CN1458860A - 复合半透膜,其生产方法,和使用其的水处理方法 - Google Patents

复合半透膜,其生产方法,和使用其的水处理方法 Download PDF

Info

Publication number
CN1458860A
CN1458860A CN02800715A CN02800715A CN1458860A CN 1458860 A CN1458860 A CN 1458860A CN 02800715 A CN02800715 A CN 02800715A CN 02800715 A CN02800715 A CN 02800715A CN 1458860 A CN1458860 A CN 1458860A
Authority
CN
China
Prior art keywords
composite semipermeable
semipermeable membrane
contain
water
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN02800715A
Other languages
English (en)
Other versions
CN1292826C (zh
Inventor
小原知海
广濑雅彦
仓田直记
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Publication of CN1458860A publication Critical patent/CN1458860A/zh
Application granted granted Critical
Publication of CN1292826C publication Critical patent/CN1292826C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00933Chemical modification by addition of a layer chemically bonded to the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/022Membrane sterilisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents

Abstract

一种复合半透膜,包含薄膜和支撑该薄膜的多孔支撑膜,其特征在于所述的薄膜包含具有组分单元的聚酰胺型树脂,在该组分单元中,二胺残基和二或三羧酸残基之间形成酰胺键,而且酰胺键的氮原子上有芳香环取代基。一种生产方法,包括一个将上述复合半透膜与含有氧化剂的水溶液接触的接触步骤;一种水处理方法,该方法使用复合半透膜来对原水进行膜分理处理,以生产出满足实际应用的、被充分去除了盐和/或有机物质的渗透水,该方法的特征在于使用了本发明的复合半透膜而且在原水中加入了杀菌剂。本发明的复合半透膜具有满足实际应用的水渗透性,良好的盐阻能力和良好的氧化制剂抗性。

Description

复合半透膜,其生产方法,和使用其的水处理方法
背景技术
技术领域
本发明涉及用来选择性地分离液体混合物中的组分的复合半透膜,其生产方法,和使用这种复合半透膜的水处理方法。本发明特别涉及含有一种薄膜的复合半透膜,和使用这种复合半透膜的水处理方法。所述的薄膜主要由多孔基材料上的聚酰胺制成,并且具有实用的水通量,脱盐能力和耐久性。
技术背景
作为用于上述目的半透膜,存在着已知的不对称膜和复合半透膜,其中不对称膜的不对称结构是通过使用相分离方法由相同的材料构成的,复合半透膜中薄膜形成在多孔基材料上,薄膜由不同材料构成而且具有选择性分离的能力。
作为后者的半透膜,可以使用许多复合半透膜,其中由聚酰胺构成的薄膜形成在多孔基材料上,其中的聚酰胺是通过多官能芳香胺和多官能芳香酸卤化物之间的界面聚合作用得到的(例如,JP-A Nos.S55-147106,S62-121603,S63-218208,H2-187135,等等)。也可以使用这样的复合半透膜,其中由聚酰胺制造的薄膜形成在多孔基材料上,其中的聚酰胺是通过多官能芳香胺和多官能脂环酸卤化物之间的界面聚合作用得到的(例如,JP-A No.S61-42308,等等)。
为了进一步提高上述复合半透膜的水通量,建议使用添加剂。存在已知的能够去除由界面反应而产生的卤化氢的物质,例如氢氧化钠或者磷酸三钠;已知的酰化催化剂;在界面反应时间,在反应区域,降低界面张力的化合物;等等(例如,JP-A Nos.S63-12310,H6-47260,H8-24452等等)。
对于这些半透膜,考虑到在各种水处理厂(典型的例子是水生产厂)中更稳定的运转性,和基于对膜寿命延长的低成本目的,需要有可以抵抗各种氧化剂,特别是可以抵抗氯清洗的耐久性。据说上面列举的聚酰胺基的半透膜具有实用的氧化剂抗性。但是,并不是说所有这些半透膜都具有下述的抗性,该抗性具有这样的水平:可以长时间经受持续或者间断地氯灭菌。因此需要研制同时具有较高氧化剂抗性和实用水通量和脱盐能力的半透膜。
为了这些目的,可使用下面的复合膜:从只含有仲氨基的二胺得到的复合膜(JP-A No.S55-139802),使用脂肪族二胺或脂环族二胺得到的复合膜(JP-A Nos.S58-24303,S59-26101,S59-179103,H1-180208,和H2-78428),含有二苯砜结构的复合膜(JP-A Nos.S62-176506,S62-213807和S62-282603),通过后处理得到氯抗性的膜(JP-A No.H5-96140)等等。
但是,这些膜不具有水通量,脱盐能力和氧化剂抗性,而这些性质正是实用半透膜中所需要的。因此,需要更高的性能。换句话说,已知在基于聚酰胺的反向渗透膜中,如上所述,通过使用主链没有芳香环的脂肪族二胺而得到的聚酰胺,在氧化剂抗性方面非常好,但是反向渗透膜的脱盐能力和水通量却不能十分令人满意。
上述的JP-A No.H1-180208中公开了一种生产方法,该方法包括下列步骤:将通过同时使用多官能芳香胺和脂肪族二胺而得到的基于聚酰胺的复合半透膜浸入pH为6-13、含氯的水溶液中。但是,该出版物并没有建议这一方法可以适用于什么类型的其它复合半透膜。
因此,本发明的目的是提供同时具有实用水通量和良好脱盐能力和氧化剂抗性的复合半透膜,生产其的方法,和使用其的水处理方法,该水处理方法可以使展示所述的复合半透膜的实用水通量和良好脱盐能力和氧化剂抗性成为可能。
发明内容
发明者通过努力研究达到了上述目标。结果,发明者已经发现,通过使基于聚酰胺的树脂(该树脂用来形成薄膜)的酰胺键中的氮原子取代基上含有芳香环,树脂具有比取代基是烷基的树脂和不含有取代基的树脂更好的脱盐能力。发明者还发现,通过将含有这种薄膜的复合半透膜与氧化剂水溶液接触,可以在不降低阻挡各种溶质的性能的同时,显著提高水通量。从而完成了本发明。
也就是说,本发明的复合半透膜是含有薄膜和支撑此薄膜的多孔支撑膜的复合半透膜,其特征在于所述的薄膜含有基于聚酰胺的树脂,该树脂含有以下列通式(I)和/或(II)表示的组分单元:
其中R11代表含有2-10个碳原子的亚烷基,该亚烷基可以含有-O-,-S-,或者-NR-,其中R代表氢原子或者低碳烷基,R12和R13分别独立代表可以含有取代基的芳香烃基,或氢原子,R12和R13中至少有一个代表可以含有取代基的芳香烃基,R14代表二价的有机基团,和(II)
其中R21代表含有2-10个碳原子的亚烷基,该亚烷基可以含有-O-,-S-,或者-NR-,其中R代表氢原子或者低碳烷基,R22和R23分别独立代表可以含有取代基的芳香烃基,或氢原子,R22和R23中至少有一个代表可以含有取代基的芳香烃基,R24代表三价的有机基团。
本发明的复合半透膜优选含有薄膜和支撑此薄膜的多孔支撑膜的复合半透膜,其中所述的薄膜含有基于聚酰胺的树脂,该树脂含有以下列通式(Ia)和/或(IIa)表示的组分单元:
Figure A0280071500091
其中R31代表含有2-10个碳原子的亚烷基,该亚烷基可以含有-O-,-S-,或者-NR-,其中R代表氢原子或者低碳烷基,R32和R33分别独立代表苯基或氢原子,R32和R33中至少有一个代表苯基,R34代表二价的有机基团,和
Figure A0280071500092
其中R41代表含有2-10个碳原子的亚烷基,该亚烷基可以含有-O-,-S-,或者-NR-,其中R代表氢原子或者低碳烷基,R42和R43分别独立代表苯基或氢原子,R42和R43中至少有一个代表苯基,R44代表三价的有机基团。
本发明的复合半透膜优选含有薄膜和支撑此薄膜的多孔支撑膜的复合半透膜,其特征在于所述的薄膜含有基于聚酰胺的树脂,该树脂含有以下列通式(III)表示的二胺组分与含有二价或多价的多官能酸卤化物通过缩合反应得到的组分单元。
Figure A0280071500101
其中R51代表含有2-10个碳原子的亚烷基,该亚烷基可以含有-O-,-S-,或者-NR-,其中R代表氢原子或者低碳烷基,R52和R53分别独立代表可以含有取代基的芳香烃基或氢原子,R52和R53中至少有一个代表可以含有取代基的芳香烃基。
生产本发明复合半透膜的方法包括一个将任一个上述复合半透膜与氧化剂水溶液接触的接触步骤。本发明的另一种复合半透膜是由此生产方法得到的膜。
本发明的水处理方法是将含有盐和/或有机物质的水用作原水,用复合半透膜对原水进行膜分离处理以得到在实际应用中被充分去除了盐和/或有机物质的渗透水,该方法的特征在于将上述任何一种的复合半透膜用作此处的复合半透膜,并且在原水中还加入了杀真菌剂。
附图简述
图1图示了在实施例1-3和比较实施例1-5中,随着时间迁移,盐阻率的变化。
实施本发明的最佳实施方案以下对实施本发明的最佳实施方案进行描述[复合半透膜]
本发明的复合半透膜是含有薄膜和支撑此薄膜的多孔支撑膜的复合半透膜,其特征在于所述的薄膜含有基于聚酰胺的树脂,该树脂含有以上述通式(I)-(IIa)表示的组分单元。该复合半透膜的特征还在于所述的薄膜含有基于聚酰胺的树脂,该树脂含有以上述通式(III)-(IIIa)表示的二胺组分与含有二价或多价的多官能酸卤化物通过缩合反应得到的组分单元。
通式(I)-(IIIa)中的R11,R21,R31,R41,R51和R61,每一种都代表含有2-10个碳原子的亚烷基,该亚烷基可以含有-O-,-S-,或者-NR-,其中R代表氢原子或者低碳烷基(含有1-4个碳原子)。其具体实例包括-C2H4-,-C3H6-,-C4H8-,-C5H10-,-C6H12-,-C7H14-,-C8H16-,-C9H18-,-C10H20-,-CH2OCH2-,-CH2OCH2OCH2-,-C2H4OCH2-,-C2H4OC2H4-,-CH2SCH2-,-CH2SCH2SCH2-,-C2H4SCH2-,-C2H4SC2H4-,-C2H4NHC2H4-,和-C2H4N(CH3)C2H4-。从进一步提高氧化剂抗性、提高形成膜时的反应性、提高成形膜的脱盐能力等等方面考虑,特别优选不含任何杂原子的亚烷基。
R12,R13,R22,R23,R32,R33,R42,R43,R52,R53,R62和R63分别独立代表可以含有取代基的芳香烃基,或氢原子。但是,R12和R13中至少有一个代表可以含有取代基的芳香烃基。相同的情况同样适用于其他的组合。其具体实施例包括H,-C6H5,-CH2C6H5,-C6H4OH,-C6H4CH3,-C6H4NO2,和-C6H4C1。从成形膜的水通量、脱盐能力等角度考虑,优选可以含有取代基的苯基,而且特别优选-C6H5。因此R32或R33中至少有一个优选是-C6H5,而且更优选只有其中一个为-C6H5。相同的情况同样适用于R42或R43
在本发明中,上述的二胺组分优选以下面通式(IIIa)表示的化合物:
其中R61代表含有2-10个碳原子的亚烷基,该亚烷基可以含有-O-,-S-,或者-NR-,其中R代表氢原子或者低碳烷基,R62和R63分别独立代表苯基或者氢原子,并且R62和R63中至少有一个是苯基。
通式(I)-(IIa)中的R14,R24,R34和R44每一种都是二价或者三价的有机基团,并且对应于多官能酸卤化物的残基,该残基为二价或多价并且通过与以通式(III)或(IIIa)表示的二胺组分缩合反应,形成本发明的薄膜。多官能酸卤化物没有特别地限制。其实施例包括:丙烷三羧酸氯化物,丁烷三羧酸氯化物,戊烷三羧酸氯化物,戊二酰卤化物,己二酰卤化物,环丙烷三羧酸氯化物,环丁烷三羧酸氯化物,环戊烷三羧酸氯化物,环戊烷四羧酸氯化物,环己烷三羧酸氯化物,四氢呋喃四羧酸氯化物,环戊烷二羧酸氯化物,环丁烷二羧酸氯化物,环己烷二羧酸氯化物和四氢呋喃二羧酸氯化物。从反应性,成形膜的脱盐能力,成形膜的水通量等方面考虑,优选多官能芳香酸卤化物。这些芳香酸氯化物的实例包括1,3,5-苯三酸氯化物,偏苯三酸氯化物,对苯二酸氯化物,间苯二酸氯化物,均苯四酸氯化物,联苯二羧酸氯化物,萘二羧酸氯化物,苯三磺酸氯化物,苯二磺酸氯化物,氯磺酰苯二羧酸氯化物。
本发明的基于聚酰胺的树脂优选具有交联结构。在这种情况下,优选使用含有三价或多价的多官能酸卤化物。在使用含有三价或多价多官能酸卤化物的情况下,其交联部分由以通式(II)表示的组分单元组成。在非交联部分存在的情况下,它由以通式(I)表示的组分单元组成,并且R14由保留着羧基或其盐的二价的有机基团组成。相同的情况适用于通式(IIa)和通式(Ia)之间的关联。
构成上述薄膜的基于聚酰胺的树脂可以是均聚物,或者是含有多个上述组分单元或一种不同组分单元的共聚物,或者是含有多个均聚物的混合物。其实例包括含有以通式(I)和通式(II)表示的组分单元的基于聚酰胺的树脂。不同组分单元的实例包括在其主链含有芳香环的二胺组分,在其支链不含芳香环的二胺组分,和其它用于聚酰胺基半透膜的二胺组分。
本发明的基于聚酰胺的树脂包含由通式(I)和/或(II)或通式(Ia)和/或(IIa)表示的组分单元,优选的摩尔比为50%或更多,更优选80%或更多。如果摩尔比小于50%,酰胺键氮原子上取代基中的芳香环的作用变小以至于实用水通量和优良的脱盐能力和氧化剂抗性倾向于无法被同时满足。
本发明中薄膜的厚度(分离活性层),取决于生产该薄膜的方法,该厚度优选0.01-100μm,更优选0.1-10μm。当厚度变小时,在渗透通量方面会产生更好的结果。但是,如果厚度太小,薄膜的机械强度降低以至于容易产生缺陷。因此,会对脱盐能力产生坏的影响。
如果能够支撑薄膜,本发明中用来支撑薄膜的多孔支撑膜并没有被特别地限制。其实例包括不同物质的膜例如聚砜,聚芳醚砜例如聚醚砜,聚酰亚胺和多氟化物亚乙烯基。特别地,从化学的,机械的和热的稳定性方面考虑,优选使用由聚砜或聚芳醚砜组成的多孔支撑膜。这样的多孔支撑膜通常的厚度为25-125μm,优选厚度为40-75μm。但是,并不是必须将厚度限制为这样的厚度。
多孔支撑膜可以有对称结构或者不对称结构。但是,优选对称结构以同时满足薄膜的支撑功能和液体通透性能。形成在多孔支撑膜面的薄膜的平均孔的大小,优选1-1000μm。
当本发明的薄膜形成在多孔支撑膜上的时候,其方法没有任何限制。可以使用已知的所有方法。其实施例包括界面缩合,析相作用和薄膜涂布方法。特别优选界面缩合方法:将含有二胺组分的水溶液加到多孔支撑膜上,而后将一种含有多官能酸卤化物的非水溶液与多孔支撑膜接触,以在多孔支撑膜上形成薄膜。这种界面缩合方法的详细条件等在JP-A Nos.S58-24303,H1-180208等中描述。可以适当地采用这些已知的方法。
为了使膜的形成更容易,或者为了提高所得到的复合半透膜的性能,可以在反应区域使用各种试剂。这些试剂的实例包括聚合物如聚乙烯醇,聚乙烯吡咯烷酮和聚丙烯酸;多羟基醇例如山梨醇和丙三醇;铵盐如四烷基铵卤化物或者三烷基铵和有机酸,这些试剂在JP-A No.2-187135中描述;表面活性剂例如十二烷基苯磺酸钠,十二烷基硫酸钠和月桂硫酸钠;氢氧化钠,磷酸三钠,三乙胺和樟脑磺酸,它们可以去除由缩聚反应产生的卤化氢;已知的酰化催化剂;和具有8-14(cal/cm3)1/2溶解度参数的化合物,这些化合物在JP-A No.8-224452中描述。[生产复合半透膜的方法]
下面将对本发明的生产方法进行描述。生产本发明复合半透膜的方法的特征是包括一个将上述复合半透膜与氧化剂水溶液接触的步骤。
所使用的氧化剂是这样一种物质,该物质通常具有氧化作用,而且如果它通常被以水溶液的形式使用,就不存在任何限制。其实施例包括高锰酸,高锰酸盐,铬酸,铬酸盐,硝酸,硝酸盐,过氧化物例如过氧化氢,硫酸,次氯酸盐,和次溴酸盐。从成本,处理性能的角度考虑,优选次氯酸盐,特别是次氯酸钠。
本发明的生产方法优选包括将上述的复合半透膜与含有金属盐的氧化剂水溶液接触的步骤。通过金属盐的催化作用,可以缩短与上述氧化剂溶液接触的时间。此处金属盐的实例可以是碱金属盐,碱土金属盐和过渡金属盐,和包含氯化锂,氯化钾,氯化镁,硝酸镁,硝酸钙,氯化铁,氯化铜和氯化钙。优选金属氯化物。
水溶液中金属盐的浓度,是通过短时间接触,根据增加的渗透通量的效果决定的。例如,在次氯酸钠被用作氧化剂的情况下,其浓度可以设定为0.001-50%重量,优选0.05-5%重量。如果无机盐的浓度小于0.001%重量,那么获得期望效果所需要的时间就太长了。因此,这种浓度在生产中不实用。换句话说,在生产所允许的时间内无法得到所期望的效果。如果无机盐的浓度超过50%重量,会相反地引起膜的劣化,例如复合膜的脱盐能力降低。
在本发明中,作为将氧化剂水溶液与复合膜接触的方法,所有的方法例如浸入,在施加压力下的溶液传递,喷射,涂布和大量喷淋,都可以作为实例。为了通过接触产生充分的效果,优选在常压下的浸入或在施加压力下的溶液传递。具体地,建议实施的方法是:在常压下将复合半透膜浸入氧化物水溶液,或者在适用压力下,将氧化剂水溶液传递给复合半透膜。
当使用在常压下浸入或者施加压力下溶液传递的方法来与氧化剂水溶液接触的时候,该溶液中的氧化剂浓度可以依照期望的效果确定。例如,在次氯酸钠被用作氧化剂的情况下,其浓度可以被设定在1mg/L-10%,优选10mg/L-1%作为游离氯浓度。如果游离氯浓度小于1mg/L,那么获得期望效果所需要的时间就太长了。因此,这种浓度在生产中不实用。换句话说,在生产所允许的时间内无法得到所期望的效果。如果游离氯的浓度超过10%重量,会相反地引起膜的劣化,例如复合膜的脱盐能力降低。
当进行氧化剂水溶液接触的时候,通过短时间接触,根据增加的渗透通量效果,同样可以确定接触温度。例如,在次氯酸钠被用作氧化剂的情况下,其温度可以被设定在5-60℃,优选25-60℃。如果接触温度小于5℃,那么获得期望效果所需要的时间就太长了。因此,这种温度在生产中不实用。换句话说,在生产所允许的时间内无法得到所期望的效果。如果接触温度超过60℃,会相反地引起膜的劣化,例如复合膜的脱盐能力降低。
当使用在常压下浸入或者适用压力下溶液传递的方法来与氧化剂水溶液接触的时候,如果产生了期望的效果而且处在生产中的限制所允许的范围内,接触时间没有任何限制而且可以被设定为任意时间。
当使用在施加压力下溶液传递的方法来与氧化剂水溶液接触的时候,用来将该水溶液提供给复合膜的压力在复合膜和用来提供压力的构件和设备的物理强度允许的范围内没有任何限制。该接触可以在例如0.01MPa-10MPa的范围内进行。
当这些处理,即,使用常压下浸入或者施加压力下溶液传递的时候,复合膜的形状没有任何限制。换句话说,可以对任何能被考虑到的膜的形状进行处理,例如平的膜形状或者螺旋形管形状。[使用复合半透膜的水处理方法]
本发明的复合半透膜具有一种很大程度上提高氧化剂抗性的特性。因此,在使用此复合半透膜对含有盐和/或有机物质的原水进行膜分离处理以得到在实用中盐和/或有机物质被充分去除的渗透水的方法中,具有杀真菌剂效果的氧化剂被添加到原水中,而后可以进行水处理。此外,凭借氧化剂抗性的很大提高,可以合适地进行水处理,即使杀真菌剂在经历膜分离处理的渗透水中以具有充分灭菌效果的浓度存在。
可以在使用复合膜的水处理操作中持续地或间断地加入氧化剂。氧化剂的加入,可以通过停止水处理操作并且用含有氧化剂的原水封闭复合膜模一定的时间来进行。
抑制膜污染的作用可以借助氧化剂的灭菌作用达到预期效果。氧化剂的实例包括次氯酸盐例如次氯酸钠和次氯酸钙,过氧化氢水,硫酸和硝酸。从灭菌作用和操作性能方面考虑,优选使用次氯酸盐如次氯酸钠。在将氧化剂以此方法加入到原水中的情况下,可以调节,也可以不调节溶液的pH值。
本发明的水处理方法可以被合适地用于获益的目的,这样,通过将具有灭菌作用的氧化剂加入到原水中,抑制了膜的污染。其实例包括无菌水系统的灭菌,饮用水生产系统中活性碳的去除,清洗容器或类似物的废液的处理,和用于清洗水池中水的系统。但是,目的并不限于这些实例。在饮用水容器被洗液清洗后,水处理方法中的原水是废液的情况下,本发明特别有效,因为通过氧化剂的杀菌作用,对提高水处理的稳定性产生了很大作用。
依照本发明的水处理方法,由于使用了本发明的复合半透膜,实用水通量和优良的脱盐能力可以被展示出来。此外,该膜还具有氧化剂抗性;因此,水处理可以在杀真菌剂被加入到原水的状态下进行。此时,通过加入杀真菌剂,灭菌作用抑制了膜污染,以至于膜分离的耐久性和可保养性变得特别地好。
实施例
下面将对示范本发明结构和作用的实施例进行描述。
实施例1-1
将含有3%重量N-苯乙烯二胺,0.15%重量月桂硫酸钠,3%重量三乙胺,和6%重量樟脑磺酸的水溶液,与多孔聚砜支撑膜接触(薄膜形成面上的平均孔大小:20nm,不对称膜)。此后,去除过量的水溶液。接下来,将含有0.2%重量1,3,5-苯三酸氯化物的异辛烷溶液与支撑膜的表面接触以引起界面缩聚反应。以这种方式,在多孔支撑膜上形成了聚合物薄膜(厚度:1μm)。这样,得到了复合半透膜。
将0.15%的盐水用作原水,把这样得到的复合半透膜在25℃,pH=7,压力为1.5MPa的条件下进行测试。结果,盐阻率为99.3%。渗透通量为0.32m3/(m2·day)。在相同条件下,对硝酸铵进行测试。结果,阻率为95.0%。
将该膜浸入游离氯浓度为100mg/L的次氯酸钠水溶液中。100个小时后,在相同条件下进行测试。结果盐阻率为99.0%,渗透通量为0.38m3/(m2·day)。硝酸铵阻率为94.0%。
实施例1-2
将含有4%重量N-苯乙烯二胺,0.15%重量月桂硫酸钠,3%重量三乙胺,和6%重量樟脑磺酸的水溶液,与多孔聚砜支撑膜接触(薄膜形成面上的平均孔大小:20nm,不对称膜)。此后,去除过量的水溶液。接下来,将含有0.25%重量1,3,5-苯三酸氯化物的基于异链烷烃混和溶液(IP溶剂,Idemitsu Petrochemical Co.,Ltd.制造)与支撑膜的表面接触以引起界面缩聚反应。以这种方式,在多孔支撑膜上形成了聚合物薄膜(厚度:1μm)。这样,得到了复合半透膜。
将0.15%的盐水用作原水,把这样得到的复合半透膜在25℃,pH=7,压力为1.5MPa的条件下进行测试。结果,盐阻率为98.9%。渗透通量为0.33m3/(m2·day)。在相同条件下,对硝酸铵进行测试。结果,阻率为95.3%。
将该膜浸入游离氯浓度为100mg/L的次氯酸钠水溶液中。100个小时后,在相同条件下进行测试。结果盐阻率为99.5%,渗透通量为0.41m3/(m2·day)。硝酸铵阻率为95.7%。比较实施例1-1
除了将二胺组分变为间-苯二胺,以与实施例1-1相同的方法生产并测试复合半透膜。结果见表1。通过把膜浸入次氯酸钠水溶液,以这种方式将间-苯二胺用作胺组分的膜的性能显著下降。比较实施例1-2
除了将二胺组分变为乙二胺,以与实施例1-1相同的方法生产并测试复合半透膜。结果见表1。以这种方式将乙二胺作为胺组分的膜的渗透通量不足。比较实施例1-3
除了将二胺组分变为N-甲基乙二胺,以与实施例1-1相同的方法生产并测试复合半透膜。结果见表1。以这种方式将N-甲基乙二胺作为胺组分的膜的盐阻率和硝酸铵阻率不足。比较实施例1-4
除了将二胺组分变为N-乙基乙二胺,以与实施例1-1相同的方法生产并测试复合半透膜。结果见表1。以这种方式将N-乙基乙二胺作为胺组分的膜的盐阻率和硝酸铵阻率不足。表1
编号 浸入前 浸入后
硝酸铵 硝酸铵
实施例1 盐阻率(%) 99.3 95.0 99.0 94.0
渗透通量(m3/m2/天) 0.32 - 0.38 -
实施例2 盐阻率(%) 98.9 95.3 99.5 95.7
渗透通量(m3/m2/天) 0.33 - 0.41 -
比较实施例1 盐阻率(%) 99.5 98.8 95.3 76.0
渗透通量(m3/m2/天) 1.23 -  4.45 -
比较实施例2 盐阻率(%) 98.5 93.0 97.8 92.4
渗透通量(m3/m2/天) 0.12 - 0.16 -
比较实施例3 盐阻率(%) 83.9 54.3 91.3 73.3
渗透通量(m3/m2/天) 0.72 - 0.56 -
比较实施例4 盐阻率(%) 91.5 68.7 94.5 70.6
渗透通量(m3/m2/天) 0.75 - 0.60 -
从比较实施例1-2至1-4与比较实施例1-1至1-2的结果比较中可以理解,当芳香环作为氨基中氮的取代基时候,溶质的阻率例如盐阻率变得非常高。
实施例1-3
将含有2%重量N-苯乙烯二胺,0.15%重量月桂硫酸钠,2%重量三乙胺,和4%重量樟脑磺酸的水溶液,与多孔聚砜支撑膜接触(薄膜形成面上的平均孔大小:20nm,不对称膜)。此后,去除过量的水溶液。接下来,将含有0.15%重量1,3,5-苯三酸氯化物的异辛烷溶液与支撑膜的表面接触以引起界面缩聚反应。此后,所得到的产物在120℃干燥5分钟以在多孔支撑膜上形成聚合物薄膜(厚度:1μm)。这样,得到了复合半透膜。
使用含有次氯酸钠(其中的游离氯浓度为100mg/L)的原水,将该复合膜在1.5MPa的操作压力下连续操作。此时该复合膜的渗透通量和盐阻率变化见图1。比较实施例1-5
使用含有次氯酸钠(其中的游离氯浓度为100mg/L)的原水,将比较实施例1-1中得到的复合膜在1.5MPa的操作压力下连续操作。此时该复合膜的盐阻率变化见图1。
如图1的结果所示,在本发明的实施例1-3中,起始阻率可以持续很长时间。但是,在比较实施例1-5中,膜被次氯酸钠劣化,以至于阻率突然降低。参考实施例1-1
将含有3%重量N-苄基乙二胺,0.15%重量月桂硫酸钠,3%重量三乙胺,和6%重量樟脑磺酸的水溶液,与多孔聚砜支撑膜接触(薄膜形成面上的平均孔大小:20nm,不对称膜)。此后,去除过量的水溶液。接下来,将含有0.2%重量1,3,5-苯三酸氯化物的异辛烷溶液与支撑膜的表面接触以引起界面缩聚反应。以这种方式,在多孔支撑膜上形成了聚合物薄膜(厚度:1μm)。这样,得到了复合半透膜。
将0.15%的盐水用作原水,把这样得到的复合半透膜在25℃,pH=7,压力为1.5MPa的条件下进行测试。结果,盐阻率为50.4%。渗透通量为0.25m3/(m2/day)。在相同条件下,对硝酸铵进行测试。结果,阻率为45.2%。
将该膜浸入游离氯浓度为100mg/L的次氯酸钠水溶液中。100个小时后,在相同条件下进行测试。结果盐阻率为61.1%,渗透通量为1.06m3/(m2/day)。硝酸铵阻率为60.1%。参考实施例1-2
将含有2%重量N,N’-二苯基乙二胺,0.10%重量月桂硫酸钠,2%重量三乙胺,4%重量樟脑磺酸和30%重量乙腈的水溶液,与多孔聚砜支撑膜接触(薄膜形成面上的平均孔大小:20nm,不对称膜)。此后,去除过量的水溶液。接下来,将含有0.5%重量1,3,5-苯三酸氯化物的异辛烷溶液与支撑膜的表面接触以引起界面缩聚反应。以这种方式,在多孔支撑膜上形成了聚合物薄膜(厚度:1μm)。这样,得到了复合半透膜。
将0.15%的盐水用作原水,把这样得到的复合半透膜在25℃,pH=7,压力为1.5MPa的条件下进行测试。结果,盐阻率为67.7%。渗透通量为0.25m3/(m2/day)。在相同条件下,对硝酸铵进行测试。结果,阻率为65.5%。
将该膜浸入游离氯浓度为100mg/L的次氯酸钠水溶液中。100个小时后,在相同条件下进行测试。结果盐阻率为61.3%,渗透通量为0.26m3/(m2/day)。硝酸铵阻率为61.8%。参考实施例1-3
将含有3%重量N,N’-二苯基乙二胺,0.10%重量月桂硫酸钠,3%重量三乙胺,6%重量樟脑磺酸和20%重量乙腈的水溶液,与多孔聚砜支撑膜接触(薄膜形成面上的平均孔大小:20nm,不对称膜)。此后,去除过量的水溶液。接下来,将含有0.2%重量1,3,5-苯三酸氯化物的异辛烷溶液与支撑膜的表面接触以引起界面缩聚反应。以这种方式,在多孔支撑膜上形成了聚合物薄膜(厚度:1μm)。这样,得到了复合半透膜。
将0.15%的盐水用作原水,把这样得到的复合半透膜在25℃,pH=7,压力为1.5MPa的条件下进行测试。结果,盐阻率为80.8%。渗透通量为0.15m3/(m2/day)。在相同条件下,对硝酸铵进行测试。结果,阻率为71.2%。
将该膜浸入游离氯浓度为100mg/L的次氯酸钠水溶液中。100个小时后,在相同条件下进行测试。结果盐阻率为80.2%,渗透通量为0.16m3/(m2/day)。硝酸铵阻率为69.6%。
实施例2-1
将含有3%重量N-苯基乙二胺,0.15%重量月桂硫酸钠,3%重量三乙胺,和6%重量樟脑磺酸的水溶液,与多孔聚砜支撑膜接触(薄膜形成面上的平均孔大小:20nm,不对称膜)。此后,去除过量的水溶液。接下来,将含有0.2%重量1,3,5-苯三酸氯化物的异辛烷溶液与支撑膜的表面接触以引起界面缩聚反应。以这种方式,在多孔支撑膜上形成了聚合物薄膜(厚度:1μm)。这样,得到了复合半透膜。
在室温下,将这样得到的复合半透膜在次氯酸钠水溶液(其中的游离氯浓度为100mg/L)中浸50个小时。此后,将膜从水溶液中取出,把0.15%的盐水用作原水,将膜在25℃,pH=7,压力为1.5MPa的条件下进行测试。结果,盐阻率为99.0%。渗透通量为0.82m3/(m2·day)。
实施例2-2
将含有3%重量N-苯基乙二胺,0.15%重量月桂硫酸钠,3%重量三乙胺,和6%重量樟脑磺酸的水溶液,与多孔聚砜支撑膜接触(薄膜形成面上的平均孔大小:20nm,不对称膜)。此后,去除过量的水溶液。接下来,将含有0.2%重量1,3,5-苯三酸氯化物的异辛烷溶液与支撑膜的表面接触以引起界面缩聚反应。此后,将得到的物质置于窗热式(hot-window)干燥机中,在120℃干燥3分钟,以在多孔支撑膜上形成聚合物薄膜(厚度:1μm)。这样,得到了复合半透膜。
在1.5MPa的压力下,将次氯酸钠水溶液(其中的游离氯浓度为100mg/L)持续提供给这样得到的复合半透膜15小时。此后,将0.15%的盐水用作原水,将膜在25℃,pH=7,压力为1.5MPa的条件下进行测试。结果,盐阻率为98.8%。渗透通量为0.88m3/(m2·day)。
实施例2-3
将含有3%重量N-苄基乙二胺,0.15%重量月桂硫酸钠,3%重量三乙胺,和6%重量樟脑磺酸的水溶液,与多孔聚砜支撑膜接触(薄膜形成面上的平均孔大小:20nm,不对称膜)。此后,去除过量的水溶液。接下来,将含有0.2%重量1,3,5-苯三酸氯化物的异辛烷溶液与支撑膜的表面接触以引起界面缩聚反应。以这种方式,在多孔支撑膜上形成了聚合物薄膜(厚度:1μm)。这样,得到了复合半透膜。
将0.15%的盐水用作原水,把这样得到的复合半透膜在25℃,pH=7,压力为1.5MPa的条件下进行测试。结果,盐阻率为50.4%。渗透通量为0.25m3/(m2·day)。在相同条件下,对硝酸铵进行测试。结果,阻率为45.2%。
