CN116239381B - 一种增强抑制离子转变能力的激光陶瓷材料及其制备方法 - Google Patents

一种增强抑制离子转变能力的激光陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN116239381B
CN116239381B CN202310255880.6A CN202310255880A CN116239381B CN 116239381 B CN116239381 B CN 116239381B CN 202310255880 A CN202310255880 A CN 202310255880A CN 116239381 B CN116239381 B CN 116239381B
Authority
CN
China
Prior art keywords
ceramic material
laser ceramic
parts
pmma
nano tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310255880.6A
Other languages
English (en)
Other versions
CN116239381A (zh
Inventor
王丹丹
赵伊卓
秦勇
赵利
任喆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan Yikun Intelligent Technology Co ltd
Original Assignee
Hainan Yikun Intelligent Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan Yikun Intelligent Technology Co ltd filed Critical Hainan Yikun Intelligent Technology Co ltd
Priority to CN202310255880.6A priority Critical patent/CN116239381B/zh
Publication of CN116239381A publication Critical patent/CN116239381A/zh
Application granted granted Critical
Publication of CN116239381B publication Critical patent/CN116239381B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6346Polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Abstract

本发明提供一种增强抑制离子转变能力的激光陶瓷材料及其制备方法。所述激光陶瓷材料包括以下原料制得:基材、碳纳米管粉末和PMMA微球,所述基材的化学式为Y3Al5‑xHfxO12:Ce3+,其中0<x<0.5。按重量份计,所述激光陶瓷材料包括以下重量份的原料制得:95~110份的Y3Al5‑ xHfxO12:Ce3+,其中0<x<0.5,碳纳米管粉末2~3份和PMMA微球0.5~1份。其制备方法包括以下步骤:将基材、碳纳米管粉末和PMMA微球混合,球磨,煅烧,制得目标激光陶瓷材料。本发明以Y3Al5‑xHfxO12:Ce3+为基材,加入碳纳米管粉末和PMMA微球,优选配比,有效增强其离子转变抑制能力,显著提高其激发波长为455nm条件下的耐激发密度。

Description

一种增强抑制离子转变能力的激光陶瓷材料及其制备方法
技术领域
本发明涉及激光陶瓷材料领域,特别涉及一种增强抑制离子转变能力的激光陶瓷材料及其制备方法。
背景技术
YAG:Ce3+陶瓷是激光照明的所需的核心发光材料,需要在高功率密度的蓝光轰击下使用,但是发光中心Ce3+在高功率激光轰击下会变成Ce4+,导致发光失效。因此,研究抑制离子转变的激光陶瓷材料至关重要。CN114149259A公开一种抑制离子转变的激光陶瓷材料,发明人进一步研究发现通过改进材料配方等,能够有效提高其耐激发密度,有效增强其离子转变抑制能力。
发明内容
鉴于此,本发明提出一种增强抑制离子转变能力的激光陶瓷材料及其制备方法,解决上述问题。
本发明的技术方案是这样实现的:
