CN1285138C - 固体氧化物燃料电池用复合氧化物及其制造方法 - Google Patents

固体氧化物燃料电池用复合氧化物及其制造方法 Download PDF

Info

Publication number
CN1285138C
CN1285138C CNB028225422A CN02822542A CN1285138C CN 1285138 C CN1285138 C CN 1285138C CN B028225422 A CNB028225422 A CN B028225422A CN 02822542 A CN02822542 A CN 02822542A CN 1285138 C CN1285138 C CN 1285138C
Authority
CN
China
Prior art keywords
composite oxides
fuel cell
phase
solid oxide
oxide fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028225422A
Other languages
English (en)
Other versions
CN1586020A (zh
Inventor
宗像文男
古谷健司
秦野正治
藤江良纪
数原学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIYOMI CHEMICAL CO Ltd
Seimi Chemical Co Ltd
Original Assignee
KIYOMI CHEMICAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIYOMI CHEMICAL CO Ltd filed Critical KIYOMI CHEMICAL CO Ltd
Publication of CN1586020A publication Critical patent/CN1586020A/zh
Application granted granted Critical
Publication of CN1285138C publication Critical patent/CN1285138C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/81Materials characterised by the absence of phases other than the main phase, i.e. single phase materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供一种燃料电池用固体氧化物,它是可在低温下进行焙烧,目标组成以外的杂质异相少的高性能低温工作型的固体氧化物,它是具有含稀土元素的钙钛矿型晶体结构的、构成元素均质分散而成的复合氧化物,通过使用金属的碳酸盐、氧化物或氢氧化物,在水系中和柠檬酸进行反应形成异相的存在以平均面积比率表示,在0.3%以下,熔点在1470℃以上的均质的复合氧化物。

