WO2021104399A1 - 荧光陶瓷及其制备方法、发光装置以及投影装置 - Google Patents

荧光陶瓷及其制备方法、发光装置以及投影装置 Download PDF

Info

Publication number
WO2021104399A1
WO2021104399A1 PCT/CN2020/131911 CN2020131911W WO2021104399A1 WO 2021104399 A1 WO2021104399 A1 WO 2021104399A1 CN 2020131911 W CN2020131911 W CN 2020131911W WO 2021104399 A1 WO2021104399 A1 WO 2021104399A1
Authority
WO
WIPO (PCT)
Prior art keywords
scattering
fluorescent ceramic
refractive index
fluorescent
ceramic
Prior art date
Application number
PCT/CN2020/131911
Other languages
English (en)
French (fr)
Inventor
李乾
简帅
王艳刚
Original Assignee
深圳市中光工业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中光工业技术研究院 filed Critical 深圳市中光工业技术研究院
Priority to EP20892446.4A priority Critical patent/EP4015483A4/en
Priority to JP2022519736A priority patent/JP2023504972A/ja
Publication of WO2021104399A1 publication Critical patent/WO2021104399A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/0675Vegetable refuse; Cellulosic materials, e.g. wood chips, cork, peat, paper
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/80Optical properties, e.g. transparency or reflexibility
    • C04B2111/807Luminescent or fluorescent materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/652Reduction treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • This application relates to the field of fluorescent ceramics, in particular to a fluorescent ceramic and a preparation method thereof, a light emitting device and a projection device.
  • YAG fluorescent ceramics are different from YAG pure phase ceramics. By doping cerium and other lanthanide elements in YAG, a small amount of this element replaces part of the position of yttrium, so that YAG fluorescent ceramics can obtain luminous performance and can convert incident light into Longer wavelength light.
  • the present application provides a fluorescent ceramic and a preparation method thereof, a light emitting device, and a projection device, which can improve the scattering performance of the fluorescent ceramic to fluorescence, thereby improving the light efficiency utilization rate in the light source system.
  • the present application provides a fluorescent ceramic, which at least includes: a matrix; a light emitting center, a first scattering unit, and a second scattering unit distributed in the matrix; the refractive index of the first scattering unit is greater than the refractive index of the light emitting center ; The refractive index of the second scattering unit is less than the refractive index of the light emitting center.
  • the preparation method includes: preparing a fluorescent ceramic matrix material, a scattering material, and phosphor particles in a predetermined ratio, wherein the scattering material at least includes a pore former and a first scattering material.
  • the matrix material and the scattering material are mixed and ball milled in the first solvent to obtain the first ball mill slurry; the phosphor particles are mixed and ball milled in the second solvent to obtain the second ball mill slurry;
  • the first ball mill slurry and the second ball mill slurry are dried, and after drying, they are ground and sieved to obtain the first powder and the second powder; the first powder and the second powder are mixed, and the mixed powder is compressed, Obtain a preform; subject the preform to high temperature debinding treatment to obtain a green body; subject the green body to cold isostatic pressing; perform high temperature sintering on the green body after cold isostatic pressing, and obtain fluorescent ceramics after polishing .
  • the present application provides a light-emitting device, including an excitation light source and the aforementioned fluorescent ceramic, and the excitation light source is an incident laser light source.
  • the present application provides a projection device, including the aforementioned light-emitting device.
  • the beneficial effect of the present application is: different from the prior art, the present application uniformly distributes luminescent centers with different refractive indices, the first scattering unit, and the second scattering unit in the matrix of the fluorescent ceramic, and the first scattering unit
  • the refractive index is greater than the refractive index of the light emitting center, and the refractive index of the second scattering unit is less than the refractive index of the light emitting center. Since the scattering ability of particles depends on the linearity and relative refractive index of the particles, the incident laser light will be scattered at the interface of each phase.
  • the refraction and scattering of the incident laser light and fluorescence inside the fluorescent ceramic can be strengthened to make the excitation light
  • the optical path in the ceramic becomes longer, which weakens the lateral conduction of the fluorescence inside the fluorescent ceramic, so that the fluorescence is finally scattered from a small area near the incident laser, that is, the fluorescent spot produced is smaller, and the fluorescent ceramics’ ability to fluorescence is improved. Scattering performance.
  • FIG. 1 is a schematic structural diagram of an embodiment of the fluorescent ceramic of the present application.
  • FIG. 2 is a schematic flow chart of an embodiment of a method for preparing fluorescent ceramics according to the present application
  • FIG. 3 is a photo of the microstructure of the fluorescent ceramic prepared in Example 2.
  • FIG. 1 is a schematic structural diagram of an embodiment of the fluorescent ceramic of the present application.
  • the fluorescent ceramic includes at least: a substrate 101, a light emitting center 102, a first scattering unit 103 and a second scattering unit 104.
  • the luminous center 102, the first scattering unit 103 and the second scattering unit 104 are distributed in the matrix 101.
  • the substrate 101 can be prepared from a ceramic raw material.
  • the ceramic raw material can include one of alumina, aluminum nitride, silicon carbide, silicon nitride, and zirconia. It is characterized by low refractive index, good thermal conductivity, and light transmittance. Good to withstand the temperature during subsequent sintering.
  • the substrate 101 may be a cubic crystal system transparent ceramic with a garnet structure, and the light-emitting center 102 may be a phosphor with a garnet structure. When the light-emitting center 102 and the substrate 101 both have a garnet structure, the fluorescent ceramic can be optimized. The luminous performance and mechanical properties.