一种增强抑制离子转变能力的激光陶瓷材料,所述激光陶瓷材料包括以下原料制得:基材、碳纳米管粉末和PMMA微球,所述基材的化学式为Y3Al5-xHfxO12:Ce3+,其中0<x<0.5。PMMA:聚甲基丙烯酸甲酯。
进一步的,所述激光陶瓷材料包括以下重量份的原料:95~110份的Y3Al5-xHfxO12:Ce3+,其中0<x<0.5,碳纳米管粉末2~3份和PMMA微球0.5~1份。
进一步的,所述激光陶瓷材料包括以下重量份的原料:100份的Y3Al5-xHfxO12:Ce3+,其中0<x<0.5,碳纳米管粉末2.3份和PMMA微球0.7份。
进一步的,所述PMMA微球的规格为1.2g/cm3
本发明提供增强抑制离子转变能力的激光陶瓷材料的制备方法,包括以下步骤:将基材、碳纳米管粉末和PMMA微球混合,球磨,煅烧,制得目标激光陶瓷材料。
进一步的,所述球磨的转速为700~900rpm,球磨时间为8~12h。
进一步的,所述球磨加入按照料液比kg/L为1:3~5加入乙醇溶液。
进一步的,所述乙醇溶液的体积浓度为80%~95%。
进一步的,所述煅烧的温度为950~1050℃,时间为3~5h。
进一步的,所述煅烧的升温程序为从室温以3~5℃/min升温至400~500℃,再以8~10℃/min升温至950~1050℃。
与现有技术相比,本发明的有益效果是:本发明以Y3Al5-xHfxO12:Ce3+为基材,加入碳纳米管粉末和PMMA微球,使得材料形成更加优异结构,而且结构稳定性强,显著提高其激发波长为455nm条件下的耐激发密度,有效增强其离子转变抑制能力,较大提高产品质量,具有更好的应用前景。
具体实施方式
为了更好理解本发明技术内容,下面提供具体实施例,对本发明做进一步的说明。
本发明实施例所用的实验方法如无特殊说明,均为常规方法。
本发明实施例所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
本发明实施例所用PMMA微球规格为1.2g/cm3
实施例1
一种增强抑制离子转变能力的激光陶瓷材料,所述激光陶瓷材料包括以下原料制得:基材、碳纳米管粉末和PMMA微球,所述基材的化学式为Y3Al4.8Hf0.2O12:Ce3+;按重量份计,100份的Y3Al5-xHfxO12:Ce3+,其中0<x<0.5,碳纳米管粉末2.3份和PMMA微球0.7份。
上述激光陶瓷材料的制备方法,包括以下步骤:
(1)按照上述原料配比分别称取基材、碳纳米管粉末和PMMA微球,将基材、碳纳米管粉末和PMMA微球混合均匀,得到混合料;
(2)将混合料投入球磨机,按照料液比kg/L为1:3加入95v/v%乙醇溶液,以700rpm转速球磨12h;
(3)煅烧,煅烧的升温程序为从室温以3℃/min升温至400℃,再以8℃/min升温至950℃,保持950℃煅烧5h,制得目标激光陶瓷材料。
实施例2
一种增强抑制离子转变能力的激光陶瓷材料,所述激光陶瓷材料包括以下原料制得:基材、碳纳米管粉末和PMMA微球,所述基材的化学式为Y3Al4.8Hf0.2O12:Ce3+;按重量份计,100份的Y3Al5-xHfxO12:Ce3+,其中0<x<0.5,碳纳米管粉末2.3份和PMMA微球0.7份。
上述激光陶瓷材料的制备方法,包括以下步骤:
(1)按照上述原料配比分别称取基材、碳纳米管粉末和PMMA微球,将基材、碳纳米管粉末和PMMA微球混合均匀,得到混合料;
(2)将混合料投入球磨机,按照料液比kg/L为1:4加入90v/v%乙醇溶液,以800rpm转速球磨10h;
(3)煅烧,煅烧的升温程序为从室温以4℃/min升温至500℃,再以10℃/min升温至1000℃,保持1000℃煅烧4h,制得目标激光陶瓷材料。
实施例3
一种增强抑制离子转变能力的激光陶瓷材料,所述激光陶瓷材料包括以下原料制得:基材、碳纳米管粉末和PMMA微球,所述基材的化学式为Y3Al4.8Hf0.2O12:Ce3+;按重量份计,100份的Y3Al5-xHfxO12:Ce3+,其中0<x<0.5,碳纳米管粉末2.3份和PMMA微球0.7份。
上述激光陶瓷材料的制备方法,包括以下步骤:
(1)按照上述原料配比分别称取基材、碳纳米管粉末和PMMA微球,将基材、碳纳米管粉末和PMMA微球混合均匀,得到混合料;
(2)将混合料投入球磨机,按照料液比kg/L为1:5加入80v/v%乙醇溶液,以900rpm转速球磨8h;
(3)煅烧,煅烧的升温程序为从室温以5℃/min升温至500℃,再以10℃/min升温至1050℃,保持1050℃煅烧3h,制得目标激光陶瓷材料。
实施例4
