CN1473140A - 多孔氮化硅陶瓷及其生产方法 - Google Patents

多孔氮化硅陶瓷及其生产方法 Download PDF

Info

Publication number
CN1473140A
CN1473140A CNA028028767A CN02802876A CN1473140A CN 1473140 A CN1473140 A CN 1473140A CN A028028767 A CNA028028767 A CN A028028767A CN 02802876 A CN02802876 A CN 02802876A CN 1473140 A CN1473140 A CN 1473140A
Authority
CN
China
Prior art keywords
silicon nitride
powder
porous silicon
nitride ceramic
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028028767A
Other languages
English (en)
Other versions
CN1197830C (zh
Inventor
宫永伦正
小村修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of CN1473140A publication Critical patent/CN1473140A/zh
Application granted granted Critical
Publication of CN1197830C publication Critical patent/CN1197830C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • C04B38/0025Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors starting from inorganic materials only, e.g. metal foam; Lanxide type products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00198Characterisation or quantities of the compositions or their ingredients expressed as mathematical formulae or equations
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • C04B2235/465Ammonia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24926Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including ceramic, glass, porcelain or quartz layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249955Void-containing component partially impregnated with adjacent component
    • Y10T428/249956Void-containing component is inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249971Preformed hollow element-containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249971Preformed hollow element-containing
    • Y10T428/249974Metal- or silicon-containing element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249976Voids specified as closed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/252Glass or ceramic [i.e., fired or glazed clay, cement, etc.] [porcelain, quartz, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

本发明提供具有均匀,细闭孔的多孔氮化硅陶瓷和其制造方法。金属Si粉末与烧结添加剂混合,随后热处理,这是一种用于形成特定晶粒边界相的预工艺。然后通过在1000℃或更多的温度下微波加热而进行二步热处理。金属Si粉末然后从其表面进行氮化反应,金属Si随后扩散到在金属Si的外壳上形成的氮化物,这样可得到具有均匀,细闭孔的多孔氮化硅陶瓷。因为本发明多孔氮化硅陶瓷具有高闭孔比率并具有优异的电/机械特性,如果它们例如用作需要抗吸湿性,低介电常数,低介电损耗,和机械强度的电子电路板,可以显示出优异的特性。