  • the matrix 101 is an alumina matrix
  • the luminous center 102 is a phosphor.
  • the alumina belongs to the trigonal crystal system and has birefringence. Therefore, there is grain boundary birefringence in the alumina matrix.
  • the incident laser light is in the fluorescent ceramic. Scattering occurs due to the birefringence of the grain boundary, and the scattered incident laser light can excite more luminous centers near it, which in turn makes the luminous efficiency good.
  • the inventor of the present application found that the refractive index of the alumina matrix and the refractive index of the phosphor are both 1.7-1.8, which are very close, resulting in the refraction or refraction of the incident laser and fluorescence by the fluorescent ceramics.
  • the scattering effect is weak, and it is easy to be transmitted to the surroundings in the lateral direction of the ceramic, which ultimately leads to a larger fluorescent spot of the fluorescent ceramic.
  • the spot spread is large, the collection efficiency of the collecting lens is low, which affects the light efficiency utilization rate in the light source system.
  • the inventors of the present application are distributed in the matrix with at least the difference between the refractive index and the luminescent center.
  • the first scattering unit and the second scattering unit, and the refractive index of the first scattering unit is greater than the refractive index of the light emitting center, and the refractive index of the second scattering unit is smaller than the refractive index of the light emitting center.
  • the feature of large difference in refractive index of the first scattering unit, the luminous center, and the first scattering unit in the fluorescent ceramic (it can be understood that because the refractive index of the substrate and the luminous center are close, the first scattering unit and the second scattering unit are different from each other.
  • the refractive index difference between the substrates is also large), and the scattering of incident laser light at the interface of each phase is strengthened.
  • the optical path of the excitation light in the ceramic becomes longer, and the lateral transmission of the fluorescence inside the fluorescent ceramic is weakened, so that the fluorescence finally moves from the small area near the incident laser.
  • the scope area is scattered out, that is, the generated fluorescent spot is small, and the scattering performance of the fluorescent ceramic to the fluorescent light is improved, thereby improving the light efficiency utilization rate in the light source system.
  • the refractive index difference between the first scattering unit 103 and the light emitting center 102, the second scattering unit 104 and the light emitting center is different, and the specific is not limited.
  • the refractive index difference between the first scattering unit 103 and the light emitting center 102 can reach 0.01-2.0, for example, 0.01, 0.4, 0.6, 0.8 or 2.0.
  • the refractive index difference between the second scattering unit 104 and the luminous center 102 can reach 0.01-2.0, for example, 0.01, 0.4, 0.6, 0.8 or 2.0.
  • the present application uniformly distributes the luminescence centers with different refractive indexes, the first scattering unit, and the second scattering unit in the matrix of the fluorescent ceramic, and the refractive index of the first scattering unit is greater than the refraction of the luminescence center.
  • the refractive index of the second scattering unit is smaller than the refractive index of the light emitting center. Since the scattering ability of particles depends on the linearity and relative refractive index of the particles, the incident laser light will be scattered at the interface of each phase.
  • the refraction and scattering of the incident laser light and fluorescence inside the fluorescent ceramic can be strengthened to make the excitation light
  • the optical path in the ceramic becomes longer, which weakens the lateral conduction of the fluorescence inside the fluorescent ceramic, so that the fluorescence is finally scattered from a small area near the incident laser, that is, the fluorescent spot produced is smaller, and the fluorescent ceramics’ ability to fluorescence is improved. Scattering performance, thereby improving the light efficiency utilization rate in the light source system.
  • the first scattering unit 103 is at least one of pores or first scattering particles.
  • the scattering effect on the excitation light source is better.
  • the particle size of the pores may be 0.2 ⁇ m, 0.8 ⁇ m, 1.0 ⁇ m, or 2.0 ⁇ m.
  • the particle size of the pores in this embodiment refers to the diameter of the pores when the pores are spherical; when the pores are non-spherical, the particle size of the pores is the diameter of the smallest circumscribed sphere of the pores.
  • the volume fraction of the pores in the fluorescent ceramic in this embodiment is 0.01%-10%, such as 0.01%, 0.1%, 1%, 5% or 10% .
  • the refractive index of the first scattering particles is 1.2-3.5, such as 1.2, 1.7, 2.1, 2.5, or 3.5.
  • the first scattering particles account for 0.1% to 1% of the total mass of the fluorescent ceramic, for example, 0.1%, 0.5%, 0.8%, or 1%.
  • the above-mentioned first scattering particles may be at least one of titanium dioxide, zirconium oxide, yttrium oxide, calcium fluoride or magnesium fluoride.
  • the second scattering unit 104 is at least one of pores or second scattering particles.
  • the scattering effect on the excitation light source is better.
  • the particle size of the pores may be 0.2 ⁇ m, 0.8 ⁇ m, 1.0 ⁇ m, or 2.0 ⁇ m.
  • the particle size of the pores in this embodiment refers to the diameter of the pores when the pores are spherical; when the pores are non-spherical, the particle size of the pores is the diameter of the smallest circumscribed sphere of the pores.
  • the volume fraction of the pores in the fluorescent ceramic in this embodiment is 0.01%-10%, such as 0.01%, 0.1%, 1%, 5% or 10% .
  • the refractive index of the second scattering particles is 1.2-2.5, such as 1.2, 1.4, 1.6, 1.8 or 2.5.