一种增强抑制离子转变能力的激光陶瓷材料,所述激光陶瓷材料包括以下原料制得:基材、碳纳米管粉末和PMMA微球,所述基材的化学式为Y3Al4.8Hf0.2O12:Ce3+;按重量份计,100份的Y3Al5-xHfxO12:Ce3+,其中0<x<0.5,碳纳米管粉末2份和PMMA微球1份。
上述激光陶瓷材料的制备方法,包括以下步骤:
(1)按照上述原料配比分别称取基材、碳纳米管粉末和PMMA微球,将基材、碳纳米管粉末和PMMA微球混合均匀,得到混合料;
(2)将混合料投入球磨机,按照料液比kg/L为1:4加入90v/v%乙醇溶液,以800rpm转速球磨10h;
(3)煅烧,煅烧的升温程序为从室温以4℃/min升温至500℃,再以10℃/min升温至1000℃,保持1000℃煅烧4h,制得目标激光陶瓷材料。
实施例5
一种增强抑制离子转变能力的激光陶瓷材料,所述激光陶瓷材料包括以下原料制得:基材、碳纳米管粉末和PMMA微球,所述基材的化学式为Y3Al4.8Hf0.2O12:Ce3+;按重量份计,100份的Y3Al5-xHfxO12:Ce3+,其中0<x<0.5,碳纳米管粉末2.5份和PMMA微球0.5份。
上述激光陶瓷材料的制备方法,包括以下步骤:
(1)按照上述原料配比分别称取基材、碳纳米管粉末和PMMA微球,将基材、碳纳米管粉末和PMMA微球混合均匀,得到混合料;
(2)将混合料投入球磨机,按照料液比kg/L为1:4加入90v/v%乙醇溶液,以800rpm转速球磨10h;
(3)煅烧,煅烧的升温程序为从室温以4℃/min升温至500℃,再以10℃/min升温至1000℃,保持1000℃煅烧4h,制得目标激光陶瓷材料。
对比例1
一种增强抑制离子转变能力的激光陶瓷材料,与实施例2区别在于,使用碳化硅替代碳纳米管粉末,具体如下:
所述激光陶瓷材料包括以下原料制得:基材、碳化硅和PMMA微球,所述基材的化学式为Y3Al4.8Hf0.2O12:Ce3+;按重量份计,100份的Y3Al5-xHfxO12:Ce3+,其中0<x<0.5,碳化硅2.3份和PMMA微球0.7份。
上述激光陶瓷材料的制备方法与实施例2基本一致。具体包括以下步骤:
(1)按照上述原料配比分别称取基材、碳化硅和PMMA微球,将基材、碳化硅和PMMA微球混合均匀,得到混合料;
(2)将混合料投入球磨机,按照料液比kg/L为1:4加入90v/v%乙醇溶液,以800rpm转速球磨10h;
(3)煅烧,煅烧的升温程序为从室温以4℃/min升温至500℃,再以10℃/min升温至1000℃,保持1000℃煅烧4h,制得目标激光陶瓷材料。
对比例2
一种增强抑制离子转变能力的激光陶瓷材料,与实施例2区别在于,原料配比不同,具体如下:
所述激光陶瓷材料包括以下原料制得:基材、碳纳米管粉末和PMMA微球,所述基材的化学式为Y3Al4.8Hf0.2O12:Ce3+;按重量份计,100份的Y3Al5-xHfxO12:Ce3+,其中0<x<0.5,碳纳米管粉末0.7份和PMMA微球2.3份。
上述激光陶瓷材料的制备方法与实施例2一致,具体包括以下步骤:
(1)按照上述原料配比分别称取基材、碳纳米管粉末和PMMA微球,将基材、碳纳米管粉末和PMMA微球混合均匀,得到混合料;
(2)将混合料投入球磨机,按照料液比kg/L为1:4加入90v/v%乙醇溶液,以800rpm转速球磨10h;
(3)煅烧,煅烧的升温程序为从室温以4℃/min升温至500℃,再以10℃/min升温至1000℃,保持1000℃煅烧4h,制得目标激光陶瓷材料。
将上述实施例1-5以及对比例1-2制得激光陶瓷材料,在激发波长为455nm条件下检测耐激发密度,并与进行检测,并与对照例进行对比,对照例:化学式为Y3Al4.8Hf0.2O12:Ce3+的基材。计算耐激发密度提高百分比。
耐激发密度提高百分比=(实施例/对比例耐激发密度-对照例耐激发密度)/对照例耐激发密度*100%
结果如下:
上述结果表明,相比基材(Y3Al4.8Hf0.2O12:Ce3+),实施例1-5制得激光陶瓷材料显著提高激发波长为455nm条件下耐激发密度,提高百分比为26%~38%。
而对比例1-2的制得激光陶瓷材料其耐激发密度的提高幅度不够理想。其中,相比实施例2,对比例1的配方中使用碳化硅替代碳纳米管粉末,所制备激光陶瓷材料的耐激发密度明显下降。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种增强抑制离子转变能力的激光陶瓷材料,其特征在于,所述激光陶瓷材料包括以下重量份的原料制得:95~110份的Y3Al5-xHfxO12:Ce3+,其中0<x<0.5,碳纳米管粉末2~3份和PMMA微球0.5~1份;