Description

多孔氮化硅陶瓷及其生产方法
技术领域
本发明涉及用作介电材料以用于各种线路板,绝缘元件,或无线电波传输材料,或用作轻质,抗吸湿结构材料的多孔氮化硅陶瓷,并涉及其制造方法。
背景技术
陶瓷是用作各种结构材料和电子部件材料的材料,而且近年来,已经需要提高其特性,即,进一步减少重量,增加强度,和提高电特性。例如,在分别用作半导体制造设备元件的晶片传输阶段和制图阶段,阶段材料为了高精度和高速驱动需要进一步减少其重量。另外,根据频率增高的最新动态,用于电子设备的电路板和绝缘材料非常需要具有较小的介电常数和介电损耗的材料。
满足这些要求的可能和有用的方案是使用多孔陶瓷形式的陶瓷。例如,如果陶瓷的相对密度陶瓷减至50%,其重量可下降50%。另外,介电常数是约1且介电损耗是0的空气具有优异的不导电性,因此多孔陶瓷作为需要低介电常数和低介电损耗的材料可具有理想的特性。
但仅通过控制陶瓷烧结体的烧结工艺难以得到其中细孔均匀分散的多孔烧结体。通常因为生成粗孔而出现其中其强度削弱或其特性变得不匀的情形。另外,实际上问题在于,由于所得多孔烧结体的大多数孔是开孔,陶瓷本身的水分耐性受损害,且出现由水造成的电特性(介电常数和介电损耗)的明显下降或各种特性的不匀性,结果,不能实际得到所需特性。
因此,已开发各种技术以得到具有细闭孔的多孔材料。例如,日本未审专利出版物No.H3-177372公开了一种包含具有不同热膨胀系数的相的SiC-基多孔烧结体,其中在合计闭孔时得到的体积比是0.07-275%,这样提高韧性。但该技术的问题在于,氧化耐性会下降,或孔直径会增加,如果试图得到具有27.5%或更多闭孔的SiC-基多孔烧结体。
日本未审专利出版物No.H5-310469公开了一种孔直径是2-10μm和闭孔隙率是5-15%的高纯度氧化钙烧结体。根据该出版物,为了得到烧结体,将发泡剂,如苯酚醛,或可燃细粉末,如炭黑与碳酸钙和水的淤浆混合,并将这些物质燃烧。但该方法的问题在于,闭孔隙率不能增加,因为发泡剂或可燃物作业粉末的残余物存在于闭孔中,且和发泡剂的增加使得难以保持其形状。
日本未审专利出版物No.H6-157157公开了一种轻质高强度陶瓷,其中闭孔通过用燃烧炉中的压力平衡闭孔的压力而形成。但该方法的问题在于难以控制孔直径且难以得到高孔隙率。
日本已审专利出版物No.H7-87226公开了一种通过将陶瓷与粒状树脂混合和通过燃烧它们而用于得到具有细闭孔的陶瓷的方法。但根据该方法,尽管粒状树脂升华并燃烧以形成闭孔,该粒状树脂保留在陶瓷中,或该粒状树脂的燃烧气体被吸附到闭孔的内表面上,这样降低其电特性。该方法的另一问题在于难以形成完全闭孔,即使它在外观上是独立的孔,且需要另一设计方案以得到气密性。
日本未审专利出版物No.H11-116333公开了一种通过湿片材层压技术由玻璃/聚集体/树脂球的复合物用于制造陶瓷电路板的方法,所述复合物使用由多孔玻璃的结晶/热处理得到的多孔玻璃聚集体而制成。在方法中,多孔玻璃通过将硼硅酸盐玻璃进行热处理以相分离洗脱出可溶相,并随后研磨,和仅熔化表面以形成纳米级的闭孔而制成。通过该方法得到的陶瓷电路板的介电常数是2或更低,和其热膨胀系数是13-17ppm/℃。根据该方法,材料局限于其中相分离通过热处理而进行,并洗脱出可溶相的那些。另外,不仅工艺复杂,而且材料在使用时需要复合到不同相中,因此不能得到固有的机械,电特性。该方法的另一问题在于,一旦开孔暴露于大气且水被吸附,难以完全分离和控制它。
如上所述,用于形成闭孔的常规方法需要加入不同于基质相的第二相,如发泡剂,熔化物质,或具有不同的热膨胀系数的相,因此,电所有的机械特性由于该第二相或由于第二相的残余物而极大地且不利地下降。另外,因为孔隙率的升高使得不可能形成基质骨架或不可能控制孔直径,这限制了可以形成的孔隙率和孔直径。
发明内容
本发明为解决前述问题而开发。即,本发明的一个目的是提供具有均匀细闭孔的多孔氮化硅陶瓷和提供其制造方法。
本发明的多孔氮化硅陶瓷具有低于70%的相对密度和50%或更多的闭孔与所有孔的比率。优选,它们是低于50%的相对密度,和是90%或更多的闭孔与所有孔的比率。
在普通的多孔陶瓷中,孔存在于颗粒之间,如图2示意说明。相反,在本发明的多孔氮化硅陶瓷中,颗粒具有如图1示意说明的中空结构,因此形成了其中密集部分(骨架部分)如网状结构连接的结构。另外,因为不包括粗孔,提供了优于常规多孔陶瓷的机械强度和电特性。尤其,在因为颗粒中空而结构化使得分散有具有均匀直径的孔的多孔陶瓷中,两个相邻孔的半径r1和r2和陶瓷部分的宽度b可在多孔陶瓷的任意部分中具有关系(r1+r2)/b>1。优选,(r1+r2)/b>2。
本发明多孔氮化硅陶瓷包含表示为RE4Si2N2O7或RE10N2(SiO4)6的氧氮化物或硅氧氮化物复晶相(silicon oxynitride compound crystal)。在本发明的陶瓷电路板中,至少一部分绝缘层由多孔陶瓷组成。
本发明的多孔氮化硅陶瓷可通过其中形成包含金属Si粉末和相对金属Si粉末0.2-2.5mol%的至少一种Yb,Sm,和Er的模塑品,并随后在包含氮的气氛中进行热处理的制造方法而得到。由已中空化的氮化硅陶瓷颗粒组成的多孔氮化硅陶瓷可通过将该模塑品在微波照射或毫米波照射下进行热处理而得到。
附图的简要描述
图1是本发明多孔陶瓷的截面结构的示意图。
图2是常规多孔陶瓷的截面结构的示意图。
图3给出了本发明多孔陶瓷的烧结工艺,其中(a)处于模塑态,(b)处于烧结起始态,和(c)处于完全烧结态。
图4示意地说明一个金属颗粒在本发明多孔陶瓷的烧结工艺中的变化,其中(a)处于烧结之前的状态,(b)处于起始烧结态,(c)处于烧结进行态,和(d)处于完全烧结态。
用于实现本发明的最佳方式
以下参考其制造方法详细说明本发明的多孔氮化硅陶瓷。本发明的多孔氮化硅陶瓷可通过这样一种方法而得到,包括制备金属Si粉末和烧结助剂粉末的步骤,将这些粉末混合在一起以得到混合粉末的步骤,将混合粉末模塑使得形成模塑品的步骤,和将该模塑品在气氛下在氮存在下烧结并形成金属氮化物的烧结体的步骤。闭孔通过金属Si粉末的中空化而得到。相对密度和闭孔与所有孔的比率可通过作为起始原料的金属Si粉末的颗粒尺寸而控制。