Description

固体氧化物燃料电池用复合氧化物及其制造方法
                        技术领域
本发明涉及用作采用固体电解质的燃料电池的电解质或空气极的复合氧化物及其制造方法,更加详细地涉及具有钙钛矿结构的氧离子导电性的固体氧化物燃料电池用复合氧化物及其适用于工业化的制造方法。
                        背景技术
现在,固体氧化物燃料电池(SOFC)的开发日新月异。作为该燃料电池的电解质,通常使用稳定氧化锆。但是,稳定氧化锆的电解质在低温下离子导电性低,所以要在1000℃以上的高温下使用。为此,不能使用金属来作为燃料电池的部件,而必须使用高价的陶瓷。
为了解决该问题,最近开发出LaGaO3的钙钛矿型的电解质,与稳定氧化锆相比,它可在低温下使用。其中有报告称LaSrGaMgO3显示出良好的性能(参考KHuang,R.S.Tichy,and J.B.Goodenough,J.Am.Ceram.Soc.,81,2565(1998),美国专利6004688号,日本特许公开公报平11-335164号,日本特许公开公报平11-665165号)。
但该LaGaO3类化合物在合成时,存在典型元素Ga很难组成钙钛矿结构,必须在高温下烧成,容易残留目标组成以外的杂质异相的问题。作为该杂质异相,以熔点较钙钛矿低,大约为1400℃,氧离子导电性也低的LaSrGaO4,和熔点在1600℃以上且氧离子导电性低的LaSrGa3O7为代表。在固相合成法中,直接将作为原料的金属的氧化物、碳化物或氢氧化物粉碎混合,并进行焙烧,为此,容易产生微细混合状态的不均匀,所以容易残留杂质异相。若要合成杂质异相少的钙钛矿就必须在1500℃以上的高温下进行烧成。
另一方面,在将合成后的固体复合氧化物粉末成形为燃料电池用电解质或电极时,通常通过将固体复合氧化物粉末压制成形,加热到1300-1600℃使其烧结,制得烧结体构造物。
为此,在将固相合成法所合成的氧化物粉末压制成形,进行烧结时,该氧化物粉末所含的杂质异相熔解,烧结体的空隙被氧离子导电性低的杂质异相覆盖,很难形成均质的电极体。
如上所述,若采用以往所用的一般的合成法,即固相合成法的话,焙烧中,以目标组成物和中间体或合成原料混杂在的状态达到高温,所以其中的一部分熔融,作为杂质异相残留在最终的制品中。
作为更低温度下构成组合的一般的制造方法,采用硝酸盐和乙酸盐的方法为人所公知。但是,采用该方法,在焙烧时大量产生二氧化氮、氮氧化物、乙酸等有害气体,不适合工业制造。另外,使用乙二醇等有机溶剂来作为溶剂的溶胶-凝胶法也是较常用的方法,但因凝胶状物质粘附在容器壁上,会剧烈燃烧,所以也不适合于工业制造。
作为其它的金属复合氧化物的合成法,本发明者所提出的日本特许公开公报平7-96443号、日本特许第3081212号、日本特许公开公报平9-086928号、日本特许公开公报平08-130018号等中公开了钇-碱土金属-过渡金属复合氧化物、铋-碱土金属-过渡金属复合氧化物、镧-锶-钴复合氧化物或镧-钴-铁复合氧化物的柠檬酸合成法。但所得的氧化物的电导率在600-800℃的低温区域内都低,所以不适合作为低温工作型固体电解质电池用材料。
对于燃料电池用固体氧化物要求其为杂质异相特别少的低温工作型固体氧化物。因此,本发明的课题是提供一种低温工作型的固体氧化物燃料电池用复合氧化物及有利于其工业制造的方法。该复合氧化物可在较低温度下烧成,目标组成以外的杂质异相少并具有高性能。
                        发明内容
本发明者发现:通过采用柠檬酸合成法,在特定条件下使特定的原料化合物反应,可在中间体和合成原料不熔融的较低温度下制成所要的钙钛矿型组成物(复合氧化物),可以制造出最终所得的复合氧化物中不同于钙钛矿相的异相少,构成元素均质分散,几乎接近于单相的组成物。利用该复合氧化物可使低温工作型固体燃料电池电极的性能提高。
即,本发明具有如下的要点。
一种固体氧化物燃料电池用复合氧化物,它是由通式Ln1-xAxGa1-y-zByCzO3-δ(1)表示的具有钙钛矿型晶体结构的固体氧化物燃料电池用复合氧化物,其特征在于,和具有钙钛矿结构的相不同的异相的存在比率按平均面积比率计,在0.3%以下,式(1)中,Ln为选自镧、铈、镨、钕、钐、钆、镝中的至少一种的元素;A为选自锶、钙及钡中至少一种的元素;B为选自镁、铝以及铟中至少一种的元素;C为选自铁、钴、镍及锰中至少一种的元素,0.05≤x≤0.4、0.02≤y≤0.4、0.1≤y+z≤0.45、0≤δ≤1。
另外,本发明还是固体氧化物燃料电池用复合氧化物的制造方法,它是由上述(1)表示的具有钙钛矿型晶体结构的固体氧化物燃料电池用复合氧化物的制造方法,其特征在于,构成复合氧化物的金属元素的原料为选自氢氧化物、氧化物或碳酸盐中的任意一种的金属化合物,对该金属化合物和柠檬酸反应所生成的反应生成物,即复合柠檬酸盐进行热分解。
                        附图说明
图1(a)是本发明的实施例1的复合氧化物的X射线解析图。
图1(b)是实施例1的烧结体的扫描型电子显微镜图像(倍率为2000倍)。
图1(c)是将图1(b)中无空隙部分切下大约8.8平方微米放大后,经图像处理而得的二值化的图像。
图2是本发明的实施例2的复合氧化物的X射线解析图。
图3是本发明的实施例3的复合氧化物的X射线解析图。
图4是本发明的实施例4的复合氧化物的X射线解析图。
图5(a)是采用以往的方法的比较例1的复合氧化物的X射线解析图。
图5(b)是比较例1的烧结体的扫描型电子显微镜图像(倍率为2000倍)。
图5(c)是将图5(b)中无空隙部分切下大约22平方微米放大后,经图像处理而得的二值化的图像。