所述的增强抑制离子转变能力的激光陶瓷材料的制备方法,包括以下步骤:将Y3Al5- xHfxO12:Ce3+、碳纳米管粉末和PMMA微球混合,球磨,煅烧,制得目标激光陶瓷材料;
所述球磨的转速为700~900rpm,球磨时间为8~12h;
所述球磨加入按照料液比kg/L为1:(3~5)加入乙醇溶液,所述乙醇溶液的体积浓度为80%~95%;
所述煅烧的温度为950~1050℃,时间为3~5h;所述煅烧的升温程序为从室温以3~5℃/min升温至400~500℃,再以8~10℃/min升温至950~1050℃。
2.根据权利要求1所述的增强抑制离子转变能力的激光陶瓷材料,其特征在于,所述激光陶瓷材料包括以下重量份的原料制得:100份的Y3Al5-xHfxO12:Ce3+,其中0<x<0.5,碳纳米管粉末2.3份和PMMA微球0.7份。
3.根据权利要求1所述的增强抑制离子转变能力的激光陶瓷材料,其特征在于,所述PMMA微球的规格为1.2g/cm3
CN202310255880.6A 2023-03-16 2023-03-16 一种增强抑制离子转变能力的激光陶瓷材料及其制备方法 Active CN116239381B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310255880.6A CN116239381B (zh) 2023-03-16 2023-03-16 一种增强抑制离子转变能力的激光陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310255880.6A CN116239381B (zh) 2023-03-16 2023-03-16 一种增强抑制离子转变能力的激光陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN116239381A CN116239381A (zh) 2023-06-09
CN116239381B true CN116239381B (zh) 2024-04-12

Family

ID=86635023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310255880.6A Active CN116239381B (zh) 2023-03-16 2023-03-16 一种增强抑制离子转变能力的激光陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116239381B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101259988A (zh) * 2008-02-25 2008-09-10 中国科学院上海硅酸盐研究所 一种具有光限幅特性的固态材料及制备方法
CN102782088A (zh) * 2010-01-28 2012-11-14 奥斯兰姆施尔凡尼亚公司 发光陶瓷转换器及其制备方法
CN104264117A (zh) * 2014-09-25 2015-01-07 盐城工学院 一种Ag纳米颗粒增强有机复合荧光材料发光强度的简便方法
CN107353028A (zh) * 2017-08-24 2017-11-17 佛山科学技术学院 一种缠绕型碳纳米管增强陶瓷基复合材料
WO2021104399A1 (zh) * 2019-11-26 2021-06-03 深圳市中光工业技术研究院 荧光陶瓷及其制备方法、发光装置以及投影装置
CN113024928A (zh) * 2021-03-24 2021-06-25 四川大学 一种光致变色的激光色变材料、其制备方法及其用途
WO2021243522A1 (zh) * 2020-06-01 2021-12-09 苏州君诺新材科技有限公司 含气孔的荧光陶瓷的制造方法
CN114149259A (zh) * 2021-11-24 2022-03-08 海南钇坤智能科技有限公司 一种抑制离子转变的激光陶瓷材料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101259988A (zh) * 2008-02-25 2008-09-10 中国科学院上海硅酸盐研究所 一种具有光限幅特性的固态材料及制备方法