高纯度的市售金属粉末可用作金属Si粉末。但由随后的热处理得到的天然氧化物膜或热氧化物膜在金属Si粉末的表面上形成。因为中空度明显随着这些氧化物膜的量而变化,重要的是控制金属Si粉末的氧含量和取决于氧含量的晶粒边界相的组成。优选,选择以金属氧化物(SiO2)计0.2mol%-1.0mol%的氧含量。另外,重要的是通过加入偶联剂或类似剂抑制该混合物的氧含量的增加或,另外,通过加入还原剂,如苯酚树脂抑制其氧含量的增加。
优选,金属Si粉末的平均颗粒直径不低于0.1μm和不超过15μm。如果低于0.1μm,难以控制氧含量,因为比表面积大,和,如果该值是15μm或更多,需要较长的反应时间以获得完全中空化,这是不经济的。
向金属Si粉末中加入至少一种Yb,Sm,和Er的化合物,如氧化物,氧氮化物,或硅化物作为烧结添加剂。优选,加入Yb或Sm的氧化物。优选,加入金属Si粉末的量是0.2mol%-2.5mol%。如果低于0.2mol%,金属Si不容易扩散且Si颗粒的中空化不能令人满意地进行。如果该值是2.5mol%或更多,总孔隙率往往减少。在本发明中,通常称作金属Si的氮化促进剂的Fe2O3或Al2O3是不理想的,因为不能获得足够的中空度。
优选,所加入的烧结添加剂的平均颗粒直径是0.1μm-1μm。如果低于0.1μm,容易出现内聚使得难以处理,和,如果超过1μm,金属粉末难以进行氮化反应。如果金属粉末的表面上的氧化物膜干扰反应,除了前述烧结添加剂,优选加入碱金属,碱土金属,或这些金属的氧化物作为第二烧结添加剂。优选,第二烧结添加剂的加入量是0.1mol%-1.5mol%,和其平均颗粒直径是0.1μm-2μm。
根据已知的球磨法或超声波混合法,金属Si粉末,烧结添加剂,和,如果需要,有机粘结剂加入并混合在一起。在混合它们之后,将它们干燥。然后,将它们模塑成预定形状,并得到模塑品。模塑可根据已知的模塑方法,如干压模塑方法,挤塑方法,刮片模塑方法,和注塑法而进行,而且考虑到质量和生产,可按照所需形状选择最优选的模塑方法。混合之后的混合粉末也可在模塑之前成型为粒状,且可以预增高其体密度以提高可模塑性。如果要更多地提高可模塑性,加入有机粘结剂。
将模塑品在包含氮的保护气体中进行热处理以形成特定晶粒边界层,并随后进行金属Si的氮化反应,这样金属Si粉末的每个颗粒被中空化,且已反应的金属Si粉末的相邻氮化物成为一体,从而可得到具有细闭孔的多孔氮化硅陶瓷。热处理在用于形成特定晶粒边界相的预工艺和在进行氮化反应的同时用于进行中空化的反应工艺的两个阶段中进行。
预工艺可例如,在碳加热器炉中进行。将模塑品在800℃或更多和低于1000℃的温度下进行热处理1小时或更多。在热处理过程中的气氛是包含20vol%或更多的惰性气体的氮气氛。在该预工艺中,需要形成表示为RE10N2(SiO4)6或RE4Si2N2O7的晶粒边界相,其中RE是Yb,或Sm,或Er。如果没有形成这种晶粒边界相,Si颗粒的中空化在以下步骤,即,在反应工艺中得不到促进,因此难以得到本发明的多孔氮化硅陶瓷。因此,调节烧结添加剂的组成,基础粉末的氧含量,和热处理的条件以形成这种晶粒边界相。如果预处理温度低于800℃,不能形成晶粒边界相。如果是1000℃或更多,金属Si的氮化反应在其中没有充分形成晶粒边界相的状态下开始,因此难以得到所要寻求的多孔氮化硅陶瓷。特别优选的是,晶粒边界相是RE10N2(SiO4)6
在第二阶段的作为热处理的反应工艺在包含N2或NH3的气氛下在1000℃或更多的温度下进行。除了N2或NH3,H2或He可同时放入该气氛中。加热可例如,在碳炉中进行;但为了促进金属Si粉末的扩散和中空化并抑制中空结构因颗粒生长所造成的消失,优选使用微波或毫米波进行热处理。尤其是,加热优选通过频率20GHZ或更多的微波照射而进行,因为这样可进一步促进金属向形成于金属Si粉末的外壳上的金属氮化物(Si3N4)中的扩散,因此金属粉末可容易中空化。
优选,反应工艺温度是1000℃或更多。如果低于1000℃,金属粉末的氮化反应的进程缓慢,这是不经济的。在碳加热器加热的情况下,反应工艺温度优选为1500℃或更低,和在微波加热的情况下,优选的温度是1750℃或更低。如果超过这些温度,发生金属氮化物的相变或其颗粒生长,且中空结构改变,这样难以生产本发明的多孔陶瓷。
优选在两种或多种步骤中逐步升温至最大温度。原因在于,金属的氮化反应是放热反应,且,如果温度一次升至最终烧结温度,该温度因其自身热而超过金属的熔点,因此金属开始熔化。如果发生金属熔化,生成未反应的熔体,这样产生粗孔,或开始由模塑品洗脱,因此造成多孔陶瓷的机械/电特性的下降。
通常,热处理进行2小时或更多直至金属Si完全变成氮化硅以使金属Si消失,但,根据一个特定目的,热处理的持续时间可有意缩短以保留金属Si,这样制造可以生产出具有较高闭孔隙率的氮化硅陶瓷。
在反应工艺中,金属Si粉末的表面首先氮化,如图3和4示意。如果进行反应工艺,金属在氮化反应中扩散到外周的氮化物面上,而且假设该氮化反应进行使得进行中空化。因此,最后,已被金属Si粉末占据的那部分变得多孔的。金属Si向外面的氮化物的扩散在形成以上提及的特定晶粒边界层时显著。中空度取决于作为起始原料的金属Si粉末的氧含量,或取决于烧结添加剂的种类,或取决于热处理方法。基本上,每个单独的闭孔的尺寸取决于作为起始原料的金属Si粉末的颗粒尺寸,因此,如果金属Si粉末具有均匀的颗粒直径,闭孔的尺寸是均匀,且决不包括粗闭孔。优选,在热处理时的大气压力是1atm(101kPa)-5atm(507kPa),但这不限于特定压力。
在按照上述得到的本发明多孔陶瓷中,金属Si粉末的每个单独颗粒中空化使得形成其中分散有具有均匀直径的孔的结构。因此,该多孔氮化硅陶瓷具有优异的抗吸湿性,小的介电常数,和小的介电损耗。相对密度低于70%,和闭孔与所有孔的比率是50%或更多。另外,通过选择在原料金属Si粉末的表面上的平均颗粒直径和氧含量,烧结添加剂的种类,和烧结条件,相对密度可变得低于50%,且闭孔与所有孔的比率可变为90%或更多。
在本发明多孔氮化硅陶瓷的任意部分,如果相邻孔的半径分别表示为r1和r2,且陶瓷部分的厚度表示为b,如图1所述,关系(r1+r2)/b>1成立。换句话说,孔的直径可通过选择在原料金属Si粉末的表面上的平均颗粒直径和氧含量,烧结添加剂的种类,和烧结条件而变得等于或大于陶瓷部分的厚度。优选,(r1+r2)/b>2。该结构使得有可能进一步减少介电损耗。
本发明多孔氮化硅陶瓷的优选的实施方案具有介电损耗约10-4或更低。至于机械特性,三点弯曲时的抗弯强度是200MPa或更多,且该多孔氮化硅陶瓷具有优异的电/机械特性。
实施例1
制备出具有平均颗粒直径1μm的Si粉末和,相对Si粉末0.8mol%的作为烧结添加剂的具有平均颗粒直径0.8μm的Er2O3。每种粉末是市售。制备出事先根据惰性气体熔化和红外检测方法测量并确认在其表面具有以SiO2计的氧含量0.7mol%的Si-粉末。将已制备的每种粉末使用乙基醇作为溶剂进行球磨混合24小时。此时,加入4wt%的辛基三乙氧基硅烷作为氧化抑制剂。在混合之后,将它自然干燥,和,使用干压机,将它模塑得到23mm直径,3mm高度,4.5mm长度,7mm宽度,和4.5mm高度的尺寸。
在大气压的包括30vol%Ar的氮气氛(30vol%Ar-70vol%N2)中,通过频率28GHZ的微波加热将该模塑品在950℃下保持1小时。然后,将该气氛改变为具有大气压的氮气氛,并在表I的条件下进行反应工艺。在此,″1200*3+1400*3″表示,它在1200℃下保持3小时,并随后在增加d的温度1400℃下保持3小时。温度通过两个步骤升高,因为硅的氮化反应是在1400℃下的放热反应( ),因此,如果温度一次升至1400℃,该温度由于其自身热而超过1400℃,且Si或类似物发生熔化。在自然冷却之后,精加工通过使用外周研磨机和表面研磨机而进行,得到20mm的直径,1mm高度,3mm长度,4mm宽度,和40mm的高度的尺寸。使用进行精加工的烧结体,按照以下方式测定相应的特性。在此,根据X-射线衍射确认,金属Si没有留在烧结体中,且都是Si3N4
表观密度由烧结体的尺寸和重量计算,且理论密度由烧结添加剂的加入量根据混合定则而计算,且整体孔隙率根据以下公式计算。(1-表观密度/理论密度)×100(%)。
开孔体积使用水银孔隙仪测量,且闭孔百分数根据以下公式计算。(整体孔体积-开孔体积)/整体孔体积×100(%)。
对于相邻孔的半径r1和r2和陶瓷部分的厚度b,将烧结体切割,和,在研磨该部分之后,进行SEM观测。孔的中心点定义为用作SEM照相的二维重力位的点,和,如图1所示,孔的半径r1和r2以及陶瓷部分的厚度b通过将任意相邻部分的中心点相互连接而测定。表I给出了50点的测量结果的平均值。
作为电特性,介电常数和在30GHZ下的介电损耗(tanδ)根据描述于JISR1627的测量方法而测定。表I给出了这些结果。表I
 No.   烧结条件  整个孔隙率(%)  闭孔百分数(%)  (r1+r2)/b  介电常数    tanδ(×10-5)
  1  1200*3+1400*3      80      92    2.43    2.1     12
  2  1300*3+1500+3      80      90    2.40    2.1      7
  3  1300*3+1600+3      75      88    2.01    2.9      9
   4  1300*3+1650+3    31    70    2.0     5    35
   5*  1300*3+1700+3    28    51    1.4     6.8    90
   6*  1300*3+1800+3    29    35    1.20     7.5    100
*对比例
从表I可以理解,在本发明的多孔氮化硅陶瓷中,孔隙率是30%或更多,即,相对密度低于70%,和闭孔百分数是50%或更多。可以理解,多孔氮化硅陶瓷通过如上形成陶瓷而获得高电特性,尤其介电损失特性。另外,可以理解,如果烧结温度是1800℃,中空结构由于颗粒生长和相变而变成密集的结构。另外,可以理解,如果烧结温度是1200℃-1650℃,(r1+r2)/b值是2或更多,和介电损耗是12×10-5或更低,这是优异的结果。
实施例2
制备出具有平均颗粒直径1μm的Si粉末和,作为烧结添加剂的相对Si粉末0.8mol%的具有平均颗粒直径0.8μm的在表II中列举的稀土氧化物。每种粉末是市售。制备出Si-粉末,其在表面上的氧含量通过根据惰性气体熔化和红外检测方法测定而确定为以SiO2计的0.7mol%。将如此制成的每种粉末按照实施例1的相同方式进行混合,模塑,和热处理。
然后,将该气氛改变为具有大气压的氮气氛,温度随后升至1000℃,并保持3小时,并随后升至1200℃,并保持3小时。
在自然冷却,按照实施例1的相同方式进行精加工。每个烧结体的整体孔隙率,闭孔隙率,介电常数,和介电损耗按照实施例1的相同方式测定。为了测定其机械特性,进行整饰以具有在JISR1601中规定的强度-检查片形状,并根据该要求测定三点抗弯强度。表II给出了这些测量结果。在此,根据X-射线衍射确认,金属Si没有留在每个烧结体中,且都是Si3N4
表II
  No.  烧结添加剂的种类  整个孔隙率(%)  闭孔百分数(%)  (r1+r2)/b    tanδ(×10-5)   介电常数  抗弯强度(MPa)
  7*   La2O3    58    10     0    120     4.5    40
  8*   Nd2O3    59    20     0.54    110     4.2    50
  9   Sm2O3    88    98     2.2     5     1.8    300
  10   Er2O3    80    90     1.8     20     3.0    200
  11*   Gd2O3    65    45     1.2     70     4.1    190