  • the second scattering particles account for 0.1% to 1% of the total mass of the fluorescent ceramic, such as 0.1%, 0.5%, 0.8%, or 1%.
  • the above-mentioned second scattering particles are at least one of calcium fluoride, magnesium fluoride, yttrium oxide or zirconium oxide.
  • the fluorescent ceramic further includes: third scattering units (not shown in the figure) distributed in the matrix 101,
  • the refractive index of the third scattering unit is between the first scattering unit 103 and the second scattering unit 104.
  • the refractive index difference between the first scattering unit 103 and the third scattering unit, the second The refractive index difference between the scattering unit 104 and the third scattering unit, and the refractive index difference between the light-emitting center and the third scattering unit are different, which are not specifically limited.
  • the absolute difference between the refractive index of the third scattering unit and the refractive index of the first scattering unit 103 is 0.6 to 1.5, for example, 0.6, 0.8, 1.0, or 1.5.
  • the absolute difference between the refractive index of the third scattering unit and the refractive index of the second scattering unit 104 is 0.6 to 1.5, for example, 0.6, 0.8, 1.0, or 1.5.
  • the third scattering unit is at least one of pores or third scattering particles.
  • the refractive index of the aforementioned third scattering particles is 1.2-2.5, such as 1.2, 1.4, 1.6, 1.8 or 2.5.
  • the third scattering particles account for 0.1% to 1% of the total mass of the fluorescent ceramic, such as 0.1%, 0.5%, 0.8%, or 1%.
  • the aforementioned light emitting center 102 is a lanthanide-doped YAG phosphor particle with a particle size of 5 ⁇ m-30 ⁇ m, for example, 5 ⁇ m, 10 ⁇ m, 20 ⁇ m, or 30 ⁇ m.
  • the doping amount is 1% to 5%, for example, 1%, 2%, 3%, or 5%.
  • the lanthanide-doped YAG phosphor particles account for 40%-50% of the total mass of the fluorescent ceramic, for example, 40%, 42%, 45% or 50%.
  • the phosphor as the luminous center 102 must have a sufficient amount to ensure the luminous intensity of the fluorescent ceramic.
  • the lanthanide-doped YAG phosphor particles account for 40% to 50% of the total mass of the fluorescent ceramic, the luminous efficiency is improved due to the luminescent center 102 with a large grain size, and there is no impurity phase, and the grain boundary is pure and uniform.
  • the light performance is good, which can meet the needs of high-power light sources such as incident laser; at the same time, due to the addition of scattering particles, when the incident laser irradiates the scattering particles, the excitation light source is scattered; after the excitation light source is scattered, the excitation light is in the ceramic
  • the optical path length of the light is longer, thereby improving the light conversion efficiency.
  • the material of the matrix 101 is alumina with a particle size of 0.05 ⁇ m to 1 ⁇ m, for example, 0.05 ⁇ m, 0.1 ⁇ m, 0.5 ⁇ m, or 1.0 ⁇ m.
  • Alumina accounts for 40%-60% of the total mass of the fluorescent ceramic, for example, 40%, 50%, 55% or 60%.
  • the lanthanide-doped YAG phosphor particles are Ce or Lu-doped YAG phosphor particles.
  • the preparation scheme adopted in this embodiment doped the YAG substrate 101 with Ce at a percentage of 1% to 5%.
  • Lu can be doped so that the YAG substrate 101 can also emit light, which is used as a fluorescent ceramic.
  • the YAG matrix 101 is used as the bonding medium to bond YAG phosphor particles with large grain sizes.
  • the fluorescent ceramic can be achieved within a certain range.
  • the color coordinate is adjustable; the doping content of YAG matrix 101 and YAG phosphor particles with large grain size are different, and the fluorescence spectrum range is different. The two complement each other and improve the color rendering of incident laser light.
  • the scattering particles with high refractive index are uniformly distributed in the fluorescent ceramics.
  • the incident laser is irradiated on the scattering particles, the excitation light source is scattered; after the excitation light source is scattered, the optical path of the excitation light in the ceramic becomes longer, thereby increasing the light Conversion efficiency.
  • FIG. 2 is a schematic flowchart of an embodiment of a method for preparing fluorescent ceramics according to the present application. This application also provides a method for preparing fluorescent ceramics, which includes:
  • the matrix material can be alumina with a purity of 99.0% and a particle size of 0.05 ⁇ m to 1 ⁇ m.
  • the phosphor particles can be selected from YAG phosphor particles doped with lanthanides with a purity of 99.0% and a particle size of 5 ⁇ m-30 ⁇ m.
  • the scattering material includes at least a pore former and first and second scattering particles.
  • the pore former is starch (particle size 0.1 ⁇ m-10 ⁇ m, such as 0.1 ⁇ m, 1 ⁇ m, 10 ⁇ m) or PMMA microspheres (particle diameter 0.1 ⁇ m-10 ⁇ m, such as 0.1 ⁇ m, 1 ⁇ m, 10 ⁇ m).
  • the first scattering particles can be selected from at least one of titanium dioxide, zirconium oxide, yttrium oxide, calcium fluoride or magnesium fluoride with a purity of 99.0%.
  • the second scattering particles can be at least one of calcium fluoride, magnesium fluoride, yttrium oxide or zirconium oxide with a purity of 99.0%.
  • the matrix material and the scattering material are mixed according to a preset ratio, and the first solvent is used as the liquid phase medium, and placed in a ball mill tank for ball milling and mixing.
  • the ball milling speed is 120r/min ⁇ 300r/min, and the ball milling is 1h ⁇ After 4h, the first ball mill slurry was obtained.
  • the first solvent can be silicone oil, ethanol, ethylene glycol, xylene, ethyl cellulose, terpineol, butyl carbitol, PVA, PVB, PAA, PEG in various systems including phenyl, methyl, etc.
  • One or more mixtures can be silicone oil, ethanol, ethylene glycol, xylene, ethyl cellulose, terpineol, butyl carbitol, PVA, PVB, PAA, PEG in various systems including phenyl, methyl, etc.
  • One or more mixtures are possible.
  • the first solvent is used as the liquid phase medium
  • the phosphor particles are put into a ball milling tank, and the ball milling is carried out, and the ball milling speed is 120r/min ⁇ 300r/min.
  • the second ball grinding slurry is obtained.
  • the second solvent can be silicone oil, ethanol, ethylene glycol, xylene, ethyl cellulose, terpineol, butyl carbitol, PVA, PVB, PAA, PEG in various systems including phenyl, methyl, etc. One or more mixtures.
  • the first ball mill slurry and the second ball mill slurry can be vacuum defoamed to obtain a low or even bubble-free first ball mill slurry and a second ball mill slurry suitable for casting.
  • the first ball mill slurry and the second ball mill slurry are dried in vacuum at a constant temperature to obtain dry powder, and the dry powder is calcined in a muffle furnace to remove organic components in the dry powder, and then the powder is sieved and granulated to obtain the first powder And the second powder.
  • the pressing method is not particularly limited, and conventional pressing methods such as cold isostatic pressing and the like can be used.
  • the pressing pressure is usually 5 MPa to 200 MPa, preferably 15 MPa to 100 MPa. If the pressure is too small, there will be more and larger pores, which will affect the density of the final sintered product.
  • the crucible loaded with the preform is placed in the muffle furnace near the thermocouple to start the debinding process.
  • the debinding process can be as follows: at a heating rate of 0.3°C/min to 0.6°C/min, heating to 200°C for 0h to 2h to remove free water, crystal water and other moisture in the body. Then, the temperature is increased to 500°C at a heating rate of 0.4°C/min-0.7°C/min for 0h to 3h to decompose and volatilize the organic matter in the green body. Then increase to the densification temperature at a heating rate of 0.4°C/min ⁇ 0.7°C/min for 2h ⁇ 6h.
  • the densification temperature is generally lower than the sintering temperature of the ceramic by 300°C to 1000°C to avoid the sintering process of the raw material powder and the ceramic body, and facilitate the removal of the raw material powder.
  • the cooling method is furnace cooling, and the atmosphere is atmospheric. Through the debinding process, not only the moisture and organic matter in the green body are removed, but also the green body obtains uniform shrinkage and achieves a certain degree of densification, with a volume shrinkage of 4%-30% and a weight loss of 20%-50%.
  • the fluorescent ceramic green body is subjected to cold isostatic pressing under a pressure of 150 MPa to 200 MPa to increase the density of the ceramic green body.
  • S80 Carry out high-temperature sintering treatment on the blank after cold isostatic pressing, and obtain fluorescent ceramics after polishing.
  • the fluorescent ceramic obtained after the heat treatment further includes a reduction treatment step for the fluorescent ceramic.
  • This step is carried out in a reducing atmosphere (such as a nitrogen/hydrogen mixed gas).
  • the reduction treatment is carried out at a temperature slightly lower than the sintering temperature of the heat treatment. It is 1200°C ⁇ 1650°C.
  • the reduction treatment process can remove impurities attached to the fluorescent ceramic in the heat treatment step, and prevent the impurities from becoming the heat generating center of the fluorescent ceramic in the working environment and affecting the use of the fluorescent ceramic.
  • the matrix of the fluorescent ceramic may be an alumina matrix
  • the luminescent center is a fluorescent powder. Since alumina belongs to the trigonal crystal system, there is birefringence phenomenon, so there is grain boundary birefringence in the alumina matrix fluorescent ceramic, and the incident laser light Fluorescent ceramics will scatter due to the birefringence of the grain boundaries, and the scattered incident laser light can excite more luminous centers in the vicinity, thereby making the luminous efficiency good.
  • the inventor of the present application found that the refractive index of the alumina matrix and the refractive index of the phosphor are both 1.7-1.8, which are very close, resulting in the refraction or refraction of the incident laser and fluorescence by the fluorescent ceramics.
  • the scattering effect is weak, and it is easy to be transmitted to the surroundings in the lateral direction of the ceramic, which ultimately leads to a larger fluorescent spot of the fluorescent ceramic.
  • the spot spread is large, the collection efficiency of the collecting lens is low, which affects the light efficiency utilization rate in the light source system.
  • the inventors of the present application are distributed in the matrix with at least the difference between the refractive index and the luminescent center.
  • the first scattering unit and the second scattering unit, and the refractive index of the first scattering unit is greater than the refractive index of the light emitting center, and the refractive index of the second scattering unit is smaller than the refractive index of the light emitting center.
  • the feature of large difference in refractive index of the first scattering unit, the luminous center, and the first scattering unit in the fluorescent ceramic (it can be understood that because the refractive index of the substrate and the luminous center are close, the first scattering unit and the second scattering unit are different from each other.
  • the refractive index difference between the substrates is also large), and the scattering of incident laser light at the interface of each phase is strengthened.