图6是采用以往的方法的比较例2的复合氧化物的X射线解析图。
                        具体实施方式
表示上述本发明的复合氧化物的通式(1)中,0.05≤x≤0.40、0.02≤y≤0.40、0.10≤y+z≤0.45的条件是获得钙钛矿结构所必须的。δ要满足0≤δ≤1。δ在该范围外,钙钛矿结构不稳定,因此不理想。尤其是若要更容易形成钙钛矿结构,同时能够提高氧离子导电性,特好是0.10≤x≤0.25、0.05≤y≤0.25、0.15≤y+z≤0.40。
在通式(1)中,特别是Ln(镧类稀土金属)为La、A(碱土金属)为Sr、B(非过渡金属)为镁对能够提高低温时的电导率是较为理想的。另外,C(过渡金属)为Co时,对能够提高低温时的电导率是更理想的。
在制造本发明的复合氧化物时,在水中混合复合氧化物所含的金属元素的碳酸盐、氧化物或氢氧化物而成的原料浆液中,添加将全部的金属离子变为柠檬酸盐所需的化学当量的柠檬酸的25-100%,较好为60-100%的柠檬酸,较好在25-100℃,特好在50-70℃下进行反应。若将上述金属元素以硝酸盐、氯化物、硫酸盐等形态使用的话,复合柠檬酸盐合成时或热分解时会产生有害的副产气体,或热分解很难进行,因此不理想。
在本发明中,为了得到构成元素均质分散的均匀的复合柠檬酸盐,特好用氢氧化物作为Ln的镧类稀土元素原料。为使异相减少,镓特好使用氢氧化镓。对于构成成分A的碱土类金属,为减少异相,较好用碳酸盐。通过这些特定化合物的组合,可合成相当均匀的复合柠檬酸盐,其结果可使焙烧后的钙钛矿的均质性提高。
和上述柠檬酸反应后,进行干燥和脱水,热分解并进行煅烧(calcination)。此时,也可采用一段焙烧的方法进行热分解和煅烧。但若将热分解和煅烧同时进行的话,很难取得反应系统的均热,所以较好将热分解和煅烧分成2段进行。
将所生成的复合柠檬酸盐在较好的350-500℃下进行热分解后,在较好的900-1470℃进行煅烧。该发明点也是本发明的特征之一。煅烧可以直接以粉体进行,也可以利用压制等进行成形后,进行焙烧。煅烧温度若未满900℃时,烧结不充分,不能得到致密的粉体,不理想。另一方面,若煅烧温度超过1470℃的话,炉体材料容易劣化,而且,耗热量增加,不理想。
煅烧温度更好在1200-1450℃,特好在1300-1420℃。热分解及煅烧气氛无论是空气等氧化性气氛或惰性气氛都可以。可以在热分解后进行粉碎。另外,煅烧后,可以利用喷射磨、球磨机等进行粉碎。对粉碎方法无特别限制。
通过本发明,可制得烧结体组织中的和钙钛矿结构的相不同的异相的存在比率以面积比率表示,在0.3%以下的复合氧化物。若异相的存在比率超过平均面积比率0.3%时,熔点降低,烧结体的韧性减弱,并且电导率下降,不理想。异相的存在比率特好在平均面积比率0.15%以下,更好在0.1%以下。
钙钛矿复合氧化物中的异相结构在异相比率高时,可通过X射线衍射光谱检出,在异相的比率低时,可采用扫描型电子显微镜,通过反射电子像进行定量。在本发明中,钙钛矿复合氧化物中的异相的定量是通过对反射电子像进行图像解析来进行的。
本发明所制得的复合氧化物因LaSrGaO4等的杂质异相少,组合成单一的晶体结构,所以具有熔点较好在1470℃以上,特好在1500℃以上的特征。若熔点未满1470℃的话,成形时容易熔融,不理想。
利用本发明所得的复合氧化物,和以往的通过固相法所制得的复合氧化物相比,具有容易制得有韧性的成形体的优点。另外,和以往的利用固相法制得的复合氧化物相比,还具有在煅烧粉的粉碎时,很难产生微粉的特征。由此,可将粉碎后的粉体的振实密度提高,所以具有容易制得致密的成形体的优点。由此,本发明的复合氧化物的振实密度较好在1.0g/cm3以上,若振实密度未满1.0g/cm3的话,很难制得致密且高强度的成形体,不理想。特别是利用本发明,可制得振实密度在1.2g/cm3以上的复合氧化物。
本发明的复合氧化物的重量平均粒径较好有0.4-2μm。若重量平均粒径未满0.4μm的话,很难制得致密的电极成形体,不理想。另一方面,重量平均粒径超过2.0μm时,成形体的强度降低,不理想。重量平均粒径特好的范围为0.8-1.3μm。
以下,就本发明的具体的实施例1-4及比较例1,2进行说明。
在各例中,晶体结构的识别是通过X射线衍射(リガク公司制造的Cu-Kα射线)进行。熔点利用TG-DTA分析(精工公司制造)以10℃/分钟进行升温来求出。粒径分布利用激光衍射式分析(マイクロトラツク公司制造)进行测定,求出重量平均粒径。振实密度是根据JIS R9301-2-3法,利用粉体检验器(ホソカワミクロン公司制造)来求出。
在各例中,对于在烧结体组织中和具有钙钛矿结构的相不同的异相的存在比率,利用金属模型,通过流体静压对复合氧化物粉末施加2吨/cm2的压力进行成型,于1450℃进行6小时的焙烧,制得固体电解质烧结体后,得到同一烧结体的扫描型电子显微镜观察时的2000倍的图像,利用高速图像处理装置(カルツアイス公司制造VIDAS Plus),采用高速图像处理软件(カルツアイス公司制造KS400)对1试样从5个视角(广度为2902μm2)进行取样,算出平均值,作为异相的平均面积分率求出。
(实施例1)
分别将氢氧化镧、碳酸锶、氢氧化镓、碳酸镁作为原料粉,配合成La0.87Sr0.13Ga0.8Mg0.2O3-δ,分散在水中。将温度控制在70℃,添加将全部的金属离子变为柠檬酸盐所需的柠檬酸,使其进行反应。