  12   Yb2O3    78    99     2.61     6     2.5    300
  13*   Al2O3    28    2     0     320     6.8    60
  14*   Fe2O3    38    <1     0     400     6.5    50
*对比例
从表II可以理解,在通过加入本发明烧结添加剂而得到的烧结体中,孔隙率是70%或更多,即,相对密度低于30%,和闭孔百分数是50%或更多。可以理解,该烧结体具有优异的电所有的机械特性,因为介电损耗是2×10-4或更低,小于常规多孔陶瓷,且抗弯强度是200MPa或更多。
在多孔氮化硅陶瓷中,(r1+r2)/b值是1或更多,和2或更多,即,孔直径是陶瓷部分的厚度的2倍大或更高,如果选择合适的烧结添加剂。孔直径例如在样品No.9中是0.7μm。根据使用氦检测器测量泄漏量的结果,泄漏量是8×10-9atm cc/sec(在样品No.9中),7×10-7(在样品No.10中),和5×10-9(在样品No.12中),由此可以理解可进行气密封。
实施例3
制备出具有平均颗粒直径1μm的Si粉末和,按照表III所示相对Si粉末的比率,作为烧结添加剂的分别具有平均颗粒直径0.8μm的Yb2O3。每种粉末是市售。制备出Si-粉末,其在表面上的氧含量通过按照实施例1的相同方式测定而预确定为以SiO2计算的0.7mol%。按照实施例2的相同方式进行混合,模塑,烧结,和整饰。所得烧结体的整体孔隙率,闭孔百分数,和介电损耗按照实施例1的相同方式测定,且结果示于表III。
表III
    No.  加入量(mol%)  整个孔隙率(%)  闭孔百分数(%)  tanδ(×10-5)
    15*      0.16      65      30       100
    16      0.78      67      98       9
    17      2.5      50      85       20
    18*      6      42      45       220
*对比例
由表III可以理解,如果烧结添加剂的加入量低于0.2mol%或超过2.5mol%,闭孔百分数下降,且介电损耗增加。换句话说,如果烧结添加剂的加入量较小,Si颗粒的中空化没有充分地进行,和,如果较大,颗粒生长得到促进,且闭孔百分数下降。
实施例4
制备出平均颗粒直径是0.8-10μm的Si粉末和,作为烧结添加剂,相对Si粉末0.8mol%的具有平均颗粒直径0.8μm的Sm2O3。每种Si-粉末在表面上的氧含量根据实施例1所述的方法而测定,且结果(以SiO2计)示于表TV。每种粉末是市售。按照实施例2的相同方式对这些粉末进行混合,模塑,烧结,和整饰。在样品No.22中,在进行球磨混合时没有加入氧化抑制剂。每种烧结体的整体孔隙率,闭孔百分数,和介电损耗按照实施例1的相同方式测定,且结果示于表IV。通过X-射线衍射确定的晶粒边界相也示于表IV。
表IV
    No.  颗粒直径(μm)  表面氧含量(mol%)  整个孔隙率(%)  闭孔百分数(%)    晶粒边界相
    19*     10    0.17     65     21    SmSiNO2
    20     4    0.5     82     92    Sm10N2(SiO4)6
    21     1    0.9     72     99    Sm4Si2N2O7
    22*     1    0.9     52     45    Sm2Si3N4O3
    23*     0.8    3.0     40     10    Sm2Si3N4O3
*对比例
在比较都使用相同的Si粉末原料的样品No.21和No.22时,在No.22中金属Si粉末的氧含量在球磨混合之后增加至1.7mol%,因为没有加入氧化抑制剂。据此并根据表IV可以理解,如果金属Si粉末的氧含量低于0.2mol%或超过1.0mol%,晶粒边界相的组成变得不同于本发明所要寻求的晶粒边界相,因此整体孔隙率减少,和闭孔百分数下降。这可能因为晶粒边界相的组成是不同的,且反应性形式是不同的,且金属Si的中空化没有得到促进。
实施例5
制备出与实施例1相同的Si粉末和Er2O3粉末。按照实施例1的相同方式对这些粉末进行混合和模塑。如同实施例1,将它在950℃下保持1小时,并将模塑品在表V的条件下通过碳加热器加热在具有大气压的氮气氛下烧结。
烧结条件与实施例1相同。对烧结体的整饰按照实施例1的相同方式进行。每种烧结体的整体孔隙率,闭孔百分数,(r1+r2)/b值,和介电损耗按照实施例1的相同方式测定,且结果示于表V。(r1+r2)/b值是50点得到测量结果的平均值。
表V
    No.  烧结条件  整个孔隙率(%)  闭孔百分数(%) (r1+r2)/b   tanδ(×10-5)
    24   1300*3+1500*3     50     65     1.2       100
    25   1000*3+1200*3     55     70     1.8        80
    26*   1300*3+1800*3     15     30     0.54       160
*对比例
由表V可以理解,如果烧结温度是1800℃,中空结构由于颗粒生长和相变而变成密集结构。另外,通过表I和表V之间的比较可以理解,微波加热带来较高的闭孔百分数并带来较低的介电损耗。
原因可能因为微波可进行更有效的加热,且金属Si至外壳(氮化硅)的扩散反应进一步得到促进。
工业实用性
根据本发明,可得到与其它材料和常规方法相比具有较高的闭孔比率并具有更均匀分散的闭孔的多孔氮化硅陶瓷。因为本发明多孔氮化硅陶瓷具有高闭孔比率并具有优异的电//机械/特性,如果它们例如用作需要抗吸湿性,低介电常数,低介电损耗,和机械强度的电子电路板,可以显示出优异的特性。