  • the optical path of the excitation light in the ceramic becomes longer, and the lateral transmission of the fluorescence inside the fluorescent ceramic is weakened, so that the fluorescence finally moves from the small area near the incident laser.
  • the scope area is scattered out, that is, the generated fluorescent spot is small, and the scattering performance of the fluorescent ceramic to the fluorescent light is improved, thereby improving the light efficiency utilization rate in the light source system.
  • the present application uniformly distributes the luminescence centers with different refractive indexes, the first scattering unit, and the second scattering unit in the matrix of the fluorescent ceramic, and the refractive index of the first scattering unit is greater than the refraction of the luminescence center.
  • the refractive index of the second scattering unit is smaller than the refractive index of the luminescent center. Since the scattering ability of the particles depends on the linearity and relative refractive index of the particles, the incident laser will be scattered at the interface of each phase. Therefore, the fluorescent ceramics can be strengthened.
  • the refraction and scattering effects of the incident laser light and the fluorescence inside it make the optical path of the excitation light in the ceramic become longer, thereby weakening the lateral conduction of the fluorescence inside the fluorescent ceramic, so that the fluorescence is finally scattered from a small area near the incident laser. That is, the generated fluorescent spot is smaller, and the scattering performance of the fluorescent ceramic to the fluorescent light is improved, thereby improving the light efficiency utilization rate in the light source system.
  • alumina powder, zirconia powder and magnesium fluoride powder with a purity of 99.0% or more, weigh 99.0% alumina powder, 0.5% zirconia powder and 0.5% magnesium fluoride powder according to mass percentages, and then use wet ball milling Method: Use absolute ethanol as a medium to grind the mixed powder raw materials, and the ball milling time is 24 hours to obtain the first ball mill slurry.
  • the mass percentage of PVB in the PVB ethanol solution is 0.5%-2%.
  • the mass percentage refers to the percentage of the mass of a certain substance to the total mass, here refers to the mass of PVB to the total percentage of the solution composed of PVB and ethanol.
  • the mixed fluorescent ceramic powder is pressed into a block under a pressure of 80 MPa. Then the molded ceramic blank is debinding in a muffle furnace. The debinding process is 500°C for 2 hours and 900°C for 4 hours. After debinding, the fluorescent ceramic green body is subjected to cold isostatic pressing under a pressure of 200 MPa to increase the density of the ceramic green body.
  • the ceramic green body is placed in a vacuum furnace with a vacuum degree of 10-3 Pa and sintered at 1650°C for 4 hours. After vacuum sintering, the fluorescent ceramics are annealed at 1300°C for 10 hours in an air atmosphere; then the fluorescent ceramics are thinned and polished, and finally usable fluorescent ceramics are obtained.
  • alumina powder with a purity of 99.9% or more, titanium oxide with a purity of 99%, and a pore former and weigh 98.0% of the alumina powder, 1.0% of the titanium oxide powder and 1.0% of the pore former according to mass percentages, and anhydrous Ethanol is used as the medium to grind the mixed powder raw materials, and the ball milling time is 24 hours to obtain the first ball mill slurry.
  • the mass percentage of PVB in the PVB ethanol solution is 0.5%-2%.
  • the mass percentage refers to the percentage of the mass of a certain substance to the total mass, here refers to the mass of PVB to the total percentage of the solution composed of PVB and ethanol.
  • Vacuum drying is carried out at 60°C, then grinding and sieving are carried out, and the powder is filled for later use.
  • the mixed fluorescent ceramic powder is pressed into a block under a pressure of 50 MPa. Then the formed ceramic green body is debinding in a muffle furnace. The debinding process is 600°C for 2 hours and 1000°C for 6 hours. After debinding, the fluorescent ceramic green body is subjected to cold isostatic pressing under a pressure of 180 MPa to increase the density of the ceramic green body.
  • the ceramic green body is placed in a vacuum furnace with a vacuum degree of 10Pa-3Pa and sintered at 1600°C for 4h. After vacuum sintering, the fluorescent ceramic is annealed at 1350°C for 10 hours in an air atmosphere; then the fluorescent ceramic is thinned and polished to finally obtain a usable fluorescent ceramic.
  • FIG. 3 is a photo of the microstructure of the fluorescent ceramic prepared in Example 2. It can be seen from the figure that after removing the uniformly dispersed phosphor particles in the alumina ceramic matrix, there are still a small amount of low refractive index phase (pores) and high refractive index phase (titanium oxide).
  • alumina powder, magnesium fluoride, titanium oxide and zirconia with a purity of more than 99.9%, and weigh 99.0% of alumina powder, 0.30% of magnesium fluoride, 0.30% of titanium oxide and 0.40% of zirconia according to mass percentages.
  • the wet ball milling method is used to grind the mixed powder raw materials with anhydrous ethanol as the medium, and the ball milling time is 36 hours to obtain the first ball mill slurry.
  • the mass percentage of PVB in the PVB ethanol solution is 0.5%-2%.
  • the mass percentage refers to the percentage of the mass of a certain substance to the total mass, here refers to the mass of PVB to the total percentage of the solution composed of PVB and ethanol.
  • the ceramic powder into the graphite mold, perform pre-pressing treatment under the pressure of 5-20MPa, then place the graphite mold in the SPS hot pressing furnace, in a vacuum/argon atmosphere, heat preservation and sintering at 1200°C-1600°C 0.5 h-4h, the pressure during sintering is 20MPa-150MPa.
  • the fluorescent ceramic is annealed at 1300°C for 10 hours in an air atmosphere; then the fluorescent ceramic is thinned and polished, and finally a usable fluorescent ceramic is obtained.
  • Vacuum drying is carried out at 70°C, then grinding and sieving are carried out, and the powder is filled for later use.
  • the ceramic powder into a graphite mold, and perform pre-pressing treatment at a pressure of 50MPa-20MPa, and then place the graphite mold in an SPS hot pressing furnace, in a vacuum/argon atmosphere, heat preservation and sintering at 1200°C-1600°C for 0.5 h-4h, the pressure during sintering is 200MPa-150MPa.
  • the fluorescent ceramic is annealed at 1300°C for 10 hours in an air atmosphere; then the fluorescent ceramic is thinned and polished, and finally a usable fluorescent ceramic is obtained.
  • Example 1 The fluorescent ceramics prepared in Example 1, Example 2, and Example 3 and the fluorescent ceramics that have not been optimized (ie comparative example) were processed into test samples, and placed in a test platform for test comparison.
  • the test results obtained are as follows As shown, the light effect in the table specifically refers to the conversion efficiency of the blue incident laser light power.
  • the luminescence centers with different refractive indices, the first scattering unit, and the second scattering unit are uniformly distributed in the matrix of the fluorescent ceramic in Examples 1-3, and the first scattering unit and the luminescence center in the matrix are uniformly distributed.
  • the feature that the refractive index difference of the first scattering unit is large (it can be understood that due to the close refractive index of the substrate and the luminous center, the refractive index difference between the first scattering unit and the second scattering unit and the substrate is also large) Since the scattering ability of particles depends on the linearity and relative refractive index of the particles, the incident laser will be scattered at the interface of each phase.
  • the fluorescent ceramic can strengthen the refraction and scattering of the incident laser and fluorescence inside the fluorescent ceramic, so that excitation
  • the optical path of light in the ceramic becomes longer, which weakens the lateral conduction of the fluorescence inside the fluorescent ceramic, so that the fluorescence is finally scattered from a small area near the incident laser, that is, the fluorescent spot produced is smaller, which improves the fluorescence of the fluorescent ceramic.
  • the scattering performance of the light source system improves the light efficiency utilization rate in the light source system.
  • the present application also provides a light-emitting device, including an excitation light source and the above-mentioned fluorescent ceramic, wherein the excitation light source is an incident laser light source, and the fluorescent ceramic is irradiated by the excitation light source to generate high-brightness light.
  • the light-emitting device can be applied to projection and display systems, such as liquid crystal displays (LCD, Liquid Crystal Display) or digital light processor (DLP, Digital Light Processor) projectors; it can also be applied to lighting systems, such as automotive lighting; or Used in the field of 3D display technology.
  • LCD liquid crystal displays
  • DLP Digital Light Processor
  • the above-mentioned fluorescent ceramic can also be made into a movable device, such as a color wheel, so that the excitation light source emitted by the excitation light source is incident on the rotating color wheel to generate incident laser light.
  • the application also provides a projection device.
  • the projection device may be an educational projector, an incident laser TV, a micro-projector or a cinema machine, etc.
  • the projection device includes the light-emitting device of the above-mentioned embodiment.
  • For the specific structure of the light-emitting device refer to the above-mentioned implementation. example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Composite Materials (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Luminescent Compositions (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

一种荧光陶瓷及其制备方法、发光装置以及投影装置,涉及荧光陶瓷技术领域,该荧光陶瓷至少包括:基质(101);分布于基质(101)内的发光中心(102)、第一散射单元(103)以及第二散射单元(104);第一散射单元(103)的折射率大于发光中心(102)的折射率;第二散射单元(104)的折射率小于发光中心(102)的折射率。通过上述方式,能够提高荧光陶瓷对荧光的散射性能,从而提高了光源系统中的光效利用率。

Description

荧光陶瓷及其制备方法、发光装置以及投影装置 技术领域
本申请涉及荧光陶瓷领域,特别是涉及一种荧光陶瓷及其制备方法、发光装置以及投影装置。
背景技术
YAG荧光陶瓷有别于YAG的纯相陶瓷,通过在YAG中掺杂铈等镧系元素,使得微量的该元素取代部分钇的位置,从而使YAG荧光陶瓷获得发光性能,能够将入射光转换为波长更长的光。
本申请的发明人在长期的研发过程中,发现对于荧光陶瓷而言,如何提高其发光效率至关重要。荧光陶瓷中纯相陶瓷由于其自身结构原因,难以对激发光源有较高的利用率;在荧光陶瓷受激发时,其发光中心相对较少而导致其发光效率较差。
因此,亟需发明一种新型荧光陶瓷,来提升目前透明荧光陶瓷的发光效率。
发明内容
本申请提供一种荧光陶瓷及其制备方法、发光装置以及投影装置,能够提高荧光陶瓷对荧光的散射性能,从而提高了光源系统中的光效利用率。
一方面,本申请提供了一种荧光陶瓷,荧光陶瓷至少包括:基质;分布于基质内的发光中心、第一散射单元以及第二散射单元;第一散射单元的折射率大于发光中心的折射率;第二散射单元的折射率小于发光中心的折射率。
另一方面,本申请提供了一种荧光陶瓷的制备方法,制备方法包括:按照预定比例配制荧光陶瓷的基质材料、散射材料以及荧光粉颗粒,其 中,散射材料至少包括造孔剂以及第一散射颗粒、第二散射颗粒;将基质材料以及散射材料在第一溶剂中混合球磨,得到第一球磨浆料;将荧光粉颗粒在第二溶剂中混合球磨,得到第二球磨浆料;分别对第一球磨浆料和第二球磨浆料进行干燥,干燥后进行研磨过筛得到第一粉体和第二粉体;混合第一粉体和第二粉体,对混合后的粉体进行压制,得到预成型件;将预成型件进行高温排胶处理,得到素坯;将素坯进行冷等静压处理;对冷等静压处理后的素坯进行高温烧结处理,抛光后,得到荧光陶瓷。
又一方面,本申请提供了一种发光装置,包括激发光源和前述的荧光陶瓷,激发光源为入射激光光源。
再一方面,本申请提供了一种投影装置,包括如前述的发光装置。
本申请的有益效果是:区别于现有技术的情况,本申请在荧光陶瓷的基质中均匀分布了具有不同折射率的发光中心、第一散射单元以及第二散射单元,且第一散射单元的折射率大于发光中心的折射率、第二散射单元的折射率小于发光中心的折射率。由于粒子散射能力取决于粒子的线度和相对折射率,入射激光在各个相的界面处会发生散射,因此,可以强化荧光陶瓷对其内部的入射激光和荧光的折射和散射作用,使得激发光在陶瓷中的光程变长,进而减弱荧光在荧光陶瓷内部的横向传导,使得荧光最终从入射激光附近的小范围区域散射出去,即产生的荧光光斑较小,进而提高了荧光陶瓷对荧光的散射性能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1为本申请荧光陶瓷的一实施例的结构示意图;
图2为本申请荧光陶瓷的制备方法一实施例的流程示意图;
图3为实施例2所制备的荧光陶瓷的显微组织照片。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性的劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,图1是本申请荧光陶瓷的一实施例的结构示意图,该荧光陶瓷至少包括:基质101、发光中心102、第一散射单元103以及第二散射单元104。发光中心102、第一散射单元103以及第二散射单元104分布于基质101内。
其中,基质101可以由陶瓷原料制备得到,陶瓷原料可以包括氧化铝、氮化铝、碳化硅、氮化硅、氧化锆中的一种,特点是折射率较低、导热效果好、透光性好,以耐受后续烧结时的温度。在其他实施例中,基质101可以为石榴石结构的立方晶系的透明陶瓷,发光中心102可以为石榴石结构的荧光粉,发光中心102和基质101同为石榴石结构时,能够优化荧光陶瓷的发光性能和机械性能。