反应后,在120℃进行干燥,粉碎后,于400℃进行6小时的预焙烧,进行热分解。此后,再进行粉碎混合,于1450℃进行12小时的焙烧。焙烧后的形状为白色粉末。焙烧后,利用球磨机进行6小时的粉碎。制得的复合氧化物粉末的重量平均粒径为0.56μm,振实密度为1.27g/cm3,晶体结构解析结果如图1(a)所示,焙烧后的状态、熔点及X射线衍射识别结果如表1所示。
从该粉末制得烧结体,利用2000倍的扫描型电子显微镜进行观察的图像如图1(b)所示。将该图1(b)图像中无空隙(黑色的孔)的部分切下大约8.8平方微米放大后进行图像处理后的二值化的图像如图1(c)所示。以该图1(c)为基准,仅对白色部分进行计测。
通过该图像解析,对由钙钛矿构成的连续相中所存在的微粒所构成的异相,由每单位面积的粒子数和平均粒径从5个视角来求出异相的面积比率后发现,异相的面积比率分别为0.292%、0.172%、0.141%、0.0065%、0.082%,异相的平均面积比率为0.150%。
(实施例2)
分别将氢氧化镧、碳酸锶、氢氧化镓、碳酸镁作为原料粉,配合成La0.87Sr0.13Ga0.8Mg0.2O3-δ,分散在水中。将温度控制在70℃,添加将全部的金属离子变为柠檬酸盐所需的柠檬酸,使其进行反应。
反应后,在120℃进行干燥,粉碎后,于400℃进行6小时的预焙烧,进行热分解。此后,再进行粉碎混合,于1350℃进行12小时的焙烧。
焙烧后的形状为白色粉末。焙烧后,利用球磨机进行6小时的粉碎。制得的复合氧化物粉末的重量平均粒径为0.49μm,振实密度为1.21g/cm3,晶体结构解析结果如图2所示,焙烧后的状态、熔点及X射线衍射识别结果如表1所示。和实施例1一样求出的烧结体的异相的平均面积比率为0.159%。
(实施例3)
分别将氢氧化镧、碳酸锶、氢氧化镓、碳酸镁、碳酸钴作为原料粉,以配合成La0.8Sr0.2Ga0.6Mg0.2Co0.2O3-δ,分散在水中。将温度变为70℃,添加将全部的金属离子变为柠檬酸盐所需的柠檬酸,使其进行反应。
反应后,在120℃进行干燥,粉碎后,于400℃进行6小时的预焙烧,进行热分解。此后,再进行粉碎混合,于1450℃进行12小时的焙烧。
焙烧后的形状为黑色粉末。焙烧后,利用球磨机进行6小时的粉碎。制得的复合氧化物粉末的重量平均粒径为0.86μm,振实密度为1.34g/cm3,晶体结构解析结果如图3所示,焙烧后的状态、熔点及X射线衍射识别结果如表1所示。和实施例1一样求出的烧结体的异相的平均面积比率为0.107%。
(实施例4)
分别将氢氧化镧、碳酸锶、氢氧化镓、碳酸镁作为原料粉,以配合成La0.87Sr0.13Ga0.8Mg0.2O3-δ,分散在水中。将温度控制在70℃,添加将全部的金属离子变为柠檬酸盐所需的柠檬酸量的70%,使其进行反应。
反应后,在120℃进行干燥,粉碎后,于400℃进行6小时的预焙烧,进行热分解。此后,再进行粉碎混合,于1350℃进行12小时的焙烧。
焙烧后的形状为白色粉末。焙烧后,利用球磨机进行6小时的粉碎。制得的复合氧化物粉末的重量平均粒径为0.66μm,振实密度为1.22g/cm3,晶体结构解析结果如图4所示,焙烧后的状态、熔点及X射线衍射识别结果如表1所示。和实施例1一样求出的烧结体的异相的平均面积比率为0.168%。
(比较例1)
分别将氧化镧、碳酸锶、氧化镓、碳酸镁作为原料粉,配合成La0.87Sr0.13Ga0.8Mg0.2O3-δ,利用球磨机粉碎混合。将混合物于400℃下进行6小时的预焙烧,进行热分解。此后,再进行粉碎、混合,于1450℃进行12小时的焙烧。
焙烧后的形状为褐色块状。焙烧后,利用球磨机进行6小时的粉碎。制得的复合氧化物粉末的重量平均粒径为2.21μm,振实密度为0.98g/cm3,晶体结构解析结果如图5(a)所示,焙烧后的状态、熔点及X射线衍射识别结果如表1所示。
和实施例1一样观察后的2000倍的扫描型电子显微镜的图像如图5(b)所示。将该图5(b)图像中无空隙(黑色的孔)的部分切下大约22平方微米放大后进行图像处理后的二值化的图像如图5(c)所示。以该图5(c)为基准,仅对白色部分进行计测。
通过该图像解析,和实施例1一样从5个视角来求出异相的面积比率后发现,异相的面积比率分别为0.770%、0.406%、0.547%、1.234%、0.596%,异相的平均面积比率为0.711%。
(比较例2)
分别将氧化镧、碳酸锶、氧化镓、碳酸镁、氧化钴作为原料粉,配合成La0.8Sr0.2Ga0.6Mg0.2Co0.2O3-δ,利用球磨机粉碎混合。将混合物于400℃下进行6小时的预焙烧,进行热分解。此后,再进行粉碎混合,于1450℃进行12小时的焙烧。
焙烧后的形状为黑色块状。焙烧后,利用球磨机进行6小时的粉碎。制得的复合氧化物粉末的重量平均粒径为2.11μm,振实密度为0.92g/cm3,晶体结构解析结果如图6所示,焙烧后的状态、熔点及X射线衍射识别结果如表1所示。
对钙钛矿相不进行识别。
                        表1
  焙烧后的状态   熔点(℃)   X射线衍射识别结果
  实施例1   白色粉体   1500℃以上   钙钛矿结构单相
  实施例2   白色粉体   1500℃以上   钙钛矿结构单相
  实施例3   黑色粉体   1500℃以上   钙钛矿结构单相
  实施例4   白色粉体   1500℃以上   钙钛矿结构单相
  比较例1   褐色块状   1375℃   钙钛矿结构含有杂质
  比较例2   黑色块状   1420℃   未知结构
产业上利用的可能性
通过本发明,提供一种可在较低温度下焙烧、目标组成以外的杂质异相少、极其均匀的高性能低温工作型的固体氧化物燃料电池用复合氧化物。另外,和以往的制造方法比较,提供一种焙烧时不产生有害气体、有利于工业化制造,可批量生产复合氧化物的制造方法。

Claims (4)

1.一种固体氧化物燃料电池用复合氧化物,它是由通式Ln1-xAxGa1-y-zByCzO3-δ(1)表示的具有钙钛矿型晶体结构的固体氧化物燃料电池用复合氧化物,其特征在于,和具有钙钛矿结构的相不同的异相的存在比率以平均面积比率表示,在0.3%以下,复合氧化物的重量平均粒径为0.4-2μm且振实密度在1.0g/cm3以上,式(1)中,Ln为选自镧、铈、镨、钕、钐、钆、镝中的至少一种元素;A为选自锶、钙及钡中的至少一种元素;B为选自镁、铝以及铟中的至少一种元素;C为选自铁、钴、镍及锰中的至少一种的元素,0.05≤x≤0.4,0.02≤y≤0.4,0.1≤y+z≤0.45,0≤δ≤1。
2.根据权利要求1所述的复合氧化物,其特征在于,复合氧化物的熔点在1470℃以上。
3.根据权利要求1所述的复合氧化物,其特征在于,上述通(1)式中,Ln原料为La,A原料为Sr、B原料为Mg。
4.固体氧化物燃料电池用复合氧化物的制造方法,其特征在于,它是由通式Ln1-xAxGa1-y-zByCzO3-δ(1)表示的具有钙钛矿型晶体结构的固体氧化物燃料电池用复合氧化物的制造方法,其特征在于,构成复合氧化物的含Ln的金属化合物及含镓的金属化合物都为氢氧化物,而含A的金属化合物为碳酸盐,对该金属化合物以水为溶剂制成浆液,使该浆液和柠檬酸反应,将反应生成的复合柠檬酸盐在350-500℃进行热分解后,于900-1470℃进行焙烧,式(1)中,Ln为选自镧、铈、镨、钕、钐、钆、镝中的至少一种的元素;A为选自锶、钙及钡中的至少一种的元素;B为选自镁、铝以及铟中的至少一种的元素;C为选自铁、钴、镍及锰中的至少一种的元素,0.05≤x≤0.4,0.02≤y≤0.4,0.1≤y+z≤0.45,0≤δ≤1。
CNB028225422A 2001-11-15 2002-11-15 固体氧化物燃料电池用复合氧化物及其制造方法 Expired - Fee Related CN1285138C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001350372A JP4393027B2 (ja) 2001-11-15 2001-11-15 固体酸化物燃料電池用複合酸化物およびその製造方法
JP350372/2001 2001-11-15

Publications (2)

Publication Number Publication Date
CN1586020A CN1586020A (zh) 2005-02-23
CN1285138C true CN1285138C (zh) 2006-11-15

Family

ID=19162892

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028225422A Expired - Fee Related CN1285138C (zh) 2001-11-15 2002-11-15 固体氧化物燃料电池用复合氧化物及其制造方法

Country Status (7)

Country Link
US (1) US7368095B2 (zh)
EP (1) EP1450425A4 (zh)
JP (1) JP4393027B2 (zh)
KR (1) KR20040066118A (zh)
CN (1) CN1285138C (zh)
CA (1) CA2467120A1 (zh)
WO (1) WO2003043111A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060263690A1 (en) * 2002-09-26 2006-11-23 Seimi Chemical Co., Ltd. Positive electrode active material for lithium secondary battery and process for producing the same
JP4920579B2 (ja) * 2004-05-31 2012-04-18 ピレリ・アンド・チ・ソチエタ・ペル・アツィオーニ Lsgm電解質を用いる電気化学装置
CN1315211C (zh) * 2005-11-30 2007-05-09 浙江大学 固体氧化物燃料电池粉体的制备方法和用途
CN100399611C (zh) * 2006-05-19 2008-07-02 中国矿业大学(北京) 固体氧化物燃料电池阴极负载型半电池的制备方法
KR100777685B1 (ko) * 2006-06-29 2007-11-29 한국에너지기술연구원 고체산화물연료전지용 페로프스카이트 구조 고체 전해질 및이를 포함하는 연료전지
RU2416843C1 (ru) * 2007-01-31 2011-04-20 Текникал Юниверсити Оф Денмарк Композиционный материал для применения в качестве электродного материала в твердооксидных элементах тоэ
FR2930075B1 (fr) * 2008-04-14 2011-03-18 Commissariat Energie Atomique Titanates de structure perovskite ou derivee et ses applications
CN101445358B (zh) * 2008-12-23 2011-07-20 合肥学院 一种NiO-SDC金属氧化物复合粉体的制备方法
KR20110130264A (ko) 2010-05-27 2011-12-05 삼성전자주식회사 고체산화물 전해질, 이를 포함하는 고체산화물 연료전지 및 이의 제조방법
JP6156778B2 (ja) * 2012-09-28 2017-07-05 Toto株式会社 固体酸化物形燃料電池セル
JP6124629B2 (ja) * 2013-03-14 2017-05-10 Agcセイミケミカル株式会社 ガレート複合酸化物の製造方法
CN105359321A (zh) 2013-03-15 2016-02-24 Lg燃料电池系统股份有限公司 用于捕获铬而配置的燃料电池系统
CN103529107B (zh) * 2013-10-18 2015-07-15 东北大学 一种极限电流型氧传感器及其制备方法
CA2956069A1 (en) 2014-07-21 2016-01-28 Lg Fuel Cell Systems, Inc. Composition for fuel cell electrode
KR101675301B1 (ko) * 2014-08-28 2016-11-22 한국생산기술연구원 단일상 페롭스카이트계 고체전해질과 이를 포함한 고체산화물연료전지 및 그 제조방법
US10511028B2 (en) 2014-09-30 2019-12-17 Lg Chem, Ltd. Electrolyte membrane, fuel cell including same, battery module including fuel cell, and method for manufacturing electrolyte membrane
US10115973B2 (en) 2015-10-28 2018-10-30 Lg Fuel Cell Systems Inc. Composition of a nickelate composite cathode for a fuel cell
CN105449227B (zh) * 2016-01-02 2018-07-06 红河学院 一种层状钙钛矿燃料电池阴极材料及其制备方法
WO2019203215A1 (ja) * 2018-04-17 2019-10-24 三井金属鉱業株式会社 固体電解質接合体
DE112019002421B4 (de) * 2018-07-05 2023-12-07 Murata Manufacturing Co., Ltd. Keramikbauglied und elektronikvorrichtung
JP7160616B2 (ja) * 2018-10-01 2022-10-25 Dowaエレクトロニクス株式会社 ペロブスカイト型LaSrGaMg複合酸化物粉およびその製造方法
CN110729492A (zh) * 2019-12-06 2020-01-24 福州大学 一种高性能的纳米结构含钴复合阴极材料的共合成方法
JP7507669B2 (ja) 2020-11-25 2024-06-28 新光電気工業株式会社 複合酸化物及び紫外線検出装置
CN114634208A (zh) * 2022-04-13 2022-06-17 桂林电子科技大学 一种氧化物复合材料及其制备方法和应用

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA936676A (en) * 1968-07-02 1973-11-13 Courty Philippe Preparation of homogeneous oxides of mixed metallic elements
JPS521396B2 (zh) * 1972-08-25 1977-01-13
DK0766330T3 (da) * 1989-12-27 2002-10-07 Standard Oil Co Bestanddele til anvendelse i elektroniskemiske celler og deres anvendelse ved oxygenseparation
JP3258392B2 (ja) * 1992-10-05 2002-02-18 眞人 垣花 錯体重合法による複合酸化物の製造方法
DK94393D0 (da) 1993-08-18 1993-08-18 Risoe Forskningscenter Fremgangsmaade til fremstilling af calciumdoteret lanthanchromit
JPH0797219A (ja) * 1993-09-30 1995-04-11 Denki Kagaku Kogyo Kk ランタンクロマイト系複合酸化物組成物
US5494700A (en) * 1994-04-05 1996-02-27 The Curators Of The University Of Missouri Method of coating a substrate with a metal oxide film from an aqueous solution comprising a metal cation and a polymerizable organic solvent
FR2756270B1 (fr) 1996-11-22 1999-03-26 Rhodia Chimie Sa Compose du type lamo3, m etant l'aluminium, le gallium ou l'indium, sous forme poudre ou sous forme frittee, son procede de preparation et son utilisation en tant que conducteur d'oxygene
JP4374631B2 (ja) * 1997-08-29 2009-12-02 祐作 滝田 酸化物イオン混合伝導体とその用途
DE19839202B4 (de) 1997-08-29 2009-09-10 Mitsubishi Materials Corp. Leitfähige Substanz aus Mischoxidionen und deren Verwendung
JP4178610B2 (ja) * 1997-08-29 2008-11-12 祐作 滝田 酸化物イオン伝導体とその用途
JPH11171653A (ja) * 1997-12-10 1999-06-29 Toto Ltd セラミック粉末及びその製造方法
JPH11191317A (ja) * 1997-12-25 1999-07-13 Ngk Spark Plug Co Ltd 導電性複酸化物及びその製造方法
DE19817615C1 (de) * 1998-04-21 1999-05-27 Forschungszentrum Juelich Gmbh La¶0¶¶.¶¶9¶Sr¶0¶¶.¶¶1¶(Ga¶1¶¶-¶¶y¶M¶y¶)¶0¶¶.¶¶8¶Mg¶0¶¶.¶¶2¶O¶3¶¶-¶¶x¶-Werkstoff für HT-BZ
JP4191821B2 (ja) 1998-07-24 2008-12-03 東京瓦斯株式会社 固体電解質用ランタンガレート系焼結体およびその製造方法、ならびにそれを固体電解質として用いた燃料電池
JP3667112B2 (ja) 1998-10-05 2005-07-06 日本特殊陶業株式会社 LaGaO3系粉末の製造方法及びLaGaO3系焼結体の製造方法
JP4153112B2 (ja) * 1998-11-26 2008-09-17 日本特殊陶業株式会社 導電性焼結体及びその製造方法
JP3230156B2 (ja) * 1999-01-06 2001-11-19 三菱マテリアル株式会社 固体酸化物型燃料電池の電極とその製造方法
JP2003007309A (ja) 2001-06-26 2003-01-10 Nissan Motor Co Ltd 電極材料、固体電解質型燃料電池及びガスセンサ

Also Published As

Publication number Publication date
EP1450425A4 (en) 2009-01-28
JP4393027B2 (ja) 2010-01-06
CN1586020A (zh) 2005-02-23
WO2003043111A1 (fr) 2003-05-22
CA2467120A1 (en) 2003-05-22
US7368095B2 (en) 2008-05-06
US20050031518A1 (en) 2005-02-10
JP2003151579A (ja) 2003-05-23
EP1450425A1 (en) 2004-08-25
KR20040066118A (ko) 2004-07-23

Similar Documents

Publication Publication Date Title
CN1285138C (zh) 固体氧化物燃料电池用复合氧化物及其制造方法
KR101592752B1 (ko) 가넷 분말, 이의 제조방법, 핫프레스를 이용한 고체전해질 시트 및 이의 제조방법
JP5329793B2 (ja) 炭酸バリウム粒子粉末、その製造方法およびペロブスカイト型チタン酸バリウムの製造方法
JP6161467B2 (ja) 固体酸化物型燃料電池用複合酸化物粉末及びその製造方法
NO312627B1 (no) Fremgangsmåte for fremstilling av et keramisk lantanideoksydmateriale, det derved oppnådde materialet samtanvendelse av dette
JPH0230619A (ja) 酸化物超電導体の製造方法及び酸化物超電導体の前駆体である複合酸化物粉体及びその製造方法
JP6927376B2 (ja) 固体酸化物形燃料電池用電解質材料とその前駆体の製造方法
JP5574881B2 (ja) 固体酸化物型燃料電池用空気極材料粉末及びその製造方法
CN1625527A (zh) 铈基复合氧化物、其烧结体和制备方法
CN112142466B (zh) 一种铌镱酸铅基反铁电陶瓷材料及其制备方法
CN112740445A (zh) 固体氧化物型燃料电池空气极用粉体及其制造方法
Wang et al. Low-temperature preparation of dense 10 mol%-Y 2 O 3-doped CeO 2 ceramics using powders synthesized via carbonate coprecipitation
Wang et al. Synthesis, characterization and sinterablity of 10 mol% Sm2O3-doped CeO2 nanopowders via carbonate precipitation
JPH0791054B2 (ja) 複合金属酸化物の製法
CN1136016A (zh) 大比表面积稀土氧化物及其制备方法
CN101054196A (zh) 一种电子-离子混合导体材料的合成方法
CN116239381B (zh) 一种增强抑制离子转变能力的激光陶瓷材料及其制备方法
RU2808853C1 (ru) Получение наноструктурированных материалов на основе BaZrO3
Yamanaka et al. Preparation of BaPbO3 from coprecipitated barium-lead oxalate
De Macedo et al. Synthesis, processing and characterization of ZrO2-8Y2O3, ZrO2-8CeO2 and La0. 78Sr0. 22MnO3 powders
CN114956109A (zh) 一种超高温稀土六硼化物粉体及其制备方法
JPH0986934A (ja) NiO/YSZ複合粉末の製造方法
JPH0621034B2 (ja) 銅アルコキシドの製法とこれを用いた超伝導粉末の製法
CN114380595A (zh) 一种低烧结温度的氧离子导电陶瓷材料及其制备方法
WANG et al. Synthesis of Gd-and (Gd, Sr)-Doped Ceria Ceramics and Their Characterizations

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061115

Termination date: 20101115