CN102782088A (zh) * 2010-01-28 2012-11-14 奥斯兰姆施尔凡尼亚公司 发光陶瓷转换器及其制备方法
CN104264117A (zh) * 2014-09-25 2015-01-07 盐城工学院 一种Ag纳米颗粒增强有机复合荧光材料发光强度的简便方法
CN107353028A (zh) * 2017-08-24 2017-11-17 佛山科学技术学院 一种缠绕型碳纳米管增强陶瓷基复合材料
WO2021104399A1 (zh) * 2019-11-26 2021-06-03 深圳市中光工业技术研究院 荧光陶瓷及其制备方法、发光装置以及投影装置
WO2021243522A1 (zh) * 2020-06-01 2021-12-09 苏州君诺新材科技有限公司 含气孔的荧光陶瓷的制造方法
CN113024928A (zh) * 2021-03-24 2021-06-25 四川大学 一种光致变色的激光色变材料、其制备方法及其用途
CN114149259A (zh) * 2021-11-24 2022-03-08 海南钇坤智能科技有限公司 一种抑制离子转变的激光陶瓷材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
袁哲俊.《纳米科学与技术》.哈尔滨工业大学出版社,2005,第229-230页. *

Also Published As

Publication number Publication date
CN116239381A (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
CN1285138C (zh) 固体氧化物燃料电池用复合氧化物及其制造方法
TW200925252A (en) Fluorescent substance and method for manufacturing the same
CN106281317B (zh) 一种高亮度、大颗粒尺寸β-SiAlON:Eu2+绿色荧光粉及其制备方法
CN113755166B (zh) 一种疏水性白光碳点及其制备方法
CN109053175B (zh) 一种铈掺杂焦硅酸镥闪烁陶瓷及其制备方法
CN1244428C (zh) 利用溶胶-凝胶法制备纳米复合稀土钼材料的方法
CN112299861B (zh) 一种AlON透明陶瓷伪烧结剂与应用及透明陶瓷的制备方法
CN116239381B (zh) 一种增强抑制离子转变能力的激光陶瓷材料及其制备方法
Shi et al. Preparation of Eu2+-doped AlN phosphors by plasma activated sintering
CN110746967B (zh) 近红外长余辉纳米发光材料及其制备方法与应用
CN110937888B (zh) 一种料粉二次预烧的高性能永磁铁氧体材料及其制备方法
KR101302417B1 (ko) 다공성 실리카를 이용한 녹색 형광체의 제조방법 및 이에 따라 제조되는 녹색 형광체
CN110550945B (zh) 一种LuAG:Ce透明陶瓷的制备方法及LuAG:Ce透明陶瓷
CN1105153C (zh) 一种红色荧光粉的制备方法
JP2002535230A (ja) マグネシアを部分的に安定化した高強度ジルコニア
CN104774016B (zh) 一种高韧性柱状氧化铝陶瓷的制备方法
KR100351635B1 (ko) 구상의 알루미네이트계 청색 형광체의 제조방법
Maıtre et al. Effect of silica on the reactive sintering of polycrystalline Nd: YAG ceramics
CN109020543B (zh) 一种铈掺杂焦硅酸镥钪闪烁陶瓷及其制备方法
CN110183555B (zh) 一种桑葚状掺铕聚丙烯酸钡粉体的制备方法
CN117800740A (zh) 一种氮化硅陶瓷组合物、氮化硅陶瓷及其制备方法
CN102557598B (zh) Ce:Lu2SiO5多晶闪烁光学陶瓷的无压烧结制备方法
CN114921244B (zh) 一种纺锤棒状MgAl2O4:Tb3+荧光粉及制备方法
CN115368142B (zh) 一种低介电损耗氮化铝陶瓷材料及其制备方法
CN110818432B (zh) 一种超细高熵硼化物纳米粉体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant