深圳)有限公司 热介面材料
CN100395887C (zh) * 2004-08-14 2008-06-18 鸿富锦精密工业(深圳)有限公司 集成电路封装结构及其制造方法
CN100424861C (zh) * 2004-11-02 2008-10-08 国际商业机器公司 包括碳纳米管的导热液晶聚合物矩阵,其使用以及制造方法
US7438844B2 (en) 2005-03-24 2008-10-21 Tsinghua University Thermal interface material and method for manufacturing same
CN100436367C (zh) * 2005-03-25 2008-11-26 鸿富锦精密工业(深圳)有限公司 陶瓷材料及其制造方法
CN100453955C (zh) * 2005-01-07 2009-01-21 鸿富锦精密工业(深圳)有限公司 热管及其制造方法
CN100454526C (zh) * 2005-06-30 2009-01-21 鸿富锦精密工业(深圳)有限公司 热界面材料制造方法
CN100530615C (zh) * 2004-11-24 2009-08-19 鸿富锦精密工业(深圳)有限公司 散热装置及其制备方法
CN100561602C (zh) * 2004-07-16 2009-11-18 鸿富锦精密工业(深圳)有限公司 聚热元件
US7678614B2 (en) 2005-03-31 2010-03-16 Tsinghua University Thermal interface material and method for making the same
CN1707935B (zh) * 2004-06-11 2010-05-12 珍通科技股份有限公司 便携式电子设备的电能自给方法及系统
CN101346054B (zh) * 2007-07-13 2010-05-26 清华大学 热界面材料、其制备方法及具有该热界面材料的封装体
CN101121791B (zh) * 2006-08-09 2010-12-08 清华大学 碳纳米管/聚合物复合材料的制备方法
CN101471329B (zh) * 2007-12-29 2012-06-20 清华大学 半导体封装件
CN104900713A (zh) * 2015-06-15 2015-09-09 京东方科技集团股份有限公司 薄膜晶体管及其制作方法、显示基板、显示装置
CN106158666A (zh) * 2015-04-02 2016-11-23 明安国际企业股份有限公司 高导热组件的制作方法
CN111051392A (zh) * 2017-09-08 2020-04-21 霍尼韦尔国际公司 不含硅氧烷的热凝胶
CN112358855A (zh) * 2020-10-26 2021-02-12 深圳烯湾科技有限公司 碳纳米管导热片及其制备方法
CN113646351A (zh) * 2019-02-25 2021-11-12 汉高知识产权控股有限责任公司 基于两部分聚氨酯的热界面材料
CN113841234A (zh) * 2019-05-21 2021-12-24 Ddp特种电子材料美国有限责任公司 两部分界面材料、包括该界面材料的系统及其方法

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10340424B2 (en) 2002-08-30 2019-07-02 GE Lighting Solutions, LLC Light emitting diode component
TWI250203B (en) * 2002-12-31 2006-03-01 Hon Hai Prec Ind Co Ltd Thermal interface material
US7656027B2 (en) * 2003-01-24 2010-02-02 Nanoconduction, Inc. In-chip structures and methods for removing heat from integrated circuits
US7316061B2 (en) * 2003-02-03 2008-01-08 Intel Corporation Packaging of integrated circuits with carbon nano-tube arrays to enhance heat dissipation through a thermal interface
US7273095B2 (en) 2003-03-11 2007-09-25 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Nanoengineered thermal materials based on carbon nanotube array composites
US7112472B2 (en) * 2003-06-25 2006-09-26 Intel Corporation Methods of fabricating a composite carbon nanotube thermal interface device
US20050016714A1 (en) * 2003-07-09 2005-01-27 Chung Deborah D.L. Thermal paste for improving thermal contacts
US20070114658A1 (en) * 2004-08-24 2007-05-24 Carlos Dangelo Integrated Circuit Micro-Cooler with Double-Sided Tubes of a CNT Array
US7538422B2 (en) * 2003-08-25 2009-05-26 Nanoconduction Inc. Integrated circuit micro-cooler having multi-layers of tubes of a CNT array
US7477527B2 (en) * 2005-03-21 2009-01-13 Nanoconduction, Inc. Apparatus for attaching a cooling structure to an integrated circuit
US8048688B2 (en) * 2006-10-24 2011-11-01 Samsung Electronics Co., Ltd. Method and apparatus for evaluation and improvement of mechanical and thermal properties of CNT/CNF arrays
US7732918B2 (en) * 2003-08-25 2010-06-08 Nanoconduction, Inc. Vapor chamber heat sink having a carbon nanotube fluid interface
US7109581B2 (en) * 2003-08-25 2006-09-19 Nanoconduction, Inc. System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler
US20070126116A1 (en) * 2004-08-24 2007-06-07 Carlos Dangelo Integrated Circuit Micro-Cooler Having Tubes of a CNT Array in Essentially the Same Height over a Surface
US20050126766A1 (en) * 2003-09-16 2005-06-16 Koila,Inc. Nanostructure augmentation of surfaces for enhanced thermal transfer with improved contact
US20050089638A1 (en) * 2003-09-16 2005-04-28 Koila, Inc. Nano-material thermal and electrical contact system
US20050116336A1 (en) * 2003-09-16 2005-06-02 Koila, Inc. Nano-composite materials for thermal management applications
US20050061496A1 (en) * 2003-09-24 2005-03-24 Matabayas James Christopher Thermal interface material with aligned carbon nanotubes
US7612370B2 (en) * 2003-12-31 2009-11-03 Intel Corporation Thermal interface
CN100383213C (zh) * 2004-04-02 2008-04-23 清华大学 一种热界面材料及其制造方法
CN1290764C (zh) * 2004-05-13 2006-12-20 清华大学 一种大量制造均一长度碳纳米管的方法
US20050286234A1 (en) * 2004-06-29 2005-12-29 International Business Machines Corporation Thermally conductive composite interface and methods of fabrication thereof for an electronic assembly
KR20060024564A (ko) * 2004-09-14 2006-03-17 삼성에스디아이 주식회사 카본나노튜브의 정렬방법 및 이를 이용한 전계방출소자의제조방법
DE102004048201B4 (de) * 2004-09-30 2009-05-20 Infineon Technologies Ag Halbleiterbauteil mit Haftvermittlerschicht, sowie Verfahren zu deren Herstellung
TW200633171A (en) * 2004-11-04 2006-09-16 Koninkl Philips Electronics Nv Nanotube-based fluid interface material and approach
TWI388042B (zh) * 2004-11-04 2013-03-01 Taiwan Semiconductor Mfg 基於奈米管基板之積體電路
CN108425170B (zh) 2004-11-09 2021-02-26 得克萨斯大学体系董事会 纳米纤维纱线、带和板的制造和应用
CN100543103C (zh) * 2005-03-19 2009-09-23 清华大学 热界面材料及其制备方法
CN1891780B (zh) * 2005-07-01 2013-04-24 清华大学 热界面材料及其制备方法
US20070031684A1 (en) * 2005-08-03 2007-02-08 Anderson Jeffrey T Thermally conductive grease
CN1978583A (zh) * 2005-12-09 2007-06-13 富准精密工业(深圳)有限公司 热介面材料
DE102006001792B8 (de) * 2006-01-12 2013-09-26 Infineon Technologies Ag Halbleitermodul mit Halbleiterchipstapel und Verfahren zur Herstellung desselben
CN101054467B (zh) * 2006-04-14 2010-05-26 清华大学 碳纳米管复合材料及其制备方法
WO2008054541A2 (en) 2006-05-19 2008-05-08 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
US8337979B2 (en) 2006-05-19 2012-12-25 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
JP4744360B2 (ja) * 2006-05-22 2011-08-10 富士通株式会社 半導体装置
US8890312B2 (en) * 2006-05-26 2014-11-18 The Hong Kong University Of Science And Technology Heat dissipation structure with aligned carbon nanotube arrays and methods for manufacturing and use
EP2081869B1 (en) * 2006-07-10 2020-11-04 California Institute of Technology Method for selectively anchoring large numbers of nanoscale structures
US8846143B2 (en) 2006-07-10 2014-09-30 California Institute Of Technology Method for selectively anchoring and exposing large numbers of nanoscale structures
CN100591613C (zh) * 2006-08-11 2010-02-24 清华大学 碳纳米管复合材料及其制造方法
CN101138896B (zh) * 2006-09-08 2010-05-26 清华大学 碳纳米管/聚合物复合材料
CN101239712B (zh) * 2007-02-09 2010-05-26 清华大学 碳纳米管薄膜结构及其制备方法
ATE474876T1 (de) * 2007-02-22 2010-08-15 Dow Corning Verfahren zur herstellung leitfähiger folien sowie in diesem verfahren hergestellte artikel
CN101275060B (zh) * 2007-03-30 2012-06-20 清华大学 导电胶带及其制造方法
CN101280161B (zh) * 2007-04-06 2013-01-09 清华大学 导电胶带及其制造方法
US8020621B2 (en) * 2007-05-08 2011-09-20 Baker Hughes Incorporated Downhole applications of composites having aligned nanotubes for heat transport
CN101315974B (zh) * 2007-06-01 2010-05-26 清华大学 锂离子电池负极及其制备方法
CN101323759B (zh) * 2007-06-15 2014-10-08 清华大学 导电胶带及其制造方法
US7959969B2 (en) 2007-07-10 2011-06-14 California Institute Of Technology Fabrication of anchored carbon nanotube array devices for integrated light collection and energy conversion
US7743763B2 (en) * 2007-07-27 2010-06-29 The Boeing Company Structurally isolated thermal interface
DE102007039901A1 (de) * 2007-08-23 2008-10-16 Siemens Ag Thermisches und elektrisches Kontaktmaterial mit mindestens zwei Materialbestandteilen und Verwendung des Kontaktmaterials
US20090077553A1 (en) * 2007-09-13 2009-03-19 Jian Tang Parallel processing of platform level changes during system quiesce
US8919428B2 (en) * 2007-10-17 2014-12-30 Purdue Research Foundation Methods for attaching carbon nanotubes to a carbon substrate
US8262835B2 (en) 2007-12-19 2012-09-11 Purdue Research Foundation Method of bonding carbon nanotubes
US8435606B1 (en) 2008-08-01 2013-05-07 Hrl Laboratories, Llc Polymer-infused carbon nanotube array and method
JP4623167B2 (ja) * 2008-08-26 2011-02-02 トヨタ自動車株式会社 放熱構造及び車両用インバータ
CN101668383B (zh) * 2008-09-03 2013-03-06 富葵精密组件(深圳)有限公司 电路板以及电路板封装结构
JP5518722B2 (ja) * 2008-09-18 2014-06-11 日東電工株式会社 カーボンナノチューブ集合体
JP5239768B2 (ja) * 2008-11-14 2013-07-17 富士通株式会社 放熱材料並びに電子機器及びその製造方法
WO2010087971A2 (en) 2009-01-27 2010-08-05 California Institute Of Technology Drug delivery and substance transfer facilitated by nano-enhanced device having aligned carbon nanotubes protruding from device surface
CN101826467B (zh) * 2009-03-02 2012-01-25 清华大学 热界面材料的制备方法
US8593040B2 (en) 2009-10-02 2013-11-26 Ge Lighting Solutions Llc LED lamp with surface area enhancing fins
WO2011094347A2 (en) * 2010-01-26 2011-08-04 Metis Design Corporation Multifunctional cnt-engineered structures
FR2956277A1 (fr) * 2010-02-09 2011-08-12 Peugeot Citroen Automobiles Sa Circuit imprime a elements de connexion couples thermiquement par l'arriere par un joint thermo-conducteur
KR101152065B1 (ko) * 2010-03-10 2012-06-11 전북대학교산학협력단 정렬된 카본 나노튜브와 고분자 복합체를 사용한 열전도성 플라스틱 및 그 제조방법
JP2013524439A (ja) * 2010-04-02 2013-06-17 ジーイー ライティング ソリューションズ エルエルシー 軽量ヒートシンク及びそれを使用するledランプ
US9115424B2 (en) 2010-04-07 2015-08-25 California Institute Of Technology Simple method for producing superhydrophobic carbon nanotube array
WO2012079066A2 (en) 2010-12-10 2012-06-14 California Institute Of Technology Method for producing graphene oxide with tunable gap
US8976507B2 (en) 2011-03-29 2015-03-10 California Institute Of Technology Method to increase the capacitance of electrochemical carbon nanotube capacitors by conformal deposition of nanoparticles
US8764681B2 (en) 2011-12-14 2014-07-01 California Institute Of Technology Sharp tip carbon nanotube microneedle devices and their fabrication
US9314817B2 (en) 2012-02-29 2016-04-19 Georgia Tech Research Corporation Three-dimensional vertically aligned functionalized multilayer graphene
US9500355B2 (en) 2012-05-04 2016-11-22 GE Lighting Solutions, LLC Lamp with light emitting elements surrounding active cooling device
US8587945B1 (en) * 2012-07-27 2013-11-19 Outlast Technologies Llc Systems structures and materials for electronic device cooling
US9349543B2 (en) 2012-07-30 2016-05-24 California Institute Of Technology Nano tri-carbon composite systems and manufacture
US9903350B2 (en) 2012-08-01 2018-02-27 The Board Of Regents, The University Of Texas System Coiled and non-coiled twisted polymer fiber torsional and tensile actuators
US10303227B2 (en) 2013-02-27 2019-05-28 Dell Products L.P. Information handling system housing heat spreader
US10029834B2 (en) 2013-10-15 2018-07-24 Thomas & Betts International Llc Cable tie employing composite of nylon and carbon nanotubes
EP3102404B1 (en) * 2014-02-04 2021-06-30 NAWA America, Inc. Method for manufacture of nanostructure reinforced composites
EP3130196A4 (en) 2014-04-10 2017-12-06 Metis Design Corporation Multifunctional assemblies
MX2016016984A (es) 2014-07-07 2017-05-03 Honeywell Int Inc Material de interconexion termica con depurador ionico.
US10312177B2 (en) 2015-11-17 2019-06-04 Honeywell International Inc. Thermal interface materials including a coloring agent
CN109072051B (zh) 2016-03-08 2023-12-26 霍尼韦尔国际公司 相变材料
US10350837B2 (en) 2016-05-31 2019-07-16 Massachusetts Institute Of Technology Composite articles comprising non-linear elongated nanostructures and associated methods
US10501671B2 (en) 2016-07-26 2019-12-10 Honeywell International Inc. Gel-type thermal interface material
WO2019055155A1 (en) 2017-09-15 2019-03-21 Massachusetts Institute Of Technology LOW-RATE MANUFACTURE OF COMPOSITE MATERIAL DEFECTS
US10428256B2 (en) 2017-10-23 2019-10-01 Honeywell International Inc. Releasable thermal gel
WO2019108616A1 (en) 2017-11-28 2019-06-06 Massachusetts Institute Of Technology Separators comprising elongated nanostructures and associated devices and methods for energy storage and/or use
US11072706B2 (en) 2018-02-15 2021-07-27 Honeywell International Inc. Gel-type thermal interface material
CN109817829A (zh) * 2019-01-31 2019-05-28 武汉华星光电半导体显示技术有限公司 散热膜及显示面板
US11373921B2 (en) 2019-04-23 2022-06-28 Honeywell International Inc. Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing
WO2024036611A1 (zh) * 2022-08-19 2024-02-22 中国科学院深圳先进技术研究院 一种仿壁虎爪的复合热界面材料及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3212106B2 (ja) * 1991-07-09 2001-09-25 東洋高砂乾電池株式会社 高熱伝導性積層体及びそれを用いて作製した放熱シート
JP3363759B2 (ja) * 1997-11-07 2003-01-08 キヤノン株式会社 カーボンナノチューブデバイスおよびその製造方法
US6129901A (en) * 1997-11-18 2000-10-10 Martin Moskovits Controlled synthesis and metal-filling of aligned carbon nanotubes
JP3939452B2 (ja) * 1999-01-12 2007-07-04 喜萬 中山 電子放出素子及びその製造方法
US6250984B1 (en) * 1999-01-25 2001-06-26 Agere Systems Guardian Corp. Article comprising enhanced nanotube emitter structure and process for fabricating article
EP1059266A3 (en) * 1999-06-11 2000-12-20 Iljin Nanotech Co., Ltd. Mass synthesis method of high purity carbon nanotubes vertically aligned over large-size substrate using thermal chemical vapor deposition
US6913075B1 (en) * 1999-06-14 2005-07-05 Energy Science Laboratories, Inc. Dendritic fiber material
MXPA02000576A (es) * 1999-07-21 2002-08-30 Hyperion Catalysis Int Metodos para oxidar nanotubos de carbono de paredes multiples.
US6741019B1 (en) * 1999-10-18 2004-05-25 Agere Systems, Inc. Article comprising aligned nanowires
JP4521937B2 (ja) * 2000-06-15 2010-08-11 ポリマテック株式会社 異方性伝熱シートの製造方法および異方性伝熱シート
US6407922B1 (en) * 2000-09-29 2002-06-18 Intel Corporation Heat spreader, electronic package including the heat spreader, and methods of manufacturing the heat spreader
JP2002134665A (ja) * 2000-10-26 2002-05-10 Achilles Corp 放熱シート
US6921462B2 (en) * 2001-12-17 2005-07-26 Intel Corporation Method and apparatus for producing aligned carbon nanotube thermal interface structure
US6965513B2 (en) * 2001-12-20 2005-11-15 Intel Corporation Carbon nanotube thermal interface structures
US6856016B2 (en) * 2002-07-02 2005-02-15 Intel Corp Method and apparatus using nanotubes for cooling and grounding die

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1707935B (zh) * 2004-06-11 2010-05-12 珍通科技股份有限公司 便携式电子设备的电能自给方法及系统
CN100376655C (zh) * 2004-06-30 2008-03-26 鸿富锦精密工业(深圳)有限公司 热介面材料
CN100561602C (zh) * 2004-07-16 2009-11-18 鸿富锦精密工业(深圳)有限公司 聚热元件
CN100377340C (zh) * 2004-08-11 2008-03-26 鸿富锦精密工业(深圳)有限公司 散热模组及其制备方法
CN100395887C (zh) * 2004-08-14 2008-06-18 鸿富锦精密工业(深圳)有限公司 集成电路封装结构及其制造方法
CN100424861C (zh) * 2004-11-02 2008-10-08 国际商业机器公司 包括碳纳米管的导热液晶聚合物矩阵,其使用以及制造方法
CN100530615C (zh) * 2004-11-24 2009-08-19 鸿富锦精密工业(深圳)有限公司 散热装置及其制备方法
CN100453955C (zh) * 2005-01-07 2009-01-21 鸿富锦精密工业(深圳)有限公司 热管及其制造方法
US7438844B2 (en) 2005-03-24 2008-10-21 Tsinghua University Thermal interface material and method for manufacturing same
CN100337981C (zh) * 2005-03-24 2007-09-19 清华大学 热界面材料及其制造方法
CN1837147B (zh) * 2005-03-24 2010-05-05 清华大学 热界面材料及其制备方法
CN100436367C (zh) * 2005-03-25 2008-11-26 鸿富锦精密工业(深圳)有限公司 陶瓷材料及其制造方法
US7678614B2 (en) 2005-03-31 2010-03-16 Tsinghua University Thermal interface material and method for making the same
US7674410B2 (en) 2005-04-14 2010-03-09 Tsinghua University Method for manufacturing a thermal interface material
CN100358132C (zh) * 2005-04-14 2007-12-26 清华大学 热界面材料制备方法
CN100454526C (zh) * 2005-06-30 2009-01-21 鸿富锦精密工业(深圳)有限公司 热界面材料制造方法
CN101121791B (zh) * 2006-08-09 2010-12-08 清华大学 碳纳米管/聚合物复合材料的制备方法
CN101346054B (zh) * 2007-07-13 2010-05-26 清华大学 热界面材料、其制备方法及具有该热界面材料的封装体
CN101471329B (zh) * 2007-12-29 2012-06-20 清华大学 半导体封装件
CN106158666A (zh) * 2015-04-02 2016-11-23 明安国际企业股份有限公司 高导热组件的制作方法
CN104900713A (zh) * 2015-06-15 2015-09-09 京东方科技集团股份有限公司 薄膜晶体管及其制作方法、显示基板、显示装置
