CN1345897A - 高分子电解质和使用它的锂电池 - Google Patents

高分子电解质和使用它的锂电池 Download PDF

Info

Publication number
CN1345897A
CN1345897A CN01125708A CN01125708A CN1345897A CN 1345897 A CN1345897 A CN 1345897A CN 01125708 A CN01125708 A CN 01125708A CN 01125708 A CN01125708 A CN 01125708A CN 1345897 A CN1345897 A CN 1345897A
Authority
CN
China
Prior art keywords
lithium
polymer electrolyte
vulcabond
organic solvent
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01125708A
Other languages
English (en)
Other versions
CN100448932C (zh
Inventor
李真英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of CN1345897A publication Critical patent/CN1345897A/zh
Application granted granted Critical
Publication of CN100448932C publication Critical patent/CN100448932C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/166Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/188Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Abstract

本发明提供一种高分子电解质和应用它的锂电池。该高分子电解质含有通过将具有聚环氧乙烷主链和NCO封端的预聚物与交联剂、有机溶剂和锂盐反应制备的交联的聚醚氨酯。由于该高分子电解质是电化学稳定的,所以通过使用该高分子电解质能得到具有改善了可靠性和安全性的锂电池。

Description

高分子电解质和使用它的锂电池
技术领域
本发明涉及一种锂电池,具体地说,本发明涉及一种电化学稳定的高分子电解质和使用它的锂电池。
背景技术
锂二次电池通过锂离子在正极和负极之间移动产生电流。与锂镉电池或镍氢电池相比,锂二次电池具有较高的单位体积能量密度和较高的电压。而且,与锂镉电池或镍氢电池相比,锂二次电池较轻,简而言之,大约是那两种的一半重。因此,锂二次电池非常适合小型化和长时间使用的电器。
如上所述,由于锂二次电池比传统镍镉电池或镍氢电池具有较高电压特性和较长充/放电寿命,又不会引起环境问题,因此它作为最有前景的高效电池引起许多重视。但是,由于锂二次电池的爆炸危险性使实现安全成为至关重要的事。
为了确保锂二次电池的安全性,实现用作电解质的材料的稳定性是很重要的。也就是说,为了获得安全的锂二次电池,采用一种在2.75-4.3V溶解时没有危险的电解质是很重要的。
发明概述
为解决上述问题,本发明的第一个目的是提供一种电化学稳定的新型高分子电解质。
本发明的第二个目的是提供一种制备所述高分子电解质的方法。
本发明的第三个目的是提供一种通过使用所述高分子电解质,改善了安全性的锂电池。
本发明的第四个目的是提供一种制备上述锂电池的方法。
为实现本发明的第一个目的,在此提供通过将具有聚环氧乙烷主链和NCO封端的预聚物与交联剂、有机溶剂和锂盐反应制备的交联聚醚氨酯高分子电解质。
通过提供一种制备交联的聚醚氨酯高分子电解质的方法实现本发明的第二个目的,该方法包括将具有聚环氧乙烷主链和NCO封端的预聚物与交联剂、有机溶剂和锂盐混合的步骤,以及将该混合物交联的步骤。
为实现本发明的第三个目的,在此提供一种锂电池,包括负极、正极和介于负极和正极之间的交联的聚醚氨酯高分子电解质,它通过将具有聚环氧乙烷主链和NCO封端的预聚物、交联剂、有机溶剂和锂盐反应制得。
在负极和正极之间也可以有一个隔膜,它具有网状结构并由绝缘树脂制成。
通过提供一种制造锂电池的方法实现本发明的第四个目的,该方法包括将具有聚环氧乙烷主链和NCO封端的预聚物与交联剂、有机溶剂和锂盐混合,将该混合物浇注在至少一个选自负极和正极的表面上,以及将得到的产物交联的步骤。