Claims (6)

1.多孔氮化硅陶瓷,其中相对密度低于70%,和闭孔与所有孔的比率是50%或更多。
2.根据权利要求1的多孔氮化硅陶瓷,其中关系(r1+r2)/b>1在任意部分中成立,其中r1和r2是两个相邻孔的半径,和b是陶瓷部分的宽度。
3.根据权利要求1的多孔氮化硅陶瓷,它包含表示为RE4Si2N2O7或RE10N2(SiO4)6的氧氮化物或硅氧氮化物复晶相。
4.一种氮化硅陶瓷电路板,其中至少一部分绝缘层由根据任何一项权利要求1-3的氮化硅陶瓷材料组成。
5.一种用于制造多孔氮化硅陶瓷的方法,包括步骤:
形成包含金属Si粉末和相对金属Si粉末0.2-2.5mol%的至少一种Yb,Sm,和Er的复合物粉末的模塑品;和
然后将模塑品在含氮气氛中进行热处理。
6.根据权利要求5的用于制造多孔氮化硅陶瓷的方法,其中将模塑品在微波照射或毫米波照射下进行热处理使得其中包含的氮化硅陶瓷颗粒中空化以生产多孔氮化硅陶瓷。
CNB028028767A 2001-09-04 2002-03-22 多孔氮化硅陶瓷及其生产方法 Expired - Fee Related CN1197830C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP267267/2001 2001-09-04
JP2001267267 2001-09-04
JP2002006821A JP2003160384A (ja) 2001-09-04 2002-01-16 多孔質窒化ケイ素セラミックスおよびその製造方法
JP6821/2002 2002-01-16

Publications (2)

Publication Number Publication Date
CN1473140A true CN1473140A (zh) 2004-02-04
CN1197830C CN1197830C (zh) 2005-04-20