CN104900713B (zh) * 2015-06-15 2017-12-08 京东方科技集团股份有限公司 薄膜晶体管及其制作方法、显示基板、显示装置
US10170717B2 (en) 2015-06-15 2019-01-01 Boe Technology Group Co., Ltd. Thin film transistor and manufacturing method thereof, display substrate, and display apparatus
CN111051392A (zh) * 2017-09-08 2020-04-21 霍尼韦尔国际公司 不含硅氧烷的热凝胶
CN111051392B (zh) * 2017-09-08 2022-08-30 霍尼韦尔国际公司 不含硅氧烷的热凝胶
TWI780220B (zh) * 2017-09-08 2022-10-11 美商哈尼威爾國際公司 無聚矽氧的散熱凝膠
CN113646351A (zh) * 2019-02-25 2021-11-12 汉高知识产权控股有限责任公司 基于两部分聚氨酯的热界面材料
CN113646351B (zh) * 2019-02-25 2023-11-21 汉高股份有限及两合公司 基于两部分聚氨酯的热界面材料
CN113841234A (zh) * 2019-05-21 2021-12-24 Ddp特种电子材料美国有限责任公司 两部分界面材料、包括该界面材料的系统及其方法
CN112358855A (zh) * 2020-10-26 2021-02-12 深圳烯湾科技有限公司 碳纳米管导热片及其制备方法
CN112358855B (zh) * 2020-10-26 2021-12-28 深圳烯湾科技有限公司 碳纳米管导热片及其制备方法

Also Published As

Publication number Publication date
JP4897188B2 (ja) 2012-03-14
US6924335B2 (en) 2005-08-02
US20040097635A1 (en) 2004-05-20
CN1296994C (zh) 2007-01-24
JP2004161996A (ja) 2004-06-10

Similar Documents

Publication Publication Date Title
CN1296994C (zh) 一种热界面材料及其制造方法
CN100345472C (zh) 一种热界面材料及其制造方法
CN100383213C (zh) 一种热界面材料及其制造方法
CN1891780B (zh) 热界面材料及其制备方法
TWI253467B (en) Thermal interface material and method for making same
CN108504096B (zh) 一种碳纳米管/聚合物复合材料的制备方法
KR102243846B1 (ko) 탄소소재 충진밀도 제어를 통한 고방열 부품 제조방법 및 이에 의하여 제조된 고방열 부품
TW201120202A (en) Heat spreader structure
US20060115648A1 (en) Nanofibers and process for making the same
CN112341758A (zh) 一种具备自愈合/阻尼复合功能的复合材料、制备及应用
CN111995991B (zh) 一种热界面材料及其制备方法
JP2002235279A (ja) 電気絶縁体被覆気相法炭素繊維及びその製造方法並びにその用途
CN1266247C (zh) 一种热界面材料及其制造方法
CN100356556C (zh) 一种热界面材料及其制造方法
KR101210882B1 (ko) 유리질 탄소 코팅 흑연 도가니 및 그의 제조방법
JPH10172738A (ja) ガラス状カーボン発熱体
TW200427961A (en) Thermal interface material and method for making same
CN115521157A (zh) 一种SiC晶须强韧化的先驱体陶瓷基复合材料及其制备方法
US20140011920A1 (en) Continuous vapor grown carbon fiber mat and the producing method thereof
Xie et al. Preparation of graphene quantum dots modified hydrogenated carboxylated nitrile rubber interpenetrating cross-linked film
CN116354735B (zh) 一种快速制备AlN改性C/C-SiC摩擦材料的方法
JPS62148384A (ja) 炭化珪素質複合材料
CN116143732B (zh) 一种生物质席夫碱及其聚合物、光热涂层与制备方法
TW200533736A (en) Thermal interface material and method for making same
CN118772641A (zh) 一种高导热、低接触热阻填充型柔性有机硅热界面材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20070124

CX01 Expiry of patent term