将该膜浸入游离氯浓度为100mg/L的次氯酸钠水溶液中。100个小时后,在相同条件下进行测试。结果盐阻率为61.1%,渗透通量为1.06m3/(m2·day)。硝酸铵阻率为60.1%。比较实施例2-1
在实施例2-1中,测试在不执行“浸入次氯酸钠水溶液”的情况下进行,结果,盐阻率为99.3%,渗透通量为0.32m3/(m2·day)。从其与实施例2-1的比较中可以理解:氧化剂处理导致渗透通量增加而没有显著降低盐阻率。比较实施例2-2
将含有3%重量间-苯二胺,0.15%重量月桂硫酸钠,3%重量三乙胺,和6%重量樟脑磺酸的水溶液,与多孔聚砜支撑膜接触(薄膜形成面上的平均孔大小:20nm,不对称膜)。此后,去除过量的水溶液。接下来,将含有0.2%重量1,3,5-苯三酸氯化物的异辛烷溶液与支撑膜的表面接触以引起界面缩聚反应。以这种方式,在多孔支撑膜上形成了聚合物薄膜(厚度:1μm)。这样,得到了复合半透膜。
将0.15%的盐水用作原水,把这样得到的复合半透膜在25℃,pH=7,压力为1.5MPa的条件下进行测试。结果,盐阻率为99.5%。渗透通量为1.1m3/(m2·day)。
在室温下,将这样得到的复合半透膜在次氯酸钠水溶液(其中的游离氯浓度为100mg/L)中浸50个小时。此后,将膜从水溶液中取出,把0.15%的盐水用作原水,将膜在25℃,pH=7,压力为1.5MPa的条件下进行测试。结果,盐阻率为96.2%。渗透通量为3.5m3/(m2·day)。已经证实:在以这种方式将间-苯二胺作为胺组分的情况下,膜的盐阻率被类似的氧化剂处理显著降低。对照实施例2-3
除了将二胺组分变为N-甲基乙二胺,以与实施例2-1相同的方法生产复合半透膜。水处理测试在不执行任何氧化剂处理的情况下进行。结果,盐阻率为83.9%。渗透通量为0.72m3/(m2·day)。在室温下,将这样得到的复合半透膜在次氯酸钠水溶液(其中的游离氯浓度为100mg/L)中浸100个小时。此后,将膜从水溶液中取出,把0.15%的盐水用作原水,将膜在25℃,pH=7,压力为1.5MPa的条件下进行测试。结果,盐阻率为91.3%。渗透通量为0.56m3/(m2·day)。在N-甲基乙二胺被这样使用情况下,通过类似的氧化剂处理,盐阻率有些许增加,但是水通量降低。
实施例2-4
在40℃,将实施例2-2中得到的复合半透膜在加入了0.5重量%氯化镁的次氯酸钠水溶液(其中的游离氯浓度为1000mg/L)中浸3个小时,此后,将膜从水溶液中取出,把0.15%的盐水用作原水,将膜在25℃,pH=7,压力为1.5MPa的条件下进行测试。结果,盐阻率为92.52%。渗透通量为0.71m3/(m2·day)。
实施例2-5
在40℃,将实施例2-2中得到的复合半透膜在加入了0.5重量%硝酸镁的次氯酸钠水溶液(其中的游离氯浓度为1000mg/L)中浸3个小时,此后,将膜从水溶液中取出,把0.15%的盐水用作原水,将膜在25℃,pH=7,压力为1.5MPa的条件下进行测试。结果,盐阻率为92.28%。渗透通量为0.65m3/(m2·day)。
实施例2-6
在40℃,将实施例2-2中得到的复合半透膜在加入了0.5重量%氯化钾的次氯酸钠水溶液(其中的游离氯浓度为1000mg/L)中浸3个小时,此后,将膜从水溶液中取出,把0.15%的盐水用作原水,将膜在25℃,pH=7,压力为1.5MPa的条件下进行测试。结果,盐阻率为91.86%。渗透通量为0.62m3/(m2·day)。
实施例2-7
在40℃,将实施例2-2中得到的复合半透膜在加入了0.5重量%氯化钙的次氯酸钠水溶液(其中的游离氯浓度为1000mg/L)中浸3个小时,此后,将膜此后,将膜从水溶液中取出,把0.15%的盐水用作原水,将膜在25℃,pH=7,压力为1.5MPa的条件下进行测试。结果,盐阻率为92.21%。渗透通量为0.65m3/(m2·day)。参考实施例2-1
在实施例2-4中,将半透膜加入到不添加任何无机盐的40℃的次氯酸钠水溶液中。以相同方式进行测试。结果,盐阻率为92%。渗透通量为0.5m3/(m2·day)。在与实施例2-4的比较中可以理解,通过氧化剂处理,盐阻率没有显著降低而且渗透通量增加,所述的氧化剂处理基于含有金属盐的氧化剂水溶液。
工业适用性
本发明的复合半透膜适用于超纯水的生产,从盐水或海水中除盐,等等,而且可以使得从污物中去除和回收污染物源和有效物质成为可能,并且有利于废液的封闭,其中所述的污物是由环境污染例如染色废液和电镀颜料废液产生的。该膜可以被用于食品等的有效组分的浓缩。特别是,本发明的水处理方法可以被合适地用于获益的目的,这样,通过将具有灭菌作用的氧化剂加入到原水中,抑制了膜的污染。其实例包括无菌水系统的灭菌,饮用水生产系统中活性碳的去除,对食品工业中的容器清洗废液和水池水清洗系统的处理。
权利要求书
(按照条约第19条的修改)
1、一种包含薄膜和支持此薄膜的多孔支撑膜的复合半透膜,其特征在于所述的薄膜含有基于聚酰胺的树脂,该树脂含有以下面通式(I)和/或(II)表示的组分单元:
Figure A0280071500261
其中R11代表含有2-10个碳原子的亚烷基,该亚烷基可以含有-O-,-S-,或者-NR-,其中R代表氢原子或者低碳烷基,R12和R13分别独立代表可以含有取代基的芳香烃基或氢原子,R12或R13中至少有一种代表可以含有取代基的芳香烃基,R14代表可以含有取代基的二价的芳香基,和
Figure A0280071500262
其中R21代表含有2-10个碳原子的亚烷基,该亚烷基可以含有-O-,-S-,或者-NR-,其中R代表氢原子或者低碳烷基,R22和R23分别独立代表可以含有取代基的芳香烃基或氢原子,R22或R23中至少有一种代表可以含有取代基的芳香烃基,R24代表可以含有取代基的三价的芳香基。
2、一种包含薄膜和支持此薄膜的多孔支撑膜的复合半透膜,其特征在于所述的薄膜含有基于聚酰胺的树脂,该树脂含有以下面通式(Ia)和/或(IIa)表示的组分单元:
其中R31代表含有2-10个碳原子的亚烷基,该亚烷基可以含有-O-,-S-,或者-NR-,其中R代表氢原子或者低碳烷基,R32和R33分别独立代表苯基或氢原子,R32或R33中至少有一种代表苯基,R34代表可以含有取代基的二价的芳香基,和
Figure A0280071500272
其中R41代表含有2-10个碳原子的亚烷基,该亚烷基可以含有-O-,-S-,或者-NR-,其中R代表氢原子或者低碳烷基,R42和R43分别独立代表苯基或氢原子,R42或R43中至少有一种代表苯基,R44代表可以含有取代基的三价的芳香基。
3、一种包含薄膜和支撑此薄膜的多孔支撑膜的复合半透膜,其特征在于所述的薄膜含有基于聚酰胺的树脂,该树脂含有以下列通式(III)表示的二胺组分与含有二价或多价的芳香族多官能酸卤化物通过缩合反应而得到的组分单元,
Figure A0280071500273
其中R51代表含有2-10个碳原子的亚烷基,该亚烷基可以含有-O-,-S-,或者-NR-,其中R代表氢原子或者低碳烷基,R52和R53分别独立代表可以含有取代基的芳香烃基或氢原子,R52或R53中至少有一种代表可以含有取代基的芳香烃基。
4、权利要求3的复合半透膜,其中的二胺组分是由下面通式(IIIa)表示的化合物:
Figure A0280071500281
其中R61代表含有2-10个碳原子的亚烷基,该亚烷基可以含有-O-,-S-,或者-NR-,其中R代表氢原子或者低碳烷基,R62和R63分别独立代表苯基或氢原子,R62或R63中至少有一种代表苯基。
5、一种生产复合半透膜的方法,该方法包含一个将权利要求1-4中任何一项中的复合半透膜与氧化剂水溶液接触的接触步骤。
6、权利要求5的生产复合半透膜的方法,其中的接触步骤是通过在常压下,将复合半透膜浸入到氧化剂水溶液中来实施的。
7、权利要求5的生产复合半透膜的方法,其中的接触步骤是通过在施加压力下,将氧化剂水溶液传递到复合半透膜中来实施的。
8、权利要求5的生产复合半透膜的方法,其中的氧化剂水溶液是次氯酸钠水溶液。
9、权利要求5的生产复合半透膜的方法,其中的氧化剂水溶液含有金属盐。
10、一种可以依照权利要求5-9中任何一项的生产方法而生产的复合半透膜。
11、一种水处理方法,该方法将含有盐和/或有机物质的水作为原水,用复合半透膜对原水进行膜分离处理,以得到在实践中盐和/或有机物质被充分去除了的渗透水,该方法的特征在于将权利要求1-4中任何一项的复合半透膜用作该复合半透膜,而且还在原水中加入了杀真菌剂。
12、权利要求11的水处理方法,其中的杀真菌剂是次氯酸盐。
13、权利要求11的水处理方法,其中的杀真菌剂同样以具有充分杀菌作用的浓度出现在通过膜分离处理的渗透水中。
14、权利要求11的水处理方法,其中的原水是饮用水容器被洗液清洗了以后的泻出水。
15、一种水处理方法,该方法将含有盐和/或有机物质的水作为原水,用复合半透膜对原水进行膜分离处理,以得到在实践中盐和/或有机物质被充分去除了的渗透水,该方法的特征在于将权利要求10中的复合半透膜用作该复合半透膜,而且还在原水中加入了杀真菌剂。
16、权利要求15的水处理方法,其中的杀真菌剂是次氯酸盐。
17、权利要求15的水处理方法,其中的杀真菌剂同样以具有充分杀菌作用的浓度出现在通过膜分离处理的渗透水中。
18、权利要求15的水处理方法,其中的原水是饮用水容器被洗液清洗了以后的泻出水。

Claims (19)

1、一种包含薄膜和支持此薄膜的多孔支撑膜的复合半透膜,其特征在于所述的薄膜含有基于聚酰胺的树脂,该树脂含有以下面通式(I)和/或(II)表示的组分单元:
Figure A0280071500021
其中R11代表含有2-10个碳原子的亚烷基,该亚烷基可以含有-O-,-S-,或者-NR-,其中R代表氢原子或者低碳烷基,R12和R13分别独立代表可以含有取代基的芳香烃基或氢原子,R12或R13中至少有一种代表可以含有取代基的芳香烃基,R14代表二价的有机基团,和
Figure A0280071500022
其中R21代表含有2-10个碳原子的亚烷基,该亚烷基可以含有-O-,-S-,或者-NR-,其中R代表氢原子或者低碳烷基,R22和R23分别独立代表可以含有取代基的芳香烃基或氢原子,R22或R23中至少有一种代表可以含有取代基的芳香烃基,R24代表三价的有机基团。
2、一种包含薄膜和支持此薄膜的多孔支撑膜的复合半透膜,其特征在于所述的薄膜含有基于聚酰胺的树脂,该树脂含有以下面通式(Ia)和/或(IIa)表示的组分单元:
其中R31代表含有2-10个碳原子的亚烷基,该亚烷基可以含有-O-,-S-,或者-NR-,其中R代表氢原子或者低碳烷基,R32和R33分别独立代表苯基或氢原子,R32或R33中至少有一种代表苯基,R34代表二价的有机基团,和
其中R41代表含有2-10个碳原子的亚烷基,该亚烷基可以含有-O-,-S-,或者-NR-,其中R代表氢原子或者低碳烷基,R42和R43分别独立代表苯基或氢原子,R42或R43中至少有一种代表苯基,R44代表三价的有机基团。
3、一种包含薄膜和支撑此薄膜的多孔支撑膜的复合半透膜,其特征在于所述的薄膜含有基于聚酰胺的树脂,该树脂含有以下列通式(III)表示的二胺组分与含有二价或多价的多官能酸卤化物通过缩合反应而得到的组分单元,
Figure A0280071500033
其中R51代表含有2-10个碳原子的亚烷基,该亚烷基可以含有-O-,-S-,或者-NR-,其中R代表氢原子或者低碳烷基,R52和R53分别独立代表可以含有取代基的芳香烃基或氢原子,R52或R53中至少有一种代表可以含有取代基的芳香烃基。
4、权利要求3的复合半透膜,其中的二胺组分是由下面通式(IIIa)表示的化合物:
Figure A0280071500041
其中R61代表含有2-10个碳原子的亚烷基,该亚烷基可以含有-O-,-S-,或者-NR-,其中R代表氢原子或者低碳烷基,R62和R63分别独立代表苯基或氢原子,R62或R63中至少有一种代表苯基。
5、权利要求3或权利要求4的复合半透膜,其中的多官能酸卤化物是芳香族的多官能酸卤化物。
6、一种生产复合半透膜的方法,该方法包含一个将权利要求1-5中任何一项中的复合半透膜与氧化剂水溶液接触的接触步骤。
7、权利要求6的生产复合半透膜的方法,其中的接触步骤是通过在常压下,将复合半透膜浸入到氧化剂水溶液中来实施的。
8、权利要求6的生产复合半透膜的方法,其中的接触步骤是通过在施加压力下,将氧化剂水溶液传递到复合半透膜中来实施的。
9、权利要求6的生产复合半透膜的方法,其中的氧化剂水溶液是次氯酸钠水溶液。
10、权利要求6的生产复合半透膜的方法,其中的氧化剂水溶液含有金属盐。
11、一种可以依照权利要求6-10中任何一项的生产方法而生产的复合半透膜。
12、一种水处理方法,该方法将含有盐和/或有机物质的水作为原水,用复合半透膜对原水进行膜分离处理,以得到在实践中盐和/或有机物质被充分去除了的渗透水,该方法的特征在于将权利要求1-5中任何一项的复合半透膜用作该复合半透膜,而且还在原水中加入了杀真菌剂。
13、权利要求12的水处理方法,其中的杀真菌剂是次氯酸盐。
14、权利要求12的水处理方法,其中的杀真菌剂同样以具有充分杀菌作用的浓度出现在通过膜分离处理的渗透水中。
15、权利要求12的水处理方法,其中的原水是饮用水容器被洗液清洗了以后的泻出水。
16、一种水处理方法,该方法将含有盐和/或有机物质的水作为原水,用复合半透膜对原水进行膜分离处理,以得到在实践中盐和/或有机物质被充分去除了的渗透水,该方法的特征在于将权利要求11中的复合半透膜用作该复合半透膜,而且还在原水中加入了杀真菌剂。
17、权利要求16的水处理方法,其中的杀真菌剂是次氯酸盐。
18、权利要求16的水处理方法,其中的杀真菌剂同样以具有充分杀菌作用的浓度出现在通过膜分离处理的渗透水中。
19、权利要求16的水处理方法,其中的原水是饮用水容器被洗液清洗了以后的泻出水。
CNB028007158A 2001-03-19 2002-03-08 复合半透膜,其生产方法,和使用其的水处理方法 Expired - Fee Related CN1292826C (zh)

Applications Claiming Priority (15)

Application Number Priority Date Filing Date Title
JP2001078490 2001-03-19
JP78490/01 2001-03-19
JP78490/2001 2001-03-19
JP2001081827 2001-03-22
JP81827/2001 2001-03-22
JP81827/01 2001-03-22
JP2001368578 2001-12-03
JP368584/2001 2001-12-03
JP368578/01 2001-12-03
JP368584/01 2001-12-03
JP368578/2001 2001-12-03
JP2001368584 2001-12-03
JP26767/2002 2002-02-04
JP26767/02 2002-02-04
JP2002026767 2002-02-04

Publications (2)

Publication Number Publication Date
CN1458860A true CN1458860A (zh) 2003-11-26
CN1292826C CN1292826C (zh) 2007-01-03

Family

ID=27531840

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028007158A Expired - Fee Related CN1292826C (zh) 2001-03-19 2002-03-08 复合半透膜,其生产方法,和使用其的水处理方法

Country Status (7)

Country Link
EP (3) EP2014350A3 (zh)
JP (1) JP4247881B2 (zh)
KR (1) KR100850142B1 (zh)
CN (1) CN1292826C (zh)
DE (1) DE60234430D1 (zh)
TW (1) TWI305730B (zh)
WO (1) WO2002076594A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102099099A (zh) * 2008-09-26 2011-06-15 日东电工株式会社 复合半透膜及其制造方法
CN101219344B (zh) * 2006-10-10 2012-01-25 日东电工株式会社 干燥复合半透膜的制造方法
CN102596822A (zh) * 2009-12-25 2012-07-18 东丽株式会社 造水系统及其运转方法
US9186633B2 (en) 2008-10-23 2015-11-17 Nitto Denko Corporation Method for producing porous thermosetting resin sheet, porous thermosetting resin sheet and composite semipermeable membrane using same
CN105056764A (zh) * 2015-07-09 2015-11-18 湖南沁森环保高科技有限公司 一种处理氧化变色反渗透膜元件的方法
CN107000368A (zh) * 2014-12-16 2017-08-01 日东电工株式会社 多孔性支撑体、复合半透膜、及螺旋型分离膜元件
CN111818991A (zh) * 2018-03-29 2020-10-23 栗田工业株式会社 选择性透过膜、其制造方法以及水处理方法
CN113226527A (zh) * 2018-12-26 2021-08-06 东丽株式会社 复合半透膜

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101440969B1 (ko) * 2011-10-04 2014-09-17 주식회사 엘지화학 폴리설폰아미드계 역삼투 분리막의 제조방법 및 이에 의해 제조된 역삼투 분리막
JP6774841B2 (ja) * 2016-10-28 2020-10-28 日東電工株式会社 複合半透膜、及びスパイラル型分離膜エレメント
JP7008470B2 (ja) * 2017-10-26 2022-01-25 オルガノ株式会社 逆浸透膜処理方法および逆浸透膜処理システム

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139802A (en) 1979-04-19 1980-11-01 Teijin Ltd Compound film of selective permeability
JPS5824303A (ja) 1981-08-03 1983-02-14 Teijin Ltd 耐酸化性複合半透膜
JPS5926101A (ja) 1982-08-04 1984-02-10 Teijin Ltd 複合半透膜
JPS59179103A (ja) 1983-03-30 1984-10-11 Teijin Ltd 複合半透膜及びその製造方法
US4520044A (en) 1984-07-30 1985-05-28 E. I. Du Pont De Nemours And Company Production of composite membranes
JPS62176506A (ja) 1986-01-28 1987-08-03 Toyobo Co Ltd 選択透過性膜
JPH0628710B2 (ja) 1986-03-12 1994-04-20 東洋紡績株式会社 選択透過性膜
JPH07114938B2 (ja) 1986-05-31 1995-12-13 東洋紡績株式会社 選択透過性高分子膜
JPS6312310A (ja) 1986-07-04 1988-01-19 Toray Ind Inc 半透性複合膜の製造方法
JPH01180208A (ja) * 1988-01-11 1989-07-18 Toray Ind Inc 複合半透膜の製造方法およびその膜
JPH0278428A (ja) 1988-06-07 1990-03-19 Toray Ind Inc 複合半透膜およびその製造方法
US4872984A (en) 1988-09-28 1989-10-10 Hydranautics Corporation Interfacially synthesized reverse osmosis membrane containing an amine salt and processes for preparing the same
EP0465649B1 (en) * 1990-01-26 1997-03-26 Toray Industries, Inc. Composite semipermeable membrane and production thereof
JP3031763B2 (ja) * 1990-09-14 2000-04-10 日東電工株式会社 複合逆浸透膜およびその製造方法
US5258203A (en) 1991-02-04 1993-11-02 E. I. Du Pont De Nemours And Company Process for the manufacture of thin film composite membranes
US5254261A (en) * 1991-08-12 1993-10-19 Hydranautics Interfacially synthesized reverse osmosis membranes and processes for preparing the same
JP3111539B2 (ja) 1991-10-02 2000-11-27 東レ株式会社 複合半透膜の製造方法
JPH05146654A (ja) * 1991-11-29 1993-06-15 Nitto Denko Corp 複合逆浸透膜
JP3489922B2 (ja) 1994-12-22 2004-01-26 日東電工株式会社 高透過性複合逆浸透膜の製造方法
JP3681214B2 (ja) * 1996-03-21 2005-08-10 日東電工株式会社 高透過性複合逆浸透膜
US5876602A (en) * 1997-11-04 1999-03-02 The Dow Chemical Company Treatment of composite polyamide membranes to improve performance
JP2000334280A (ja) * 1999-05-27 2000-12-05 Nitto Denko Corp 複合逆浸透膜の製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101219344B (zh) * 2006-10-10 2012-01-25 日东电工株式会社 干燥复合半透膜的制造方法
CN102099099A (zh) * 2008-09-26 2011-06-15 日东电工株式会社 复合半透膜及其制造方法
US9504966B2 (en) 2008-09-26 2016-11-29 Nitto Denko Corporation Composite semi-permeable membrane and method for producing same
US9186633B2 (en) 2008-10-23 2015-11-17 Nitto Denko Corporation Method for producing porous thermosetting resin sheet, porous thermosetting resin sheet and composite semipermeable membrane using same
CN102596822A (zh) * 2009-12-25 2012-07-18 东丽株式会社 造水系统及其运转方法
CN102596822B (zh) * 2009-12-25 2014-05-21 东丽株式会社 造水系统及其运转方法
CN107000368A (zh) * 2014-12-16 2017-08-01 日东电工株式会社 多孔性支撑体、复合半透膜、及螺旋型分离膜元件
CN107000368B (zh) * 2014-12-16 2019-12-20 日东电工株式会社 多孔性支撑体、复合半透膜、及螺旋型分离膜元件
CN105056764A (zh) * 2015-07-09 2015-11-18 湖南沁森环保高科技有限公司 一种处理氧化变色反渗透膜元件的方法
CN111818991A (zh) * 2018-03-29 2020-10-23 栗田工业株式会社 选择性透过膜、其制造方法以及水处理方法
CN113226527A (zh) * 2018-12-26 2021-08-06 东丽株式会社 复合半透膜
CN113226527B (zh) * 2018-12-26 2023-07-18 东丽株式会社 复合半透膜

Also Published As

Publication number Publication date
CN1292826C (zh) 2007-01-03
KR20030007642A (ko) 2003-01-23
EP1382378B1 (en) 2009-11-18
EP2014350A3 (en) 2009-07-22
EP1382378A1 (en) 2004-01-21
EP1800735B1 (en) 2012-05-23
WO2002076594A1 (fr) 2002-10-03
EP1382378A4 (en) 2006-06-14
EP1800735A1 (en) 2007-06-27
DE60234430D1 (de) 2009-12-31
KR100850142B1 (ko) 2008-08-04
TWI305730B (zh) 2009-02-01
EP2014350A2 (en) 2009-01-14
EP1382378B9 (en) 2010-05-26
JPWO2002076594A1 (ja) 2004-07-22
JP4247881B2 (ja) 2009-04-02

Similar Documents

Publication Publication Date Title
CN1292826C (zh) 复合半透膜,其生产方法,和使用其的水处理方法
CN1103625C (zh) 高透过性复合反渗透膜及使用它的反渗透膜组件
CN1195576C (zh) 复合半透膜的制造方法
CN1029824C (zh) 耐氯半透膜
CN101056695A (zh) 复合半透膜及其制造方法以及使用该复合半透膜的元件、流体分离装置和含有硼的水的处理方法
KR20120083363A (ko) 붕소 제거용 역삼투 복합체 막
CN101053787A (zh) 具有高的脱硼率的复合聚酰胺反渗透膜及其制备方法
JPH08224452A (ja) 高透過性複合逆浸透膜の製造方法
KR19990019008A (ko) 고유량 역삼투 분리막의 제조방법
CN1070592A (zh) 界面合成的反渗透膜及其制备方法
CN105413499B (zh) 一种交联改性聚酰胺复合膜及其制备方法
CN1550254A (zh) 复合半渗透膜及其生产方法
US7081202B2 (en) Composite semipermeable membrane, production method thereof, and water treatment method using the same
JP4213789B2 (ja) 液体分離膜の製造方法
JP2006095480A (ja) 複合逆浸透膜
EP1426098B1 (en) Semipermeable composite membrane and process for producing the same
CN105939777A (zh) 螺旋型分离膜元件
JP2006026484A (ja) 高塩阻止率複合逆浸透膜の製造方法
KR100813893B1 (ko) 역삼투 복합막의 제조방법
CN113019160A (zh) 一种二氧化钛改性膜及其制备方法
JP2000237559A (ja) 高透過性複合逆浸透膜の製造法
CN1041115A (zh) 耐氯半透膜
KR101913396B1 (ko) 고유량 폴리아미드 복합 멤브레인 제조방법
KR19980068304A (ko) 폴리 아미드계 역삼투복합막의 성능 향상방법
CA1339054C (en) Chlorine-resistant semipermeable membranes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070103

Termination date: 20160308

CF01 Termination of patent right due to non-payment of annual fee