作为选择,通过提供另一种制造锂电池的方法也可以实现本发明的第四个目的,该方法包括将具有聚环氧乙烷主链和NCO封端的预聚物与交联剂、有机溶剂和锂盐混合,将隔膜放置于负极和正极之间以形成电极组和将电极组放入电池箱中,并将所述混合物注入电池箱内,以及将得到的产物交联的步骤。
在所述的高分子电解质和锂电池中,制备交联的聚醚氨酯所用的预聚物是通过将异氰酸酯与选自聚乙二醇、聚丙二醇和它们的组合的二元醇反应得到。这里的异氰酸酯优选自甲苯2,4-二异氰酸酯、甲苯2,6-二异氰酸酯、二苯甲烷4,4’-二异氰酸酯、六亚甲基二异氰酸酯、二苯甲烷二异氰酸酯、异佛尔酮二异氰酸酯、三苯甲烷二异氰酸酯、三-(异氰酸酯苯基)硫代磷酸盐、赖氨酸酯三异氰酸酯、1,8-二异氰酸酯-4-异氰酸酯甲基辛烷、十一烷1,6,11-三异氰酸酯、六亚甲基1,3,6-三异氰酸酯和二环戊烷三异氰酸酯中的至少一种。
本发明中所用的交联剂优选自甘油乙氧基化合物、甘油丙氧基化合物、3-甲基-1,3,5-戊烷三醇和己内酯中的至少一种。
在制备所述高分子电解质和锂电池的方法中,交联温度优选25-65℃范围内。
本发明的高分子电解质和锂电池中,所述锂盐优选自高氯酸锂(LiClO4)、四氟硼酸锂(LiBF4)、六氟磷酸锂(LiPF6)、三氟甲烷磺酸锂(LiCF3SO3)和二(三氟甲磺酰基)氨基化锂(LiN(CF3SO2)2)中的至少一种。并且,所述有机溶剂优选自碳酸异丙烯酯、碳酸亚乙酯、碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯和碳酸亚乙烯酯中的至少一种溶剂。
本发明的锂电池中,所述电极组优选缠绕式的,并且电池箱优选为盒状。
本发明的锂电池中,有机溶剂和锂盐混合物的重量优选为预聚物重量的3-30倍。特别是如果电极组中包括隔膜时,有机溶剂和锂盐混合物的重量优选为预聚物重量的5-30倍。并且,如果电极组中不包括隔膜时,有机溶剂和锂盐混合物的重量优选为预聚物重量的3-15倍。
附图说明
通过参考附图详细说明其中一个优选实施方案,将使本发明的上述目的和优点将变得更显而易见,其中:
图1表示衡量本发明所制备的高分子电解质的电化学稳定性的线性吹扫伏安图,其中代表扫描率的SR表示电压增加率。
图2表示含有本发明的一个实施方案所制备的高分子电解质的锂二次电池的标准充/放电曲线。
图3表示含有本发明的一个实施方案所制备的高分子电解质的锂二次电池的额定充/放电曲线。
优选实施方式说明
本发明的特征在于将具有聚环氧乙烷主链和NCO封端的预聚物与交联剂、有机溶剂和锂盐反应制得的交联的聚醚氨酯高分子电解质用作高分子电解质。优选通过将预聚物加入交联剂、有机溶剂和锂盐的混合物中,将该混合物加入安有电极组的电池箱中,并将所得到的产物交联制得的聚醚氨酯高分子电解质。
预聚物是通过将异氰酸酯与选自聚乙二醇、聚丙二醇和它们的组合的二元醇反应得到的。
根据已知刊物所描述的被合成用作锂电池电解质的基于聚氨基甲酸酯化合物的电化学稳定性的测定结果,基于氨基甲酸乙酯的电解质的溶解电位大约为4.2V(对锂),这是很难用于锂二次电池的(Journal of Power Sources 84(1999)12-23页)。然而,可通过改进聚氨基甲酸酯电解质的电化学稳定性来完成本发明。
现在说明制备本发明的交联聚醚氨酯高分子电解质的一种方法。
单步法和预聚物法常常被用于制备氨基甲酸乙酯键。在本发明中,通过使用预聚物法形成氨基甲酸乙酯键。
现在说明制备本发明的聚醚氨酯高分子电解质的方法。首先,通过将选自聚乙二醇、聚丙二醇和它们的组合的二元醇与异氰酸酯反应得到具有聚环氧乙烷主链和NCO封端结构的预聚物。
所述异氰酸酯优选自甲苯2,4-二异氰酸酯、甲苯2,6-二异氰酸酯、二苯甲烷4,4’-二异氰酸酯、六亚甲基二异氰酸酯、二苯甲烷二异氰酸酯、异佛尔酮二异氰酸酯、三苯甲烷二异氰酸酯、三-(异氰酸酯苯基)硫代磷酸盐、赖氨酸酯三异氰酸酯、1,8-二异氰酸酯-4-异氰酸酯甲基辛烷、十一烷1,6,11-三异氰酸酯、六亚甲基1,3,6-三异氰酸酯和二环戊烷三异氰酸酯中的至少一种。
然后,将该预聚物加入交联剂、有机溶剂和锂盐的混合物中,并进行反应以制备本发明的高分子电解质。
所述交联剂优选甘油乙氧基化合物或甘油丙氧基化合物。
同时,所述的有机溶剂和锂盐不限定为特定的有机溶剂和锂盐,而是本领域所公知的任何一种有机溶剂和锂盐。优选的锂盐选自LiClO4、LiBF4、LiPF6、LiCF3SO3和LiN(CF3SO2)2中的至少一种。所述有机溶剂优选自碳酸异丙烯酯、碳酸亚乙酯、碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯和碳酸亚乙烯酯中的至少一种。并且有机溶剂和锂盐混合物的重量优选为预聚物重量的3-30倍。该混合物中锂盐的浓度优选为0.5-2M。
为了促进交联,优选在高分子电解质的组合物中再加入一种催化剂如二月桂酸二丁锡。交联温度优选25-65℃范围内。
现在说明制备本发明的含所述高分子电解质的锂电池的方法。
首先,用含有电极活性物质、粘合剂、导电剂和溶剂的电极活性物组合物在集流器上形成电极活性物质层。所述电极活性物质层这样形成:将电极活性物质组合物直接涂在集流器上,或者电极活性物质组合物涂在单独的载体上并干燥,然后将载体上剥下的薄膜包在集流器上。作为载体可以使用所有能承载活性物质的材料,其具体例子包括聚酯薄膜和聚对苯二甲酸乙二酯(PET)薄膜。
在本发明中,复合氧化锂如LiCoO2可以用作负极的电极活性物质,并且碳或石墨可用作正极的电极活性物质。作为导电剂可以使用碳黑等。基于100重量份电极活性物质,优选含量为1-20重量份的导电剂,例如LiCoO2
作为粘合剂可使用偏1,1-二氟乙烯-六氟丙烯(VdF/HFP)共聚物、聚偏1,1-二氟乙烯、聚丙烯腈、聚甲基丙烯酸甲酯和它们的混合物,并基于100重量份电极活性物质,其含量优选为3-30重量份。
所有用于传统锂电池的溶剂都能用作所述溶剂,其具体例子包括丙酮和N-甲基吡咯烷酮。
在某些情况下,为了改善电池性能,也可将Li2CO3加入电极活性物质组合物中。
本发明的隔膜不作特别限定,适用的隔膜包括容易卷起来的聚乙烯隔膜和聚丙烯/聚乙烯/聚丙烯三层隔膜。同时,由于本发明所制备的高分子电解质也用作隔膜,所以不必使用单独的隔膜。
隔膜放在上述方式制备的负极和正极板之间,并用胶质压延法卷成电极组或双池电极组。随后将电极组放入电池箱中。接下来,将所形成的具有聚乙烯主链和NCO封端的预聚物加入交联剂、锂盐和有机溶剂的混合物中,然后将得到的物质注入电池箱。
随后,将电池箱密封,并将所得产物在维持预定温度的炉中放置预定的时间。这里所述的炉子优选温度维持在25-65℃范围内。如果炉温超过65℃,该电解液分解,发生不希望的褪色。
然后,作为该反应的结果,预聚物发生热聚合产生交联的产物,从而使电解液凝胶化。如果电解液以胶体形式存在,将不易外泄,从而防止因为电解液泄露造成的电池稳定性和可靠性下降。
作为选择,如果不使用单独隔膜,就将所形成的具有聚乙烯主链和NCO封端的预聚物加入含有交联剂、锂盐和有机溶剂的混合物中,然后将得到的物质浇注在负极板、正极板或两极板上,然后在炉中进行热聚合,从而构成本发明的锂电池。
对本发明的锂电池的类型不作特别限定,包括锂原电池和锂二次电池。
通过以下实施例说明本发明,但本发明决不仅限于此。实施例1
将具有分子量400的聚乙二醇4g和六亚甲基二异氰酸酯4.205g在65℃下反应,制备具有聚环氧乙烷主链和NCO封端的预聚物。这里使用0.092g(约1重量%)二月桂酸二丁锡作为催化剂。
随后,将0.085g预聚物与0.077g作为交联剂的甘油乙氧基化合物、2.92g含有1.3M LiPF6与混合比为41∶49∶10的碳酸乙酯/碳酸异丙烯酯/碳酸二乙酯的混合溶液和0.0235g二月桂酸二丁锡混合。将3g该混合物注入有可卷起的胶质卷的电池盒中,密封,随后放置两天。然后,将所得到的产物在65℃下热交联4小时以制备高分子电解质。
采用所获得的高分子电解质制备的锂二次电池(标称容量:800mAh)的标准充/放电数据(0.5C充电,0.2C放电)显示在图2中。
实施例2
以与实施例1相同的方式制备用于形成聚醚氨基聚合物的预聚物。
随后,将0.1g预聚物与0.091g作为交联剂的甘油乙氧基化合物和2.28g含有1.3M LiPF6与混合比为41∶49∶10的碳酸乙酯/碳酸异丙烯酯/碳酸二乙酯的混合溶液混合。将该混合物在25℃下放置12小时以制备高分子电解质。
将该高分子电解质放在正极(Li)和负极(LiCoO2)之间以形成纽扣电池。该纽扣电池的充/放电特性以2.7-4.3V扫描测定,结果显示在图3中。实验实施例1
该实验是为了测定实施例1和2所制备的聚醚氨酯高分子电解质的电化学稳定性。
实施例1所制备的聚醚氨酯高分子电解质的溶解电位用锂电极和不锈钢(sus)电极测定,结果显示在图1中。
图1表示衡量本发明所制备的高分子电解质的电化学稳定性的线性吹扫伏安图,图1显示本发明的聚醚氨酯高分子电解质即使在5.0V或更高都是电化学稳定的。
因此,本发明的高分子电解质适用于锂二次电池,它必须使用在2.75-4.3V溶解时没有危险的高分子电解质。
由于本发明的锂二次电池使用了电化学稳定的聚醚氨酯高分子电解质,改善了该锂二次电池的可靠性和安全性。
虽然本发明参考优选实施例进行说明,但上述公开应解释为仅仅是举例说明,并应理解为在不背离本发明的精神的情况下,熟悉该领域的技术人员很容易进行各种改进和变化。因此,本发明真正的范围和精神应由以下权利要求限定。

Claims (21)

1.一种含有交联聚醚氨酯的高分子电解质,该聚醚氨酯通过将具有聚环氧乙烷主链和NCO封端的预聚物与交联剂、有机溶剂和锂盐反应制得。
2.权利要求1的高分子电解质,其中所述的预聚物是通过将异氰酸酯与选自聚乙二醇、聚丙二醇和它们的组合的二元醇反应得到。
3.权利要求2的高分子电解质,其中所述的异氰酸酯选自甲苯2,4-二异氰酸酯、甲苯2,6-二异氰酸酯、二苯甲烷4,4’-二异氰酸酯、六亚甲基二异氰酸酯、二苯甲烷二异氰酸酯、异佛尔酮二异氰酸酯、三苯甲烷二异氰酸酯、三-(异氰酸酯苯基)硫代磷酸盐、赖氨酸酯三异氰酸酯、1,8-二异氰酸酯-4-异氰酸酯甲基辛烷、十一烷1,6,11-三异氰酸酯、六亚甲基1,3,6-三异氰酸酯和二环戊烷三异氰酸酯中的至少一种。
4.权利要求1的高分子电解质,其中所述的交联剂选自甘油乙氧基化合物、甘油丙氧基化合物、3-甲基-1,3,5-戊烷三醇和己内酯中的至少一种。
5.权利要求1的高分子电解质,其中所述的锂盐选自高氯酸锂(LiClO4)、四氟酸硼锂(LiBF4)、六氟磷酸锂(LiPF6)、三氟甲烷磺酸锂(LiCF3SO3)和二(三氟甲烷磺酰基)氨基化锂(LiN(CF3SO2)2)中的至少一种。
6.权利要求1的高分子电解质,其中所述的有机溶剂优选自碳酸异丙烯酯、碳酸亚乙酯、碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯和碳酸亚乙烯酯中的至少一种溶剂。
7.权利要求1的高分子电解质,其中所述有机溶剂和锂盐的总重量为预聚物重量的3-30倍。
8.一种制备权利要求1-7任一项的交联聚醚高分子电解质的方法,该方法包括以下步骤:
将具有聚环氧乙烷主链和NCO封端的预聚物与交联剂、有机溶剂和锂盐混合;和
将混合物交联。
9.权利要求8的方法,其中交联步骤在25-65℃范围内进行。
10.一种锂电池,包括:
负极和正极;和
介于负极和正极之间的交联聚醚氨酯高分子电解质,它是通过将具有聚环氧乙烷主链和NCO封端的预聚物与交联剂、有机溶剂和锂盐反应制得。
11.权利要求10的锂电池,其中所述的交联剂选自甘油乙氧基化合物、甘油丙氧基化合物、3-甲基-1,3,5-戊烷三醇和己内酯中的至少一种。
12.权利要求10的锂电池,其中所述的异氰酸酯选自甲苯2,4-二异氰酸酯、甲苯2,6-二异氰酸酯、二苯甲烷4,4’-二异氰酸酯、六亚甲基二异氰酸酯、二苯甲烷二异氰酸酯、异佛尔酮二异氰酸酯、三苯甲烷二异氰酸酯、三-(异氰酸酯苯基)硫代磷酸盐、赖氨酸酯三异氰酸酯、1,8-二异氰酸酯-4-异氰酸酯甲基辛烷、十一烷1,6,11-三异氰酸酯、六亚甲基1,3,6-三异氰酸酯和二环戊烷三异氰酸酯中的至少一种。
13.权利要求10的锂电池,其中所述的锂盐选自高氯酸锂(LiClO4)、四氟硼酸锂(LiBF4)、六氟磷酸锂(LiPF6)、三氟甲烷磺酸锂(LiCF3SO3)和二(三氟甲烷磺酰基)氨基化锂(LiN(CF3SO2)2)中的至少一种。
14.权利要求10的锂电池,其中所述的有机溶剂优选自碳酸异丙烯酯、碳酸亚乙酯、碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯和碳酸亚乙烯酯中的至少一种溶剂。
15.权利要求10的锂电池,其中所述的所述有机溶剂和锂盐的总重量为预聚物重量的3-30倍。
16.权利要求10的锂电池,还包括在负极和正极之间的,具有网状结构并由绝缘树脂制成的隔膜。
17.权利要求16的锂电池,其中所述的隔膜由选自聚丙烯、聚乙烯和它们的组合中的一种制成。
18.一种制备权利要求10-15任一项的锂电池的方法,该方法包括以下步骤:
将具有聚环氧乙烷主链和NCO封端的预聚物与交联剂、有机溶剂和锂盐混合;
将该混合物浇注在选自负极和正极的至少一个表面上;和
将得到的产物交联。
19.权利要求18的方法,其中交联步骤在25-65℃范围内进行。
20.一种制造权利要求16和17任一项的锂电池的方法,该方法包括以下步骤:
将具有聚环氧乙烷主链和NCO封端的预聚物与交联剂、有机溶剂和锂盐混合;
将隔膜放置于负极和正极之间形成电极组和将电极组放入电池箱;
将上述混合物注入电池箱,以及将所得到的产物交联。
21.权利要求20的方法,其中交联步骤在25-65℃范围内进行。
CNB011257083A 2000-09-29 2001-08-20 高分子电解质和使用它的锂电池 Expired - Fee Related CN100448932C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR57340/00 2000-09-29
KR10-2000-0057340A KR100388906B1 (ko) 2000-09-29 2000-09-29 리튬 2차 전지

Publications (2)

Publication Number Publication Date
CN1345897A true CN1345897A (zh) 2002-04-24
CN100448932C CN100448932C (zh) 2009-01-07

Family

ID=19691083

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011257083A Expired - Fee Related CN100448932C (zh) 2000-09-29 2001-08-20 高分子电解质和使用它的锂电池

Country Status (4)

Country Link
US (1) US6866965B2 (zh)
JP (1) JP2002187925A (zh)
KR (1) KR100388906B1 (zh)
CN (1) CN100448932C (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1890769B (zh) * 2003-12-10 2010-10-06 伊美克斯株式会社 蓄电元件及蓄电元件的制造方法
CN103000941A (zh) * 2012-11-29 2013-03-27 东莞新能源科技有限公司 凝胶电解液的配方及使用该配方制备凝胶电解液的方法
CN105161760A (zh) * 2015-06-19 2015-12-16 储盈新能源科技(上海)有限公司 锂离子电池用聚合物、锂离子电池凝胶电解质、锂离子电池及它们的制备方法
CN106558732A (zh) * 2015-09-28 2017-04-05 比亚迪股份有限公司 一种锂离子电池电解液和锂离子电池
CN108539262A (zh) * 2018-03-29 2018-09-14 武汉新能源研究院有限公司 耐高电压聚合物固态电解质膜的制备方法及锂离子电池的制备方法
CN110249468A (zh) * 2017-02-13 2019-09-17 富士胶片株式会社 固体电解质组合物、含固体电解质的片材及其制造方法、全固态二次电池及其制造方法、以及聚合物及其非水溶剂分散物及二醇化合物
CN110951036A (zh) * 2019-12-29 2020-04-03 太原理工大学 一种浇注型聚氨酯弹性体电解质及其制备方法
CN111909352A (zh) * 2020-06-17 2020-11-10 武汉倍特能科技有限公司 一种凝胶聚合物电解质及其制备方法和电池
CN112436184A (zh) * 2020-10-30 2021-03-02 曹元成 自催化凝胶聚合物电解质及其制备方法、应用
CN112652811A (zh) * 2019-10-09 2021-04-13 中国科学院宁波材料技术与工程研究所 一种原位成型聚合物复合电解质-正极一体化材料、其制备方法及锂金属电池
CN112909330A (zh) * 2019-12-04 2021-06-04 中国科学院宁波材料技术与工程研究所 一种自支撑超薄硫化物电解质片、其制备方法及其应用
CN112909322A (zh) * 2019-12-04 2021-06-04 中国科学院宁波材料技术与工程研究所 一种原位成型的硫化物复合固体电解质及其制备方法
CN113451643A (zh) * 2021-06-15 2021-09-28 上海大学 酰胺基复合固态电解质的原位制备方法及其应用
CN114552011A (zh) * 2022-02-23 2022-05-27 珠海市赛纬电子材料股份有限公司 一种电解液添加剂、非水电解液和锂离子电池

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100773247B1 (ko) * 2005-04-20 2007-11-05 주식회사 엘지화학 향상된 과충전 안전성의 리튬 이차전지
US7595133B2 (en) * 2006-07-01 2009-09-29 The Gillette Company Lithium cell
US20080057403A1 (en) * 2006-09-06 2008-03-06 Issaev Nikolai N Lithium cell
US7981550B2 (en) 2007-03-19 2011-07-19 The Gillette Company Lithium cell
US20080318123A1 (en) * 2007-06-22 2008-12-25 Zhiping Jiang Lithium cell
US20090023054A1 (en) * 2007-07-16 2009-01-22 Zhiping Jiang Lithium cell
US8460403B2 (en) * 2007-09-14 2013-06-11 The Gillette Company Method of storing iron disulfide (FeS2) particles
US20090074953A1 (en) * 2007-09-14 2009-03-19 Sean Chang Lithium cell cathode
US8617743B2 (en) 2007-12-05 2013-12-31 The Gillette Company Anode balanced lithium-iron disulfide primary cell
US8465860B2 (en) * 2008-01-23 2013-06-18 The Gillette Company Lithium cell
US8273483B2 (en) * 2008-02-14 2012-09-25 The Gillette Company Lithium cell
US20090214950A1 (en) * 2008-02-22 2009-08-27 Bowden William L Lithium cell
US8076028B2 (en) * 2008-04-16 2011-12-13 The Gillette Company Lithium cell with cathode including iron disulfide and iron sulfide
US8859145B2 (en) * 2008-05-23 2014-10-14 The Gillette Company Method of preparing cathode containing iron disulfide for a lithium cell
US20090317725A1 (en) * 2008-06-23 2009-12-24 Zhiping Jiang Lithium cell with cathode containing iron disulfide
US8153296B2 (en) * 2008-08-27 2012-04-10 The Gillette Company Lithium cell with cathode containing metal doped iron sulfide
US8076029B2 (en) * 2009-01-20 2011-12-13 The Gillette Company Lithium cell with iron disulfide cathode and improved electrolyte
US20100203370A1 (en) * 2009-02-12 2010-08-12 Michael Pozin Lithium cell with iron disulfide cathode
US8048562B2 (en) * 2009-03-27 2011-11-01 The Gillette Company Lithium cell with improved iron disulfide cathode
WO2012111935A2 (ko) * 2011-02-15 2012-08-23 주식회사 엘지화학 일체형 전극조립체 및 이를 이용한 이차전지
US9397337B2 (en) 2011-10-28 2016-07-19 Lubrizol Advanced Materials, Inc. Polyurethane-based electrode binder compositions and electrodes thereof for electrochemical cells
TWI453972B (zh) * 2011-12-15 2014-09-21 Ind Tech Res Inst 固態高分子電解質組成物
JP2013211174A (ja) * 2012-03-30 2013-10-10 Asahi Kasei Corp 電気化学デバイス用電解液、セパレータ、及びリチウムイオン二次電池
JP5913528B2 (ja) * 2013-11-12 2016-04-27 三洋化成工業株式会社 有機溶剤吸収用フォーム
US10186716B2 (en) 2014-11-10 2019-01-22 Lanxess Solutions Us Inc. Non-aqueous flow cell comprising a polyurethane separator
US10312527B2 (en) 2014-11-10 2019-06-04 Lanxess Solutions Us Inc. Energy storage device comprising a polyurethane separator
KR102019312B1 (ko) * 2016-02-25 2019-09-06 주식회사 엘지화학 겔 폴리머 전해질용 조성물 및 이를 포함하는 리튬 이차전지
US10472450B2 (en) * 2016-03-09 2019-11-12 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Acute care cover for severe injuries
KR102320015B1 (ko) 2017-09-12 2021-11-02 주식회사 엘지에너지솔루션 이차전지용 고분자 전해질 및 이를 포함하는 리튬 이차전지
KR102376444B1 (ko) * 2019-03-05 2022-03-17 삼성에스디아이 주식회사 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
CN110739488B (zh) * 2019-09-06 2023-03-28 江汉大学 一种超交联聚合物电解质的制备方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065587A (en) * 1976-05-11 1977-12-27 Scm Corporation U.V. Curable poly(ether-urethane) polyacrylates and wet-look polymers prepared therefrom
JPS5855175B2 (ja) * 1979-12-28 1983-12-08 富士化学紙工業株式会社 インク保持多孔体の製造法
JPH01169803A (ja) * 1987-12-25 1989-07-05 Ube Ind Ltd イオン伝導性固体電解質組成物
JPH04112460A (ja) * 1990-08-31 1992-04-14 Honda Motor Co Ltd リチウム二次電池
JPH0536438A (ja) * 1991-07-31 1993-02-12 Honda Motor Co Ltd リチウム電池用ゲル状電解質およびこれを用いた電池
JP3045852B2 (ja) * 1991-11-28 2000-05-29 東芝電池株式会社 固体電解質二次電池の製造法
US5549987A (en) * 1994-07-22 1996-08-27 Motorola, Inc. Polyurethane based electrolytes for electrochemical cells and electrochemical cells using same
JPH0997617A (ja) * 1995-09-29 1997-04-08 Sanyo Electric Co Ltd 固体電解質電池
JP3701092B2 (ja) * 1996-12-20 2005-09-28 旭化成ケミカルズ株式会社 ポリマー電解質
JPH10289732A (ja) * 1997-02-12 1998-10-27 Mitsubishi Electric Corp 電池用接着剤及びそれを用いた電池
JPH10270004A (ja) * 1997-03-24 1998-10-09 Japan Storage Battery Co Ltd 蓄電装置
US5912093A (en) * 1997-05-15 1999-06-15 National Science Council Polyurethane-based polymeric electrolyte and process for producing same
JP3611716B2 (ja) * 1997-05-27 2005-01-19 昭和電工株式会社 熱重合性組成物及びその用途
US6159639A (en) * 1997-12-01 2000-12-12 Wen; Ten-Chin Triple-polymer based composite electrolyte
US6077897A (en) * 1997-12-01 2000-06-20 Wen; Ten-Chin Polymeric composite electrolyte and process for producing same
US5985419A (en) * 1998-01-08 1999-11-16 Xerox Corporation Polyurethane and doped metal oxide transfer components
JP4534265B2 (ja) * 1998-12-02 2010-09-01 パナソニック株式会社 非水電解質二次電池
JP4597294B2 (ja) * 1999-12-20 2010-12-15 サンスター技研株式会社 ポリマー固体電解質リチウムイオン2次電池
JP2001185216A (ja) * 1999-12-22 2001-07-06 Toyo Tire & Rubber Co Ltd ゲル状電解質及びその製造方法
JP2001229978A (ja) * 2000-02-18 2001-08-24 Furukawa Electric Co Ltd:The 電気化学デバイスとその製造方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1890769B (zh) * 2003-12-10 2010-10-06 伊美克斯株式会社 蓄电元件及蓄电元件的制造方法
CN103000941A (zh) * 2012-11-29 2013-03-27 东莞新能源科技有限公司 凝胶电解液的配方及使用该配方制备凝胶电解液的方法
CN103000941B (zh) * 2012-11-29 2016-06-01 东莞新能源科技有限公司 凝胶电解液的配方及使用该配方制备凝胶电解液的方法
CN105161760A (zh) * 2015-06-19 2015-12-16 储盈新能源科技(上海)有限公司 锂离子电池用聚合物、锂离子电池凝胶电解质、锂离子电池及它们的制备方法
CN105161760B (zh) * 2015-06-19 2017-12-29 储盈新能源科技(上海)有限公司 锂离子电池用聚合物、锂离子电池凝胶电解质、锂离子电池及它们的制备方法
CN106558732A (zh) * 2015-09-28 2017-04-05 比亚迪股份有限公司 一种锂离子电池电解液和锂离子电池
CN106558732B (zh) * 2015-09-28 2019-04-19 比亚迪股份有限公司 一种锂离子电池电解液和锂离子电池
US11417908B2 (en) 2017-02-13 2022-08-16 Fujifilm Corporation Solid electrolyte composition, solid electrolyte-containing sheet and manufacturing method therefor, all-solid state secondary battery and manufacturing method therefor, polymer and non-aqueous solvent dispersion thereof, and diol compound
CN110249468A (zh) * 2017-02-13 2019-09-17 富士胶片株式会社 固体电解质组合物、含固体电解质的片材及其制造方法、全固态二次电池及其制造方法、以及聚合物及其非水溶剂分散物及二醇化合物
CN110249468B (zh) * 2017-02-13 2022-09-30 富士胶片株式会社 固体电解质组合物、全固态二次电池、相关材料和制造方法
CN108539262A (zh) * 2018-03-29 2018-09-14 武汉新能源研究院有限公司 耐高电压聚合物固态电解质膜的制备方法及锂离子电池的制备方法
CN112652811A (zh) * 2019-10-09 2021-04-13 中国科学院宁波材料技术与工程研究所 一种原位成型聚合物复合电解质-正极一体化材料、其制备方法及锂金属电池
CN112909330A (zh) * 2019-12-04 2021-06-04 中国科学院宁波材料技术与工程研究所 一种自支撑超薄硫化物电解质片、其制备方法及其应用
CN112909322A (zh) * 2019-12-04 2021-06-04 中国科学院宁波材料技术与工程研究所 一种原位成型的硫化物复合固体电解质及其制备方法
CN110951036A (zh) * 2019-12-29 2020-04-03 太原理工大学 一种浇注型聚氨酯弹性体电解质及其制备方法
CN111909352A (zh) * 2020-06-17 2020-11-10 武汉倍特能科技有限公司 一种凝胶聚合物电解质及其制备方法和电池
CN112436184A (zh) * 2020-10-30 2021-03-02 曹元成 自催化凝胶聚合物电解质及其制备方法、应用
CN112436184B (zh) * 2020-10-30 2023-06-02 曹元成 自催化凝胶聚合物电解质及其制备方法、应用
CN113451643A (zh) * 2021-06-15 2021-09-28 上海大学 酰胺基复合固态电解质的原位制备方法及其应用
CN113451643B (zh) * 2021-06-15 2022-12-23 上海大学 酰胺基复合固态电解质的原位制备方法及其应用
CN114552011A (zh) * 2022-02-23 2022-05-27 珠海市赛纬电子材料股份有限公司 一种电解液添加剂、非水电解液和锂离子电池

Also Published As

Publication number Publication date
KR20020025484A (ko) 2002-04-04
US20020042001A1 (en) 2002-04-11
KR100388906B1 (ko) 2003-06-25
US6866965B2 (en) 2005-03-15
JP2002187925A (ja) 2002-07-05
CN100448932C (zh) 2009-01-07

Similar Documents

Publication Publication Date Title
CN100448932C (zh) 高分子电解质和使用它的锂电池
US7897674B2 (en) Polymer electrolyte with high stability, its use in electrochemical systems
CN101517809B (zh) 含有低共熔混合物的二次电池及其制备方法
CN1242510C (zh) 用于非水型电池的电解液和非水型二次电池
EP1164653B1 (en) Gel electrolyte and nonaqueous electrolyte battery
KR100578803B1 (ko) 비수 전해액 및 리튬 이차 전지
CN1543005A (zh) 锂电池电解质和包含此种电解质的锂电池
CN1407016A (zh) 聚合物溶胶电解质和使用它的锂电池
CN1229889C (zh) 锂电池
KR20190001944A (ko) 변형 셀룰로스를 기반으로 한 고체 폴리머 전해질과, 리튬 또는 나트륨 2차 전지에 있어서 이의 용도
CN1291359A (zh) 锂二次电池
CN1421953A (zh) 改善过度充电安全性的聚合物电解质组合物及锂电池
US20210005928A1 (en) Solid polymer electrolyte
KR100271240B1 (ko) 전기화학전지용폴리우레탄기재전해질및그를사용한전기화학전지
WO1996018215A1 (en) A non-aqueous electrolyte system for use in batteries, capacitors or electrochromic devices and a method for the preparation thereof
CN111653824A (zh) 一种凝胶聚合物电解质及其快速制备方法和电池
CN1543006A (zh) 可充电锂电池用的电解质以及含该电解质的可充电锂电池
JP3907282B2 (ja) 複合電解質及びその用途
US6277515B1 (en) Solid electrolyte battery with charge accumulating portions surrounding a battery structure portion
CN1255896C (zh) 用于提高过充电安全的非水电解液组合物及使用这种组合物的锂电池
Kim et al. Electrochemical properties of Li ion polymer battery with gel polymer electrolyte based on polyurethane
CN115882061A (zh) 一种聚轮烷基聚合物电解质的制备及其应用
CN114479002A (zh) 一种双功能弹性聚脲粘合剂及其制备方法和应用
KR100653854B1 (ko) 폴리우레탄계 고분자 중합체 및 이를 이용한 이온 전도성고분자 전해질
KR100457093B1 (ko) 리튬 유황 전지용 고분자 전해질의 제조 방법 및 이로부터제조된 고분자 전해질을 포함하는 하나의 평탄 전압을갖는 상온형 리튬 폴리머 유황 전지

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090107

Termination date: 20160820

CF01 Termination of patent right due to non-payment of annual fee