Family

ID=26621623

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028028767A Expired - Fee Related CN1197830C (zh) 2001-09-04 2002-03-22 多孔氮化硅陶瓷及其生产方法

Country Status (8)

Country Link
US (1) US7041366B2 (zh)
EP (1) EP1424317A1 (zh)
JP (1) JP2003160384A (zh)
KR (1) KR20030090607A (zh)
CN (1) CN1197830C (zh)
HK (1) HK1059432A1 (zh)
TW (1) TW593209B (zh)
WO (1) WO2003022780A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100354230C (zh) * 2006-01-17 2007-12-12 武汉理工大学 一种磷酸作为添加剂的氮化硅多孔陶瓷材料的制备方法
CN100358799C (zh) * 2005-11-25 2008-01-02 长沙隆泰科技有限公司 一种氮化硅铁的微波合成方法
CN108585917A (zh) * 2018-05-08 2018-09-28 中国人民解放军国防科技大学 氮化硅-碳化硅复相多孔陶瓷的制备方法
CN109734456A (zh) * 2019-03-11 2019-05-10 中国科学院理化技术研究所 一种多孔氮化硅陶瓷的制备方法
CN110520398A (zh) * 2017-04-17 2019-11-29 株式会社东芝 烧结体、基板、电路基板及烧结体的制造方法
CN115872784A (zh) * 2022-11-28 2023-03-31 航天特种材料及工艺技术研究所 一种多孔氮化硅陶瓷材料及其去除残碳的方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4498732B2 (ja) * 2003-12-25 2010-07-07 積水化学工業株式会社 多孔質体およびその製造方法
US7749931B2 (en) * 2006-02-13 2010-07-06 Fujifilm Corporation Ceramic optical parts and production methods thereof
JP4904465B2 (ja) * 2006-02-13 2012-03-28 独立行政法人産業技術総合研究所 セラミックス光学部品及びその製造方法
CN1331812C (zh) * 2006-02-24 2007-08-15 中国科学院上海硅酸盐研究所 高强度、低介电常数的二氧化硅结合的氮化硅多孔陶瓷及制备方法
US8283707B2 (en) 2006-03-10 2012-10-09 Stmicroelectronics S.A. Reduction of threshold voltage instabilities in a MOS transistor
US9447503B2 (en) 2007-05-30 2016-09-20 United Technologies Corporation Closed pore ceramic composite article
EP2025658A1 (en) 2007-08-08 2009-02-18 Imerys Ceramics France Porous ceramic bodies and process for their preparation
KR101130716B1 (ko) * 2009-03-30 2012-03-28 서울대학교산학협력단 나노 질화규소계 세라믹스의 제조방법
CN101531538B (zh) * 2009-04-02 2011-12-28 哈尔滨工业大学 多孔氮化硅/氧氮化硅陶瓷复合材料的近净尺寸制备方法
KR101233744B1 (ko) * 2011-01-27 2013-02-18 한국기계연구원 다공성 반응소결질화규소 제조 방법 및 그에 사용되는 가소결 규소혼합분말 과립 및 다공성 반응소결질화규소 제조 방법
CN102503365B (zh) * 2011-11-07 2013-07-03 李廷怀 玉青白胎瓷器的制作工艺
EP3093355B1 (en) * 2015-05-13 2018-10-10 The Swatch Group Research and Development Ltd. Method for manufacturing a composite component of a timepiece or of a jewelry part, and composite component obtainable by such method
KR20180081642A (ko) * 2017-01-06 2018-07-17 국방과학연구소 반응결합 질화규소의 제조방법
JP7351766B2 (ja) * 2020-02-21 2023-09-27 京セラ株式会社 窒化珪素基板及びパワーモジュール

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3258349A (en) * 1962-05-11 1966-06-28 Norton Co Light porous refractory brick and method
JPH0787226B2 (ja) * 1987-02-25 1995-09-20 株式会社村田製作所 低誘電率絶縁体基板
JPH03177372A (ja) 1989-12-07 1991-08-01 Toshiba Corp SiC基多孔質焼結体及びSiC基多孔質焼結体の製造方法
JPH05310469A (ja) 1992-05-08 1993-11-22 Mitsubishi Materials Corp 高純度カルシア焼結体
JPH06157157A (ja) 1992-11-18 1994-06-03 Inax Corp 閉気孔性セラミックスの製造方法
US6197243B1 (en) * 1993-04-16 2001-03-06 Ut Battelle, Llc Heat distribution ceramic processing method
JP3287922B2 (ja) 1993-09-10 2002-06-04 株式会社日立国際電気 データ送信方法及び装置
JPH08228105A (ja) 1995-02-21 1996-09-03 Sumitomo Electric Ind Ltd マイクロストリップ基板
JPH08295576A (ja) 1995-04-24 1996-11-12 Eagle Ind Co Ltd 独立球形気孔を有するセラミックス部材およびその製造方法
GB9515242D0 (en) 1995-07-25 1995-09-20 Ecc Int Ltd Porous mineral granules
JP3228198B2 (ja) 1997-10-17 2001-11-12 住友金属工業株式会社 セラミックス材料と回路基板およびその製造方法
JPH11322438A (ja) * 1998-03-12 1999-11-24 Sumitomo Electric Ind Ltd 高熱伝導性窒化ケイ素質焼結体及びその製造方法
JP4719965B2 (ja) 1999-10-08 2011-07-06 東レ株式会社 セラミックス
EP1359133A4 (en) * 2001-02-08 2007-03-07 Sumitomo Electric Industries POROUS CERAMIC, PREPARATION METHOD, AND MICROBAND SUBSTRATE

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100358799C (zh) * 2005-11-25 2008-01-02 长沙隆泰科技有限公司 一种氮化硅铁的微波合成方法
CN100354230C (zh) * 2006-01-17 2007-12-12 武汉理工大学 一种磷酸作为添加剂的氮化硅多孔陶瓷材料的制备方法
CN110520398A (zh) * 2017-04-17 2019-11-29 株式会社东芝 烧结体、基板、电路基板及烧结体的制造方法
US11564314B2 (en) 2017-04-17 2023-01-24 Kabushiki Kaisha Toshiba Sintered body, substrate, circuit board, and manufacturing method of sintered body
US11758651B2 (en) 2017-04-17 2023-09-12 Kabushiki Kaisha Toshiba Sintered body, substrate, circuit board, and manufacturing method of sintered boy
CN108585917A (zh) * 2018-05-08 2018-09-28 中国人民解放军国防科技大学 氮化硅-碳化硅复相多孔陶瓷的制备方法
CN108585917B (zh) * 2018-05-08 2020-06-26 中国人民解放军国防科技大学 氮化硅-碳化硅复相多孔陶瓷的制备方法
CN109734456A (zh) * 2019-03-11 2019-05-10 中国科学院理化技术研究所 一种多孔氮化硅陶瓷的制备方法
CN115872784A (zh) * 2022-11-28 2023-03-31 航天特种材料及工艺技术研究所 一种多孔氮化硅陶瓷材料及其去除残碳的方法
CN115872784B (zh) * 2022-11-28 2024-01-26 航天特种材料及工艺技术研究所 一种多孔氮化硅陶瓷材料及其去除残碳的方法

Also Published As

Publication number Publication date
US7041366B2 (en) 2006-05-09
TW593209B (en) 2004-06-21
HK1059432A1 (en) 2004-07-02
EP1424317A1 (en) 2004-06-02
US20040013861A1 (en) 2004-01-22
KR20030090607A (ko) 2003-11-28
CN1197830C (zh) 2005-04-20
WO2003022780A1 (fr) 2003-03-20
JP2003160384A (ja) 2003-06-03

Similar Documents

Publication Publication Date Title
CN1473140A (zh) 多孔氮化硅陶瓷及其生产方法
EP0780351B1 (en) Aluminum nitride sintered body and method for manufacturing the same
EP2636659B1 (en) High rigidity ceramic material and method for producing same
KR20190048811A (ko) 우수한 열전도도 및 열내구성을 가지는 탄화규소 소결체의 제조방법
US5126294A (en) Sintered silicon nitride and production method thereof
JPH09268072A (ja) 窒化珪素質焼結体の製造方法
KR20100115992A (ko) 탄화규소/카본 복합분말과 그 복합분말을 이용하여 제조된 고순도 및 고강도의 반응소결 탄화규소
CN115073195B (zh) 用于3d打印雷达天线罩的氮化硅晶须增强氮化物复合材料及制备和打印方法
JP2002308678A (ja) 多孔質セラミックスおよびその製造方法
JP3297547B2 (ja) 炭化珪素質焼結体の製造方法
JP2024053480A (ja) 窒化ケイ素焼結体の製造方法
JPH06287066A (ja) 窒化珪素質焼結体及びその製法
JP3124866B2 (ja) 窒化珪素質焼結体の製造方法
KR20170060970A (ko) 다공성 질화규소 소결체 및 이의 제조 방법
JP2001151575A (ja) 窒化アルミニウム質焼結体の製造方法
KR20230037070A (ko) 산화스칸듐을 소결조제로 포함하는 질화알루미늄 세라믹스 제조용 조성물, 질화알루미늄 세라믹스 및 그 제조방법
CN117658617A (zh) 一种高光学质量的镁铝尖晶石透明陶瓷及其制备方法
JPH06144930A (ja) セラミック複合焼結体およびその製造方法
CN115716751A (zh) 一种改性碳化硅陶瓷及其制备方法
JPS60186473A (ja) 窒化珪素焼結体の製造方法
JP2747635B2 (ja) 窒化珪素焼結体の製造方法
JPH0733528A (ja) セラミック複合焼結体及びその製法、並びにそれを用いた半導体製造用治具
JP2001270779A (ja) 窒化アルミニウム質焼結体の製造方法
CN116496089A (zh) 一种深海用反应烧结碳化硼-碳化硅复合陶瓷材料的制备方法
JP2001139379A (ja) 高熱伝導性窒化アルミニウム焼結体の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1059432

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050420