优选的,基质101为氧化铝基质,发光中心102为荧光粉,其中,氧化铝属于三方晶系,存在双折射现象,所以氧化铝基质中存在着晶界双折射现象,入射激光在荧光陶瓷中会因晶界双折射而发生散射,被散射的入射激光能够激发其附近更多的发光中心,进而使得发光效率良好。
但是本申请的发明人在长期的研发过程中,发现由于氧化铝基质的折射率与荧光粉的折射率均为1.7-1.8,极为接近,导致荧光陶瓷对其内部的入射激光及荧光的折射或散射作用较弱,容易在陶瓷的横向方向上向四周传导,最终导致荧光陶瓷的荧光光斑较大,光斑扩散较大时,收集透镜的收集效率较低,影响光源系统中的光效利用率。
考虑到粒子散射能力取决于粒子的线度和相对折射率,本申请的发明人在氧化铝-荧光粉两相荧光陶瓷的基础上,在基质中分布有折射率与发光中心差异较大的至少第一散射单元和第二散射单元,且第一散射单 元的折射率大于发光中心的折射率,第二散射单元的折射率小于发光中心的折射率。利用荧光陶瓷内第一散射单元、发光中心、第一散射单元的折射率差异较大的特征(可以理解的是,由于基质与发光中心的折射率接近,第一散射单元和第二散射单元与基质之间的折射率差异也较大),入射激光在各相界面处会发生的散射被强化。通过强化荧光陶瓷对其内部的入射激光和荧光的折射和散射作用,使得激发光在陶瓷中的光程变长,进而减弱荧光在荧光陶瓷内部的横向传导,使得荧光最终从入射激光附近的小范围区域散射出去,即产生的荧光光斑较小,进而提高了荧光陶瓷对荧光的散射性能,从而提高了光源系统中的光效利用率。
进一步地,选用不同的发光中心102、第一散射单元103、第二散射单元104的材料时,第一散射单元103与发光中心102之间的折射率差值、第二散射单元104与发光中心102之间的折射率差值各不相同,具体不做限定。其中,第一散射单元103与发光中心102之间的折射率差值可达0.01~2.0,例如,0.01、0.4、0.6、0.8或2.0。第二散射单元104与发光中心102之间的折射率差值可达0.01~2.0,例如,0.01、0.4、0.6、0.8或2.0。
区别于现有技术的情况,本申请在荧光陶瓷的基质中均匀分布了具有不同折射率的发光中心、第一散射单元以及第二散射单元,且第一散射单元的折射率大于发光中心的折射率、第二散射单元的折射率小于发光中心的折射率。由于粒子散射能力取决于粒子的线度和相对折射率,入射激光在各个相的界面处会发生散射,因此,可以强化荧光陶瓷对其内部的入射激光和荧光的折射和散射作用,使得激发光在陶瓷中的光程变长,进而减弱荧光在荧光陶瓷内部的横向传导,使得荧光最终从入射激光附近的小范围区域散射出去,即产生的荧光光斑较小,进而提高了荧光陶瓷对荧光的散射性能,从而提高了光源系统中的光效利用率。
在一实施例中,第一散射单元103为气孔或第一散射颗粒中的至少一种。
其中,上述气孔的折射率为1,气孔的粒径为0.2~2μm时,对激发 光源的散射效果较佳。气孔的粒径可以为0.2μm、0.8μm、1.0μm或2.0μm。
需要说明的是,本实施例的气孔的粒径,在气孔为球形时,指气孔的直径;当气孔为非球形时,气孔的粒径为该气孔的最小外接球的直径。
为避免因气孔过多或过少影响荧光陶瓷额透光性,本实施例中气孔占荧光陶瓷的体积分数为0.01%~10%,例如0.01%、0.1%、1%、5%或10%。
在一实施例中,上述第一散射颗粒的折射率为1.2-3.5,例如1.2、1.7、2.1、2.5或3.5。第一散射颗粒占荧光陶瓷总质量的0.1%~1%,例如0.1%、0.5%、0.8%或1%。
其中,上述第一散射颗粒可以为二氧化钛、氧化锆、氧化钇、氟化钙或氟化镁中的至少一种。
进一步地,第二散射单元104为气孔或第二散射颗粒中的至少一种。
其中,气孔的折射率为1,气孔的粒径为0.2~2μm时,对激发光源的散射效果较佳。气孔的粒径可以为0.2μm、0.8μm、1.0μm或2.0μm。
需要说明的是,本实施例的气孔的粒径,在气孔为球形时,指气孔的直径;当气孔为非球形时,气孔的粒径为该气孔的最小外接球的直径。
为避免因气孔过多或过少影响荧光陶瓷额透光性,本实施例中气孔占荧光陶瓷的体积分数为0.01%~10%,例如0.01%、0.1%、1%、5%或10%。
在一实施例中,上述第二散射颗粒的折射率为1.2-2.5,例如1.2、1.4、1.6、1.8或2.5。第二散射颗粒占荧光陶瓷总质量的0.1%~1%,例如0.1%、0.5%、0.8%或1%。
其中,上述第二散射颗粒为氟化钙、氟化镁、氧化钇或氧化锆中的至少一种。
在一实施例中,为了进一步提高荧光陶瓷的散射效果,上述荧光陶瓷还包括:分布于基质101内的第三散射单元(图未示出),
其中,上述第三散射单元的折射率介于所述第一散射单元103与所述第二散射单元104之间。
进一步地,选用不同的发光中心102、第一散射单元103、第二散 射单元104、第三散射单元的材料时,第一散射单元103与第三散射单元之间的折射率差值、第二散射单元104与第三散射单元之间的折射率差值、发光中心与第三散射单元之间的折射率差值各不相同,具体不做限定。其中,第三散射单元的折射率与第一散射单元103的折射率之间的绝对差值为0.6~1.5,例如,0.6、0.8、1.0或1.5。第三散射单元的折射率与第二散射单元104的折射率之间的绝对差值为0.6~1.5,例如,0.6、0.8、1.0或1.5。
具体地,第三散射单元为气孔或第三散射颗粒中的至少一种。上述第三散射颗粒的折射率为1.2-2.5,例如1.2、1.4、1.6、1.8或2.5。第三散射颗粒占荧光陶瓷总质量的0.1%~1%,例如0.1%、0.5%、0.8%或1%。
在一实施例中,上述发光中心102为粒径5μm~30μm的镧系元素掺杂的YAG荧光粉颗粒,例如,5μm、10μm、20μm或30μm。掺杂量为1%~5%,例如,1%、2%、3%或5%。镧系元素掺杂的YAG荧光粉颗粒占荧光陶瓷总质量的40%~50%,例如,40%、42%、45%或50%。
具体地,可以理解的是,荧光粉作为发光中心102,必须要有足够的量,才能保证荧光陶瓷发光强度。镧系元素掺杂的YAG荧光粉颗粒占荧光陶瓷总质量的40%~50%时,由于具有大晶粒粒径的发光中心102,提高了发光效率,且没有杂相,晶界纯净,匀光性能好,能够满足入射激光等大功率光源的使用需求;同时,由于加入了散射颗粒,当入射激光照射到散射颗粒上时,激发光源被散射;激发光源被散射后,激发光在陶瓷中的光程变长,从而提升光转换效率。
基质101的材料为粒径0.05μm~1μm的氧化铝,例如,0.05μm、0.1μm、0.5μm或1.0μm。氧化铝占荧光陶瓷总质量的40%~60%,例如,40%、50%、55%或60%。
在一实施例中,镧系元素掺杂的YAG荧光粉颗粒为Ce或Lu掺杂的YAG荧光粉颗粒。
具体地,本实施例采用的制备方案在YAG基质101中掺杂了百分比为1%~5%的Ce,在其他实施方式中可以掺杂Lu,使得YAG基质101也可以发光,作为荧光陶瓷的发光补充。本实施例中,YAG基质101做 粘结介质粘结大晶粒粒径的YAG荧光粉颗粒,进一步可以通过调节粘结介质中Ce或Lu的掺杂含量,可以在一定范围内实现荧光陶瓷的色坐标可调;YAG基质101和大晶粒粒径的YAG荧光粉颗粒中的掺杂含量不同,荧光光谱范围不同,二者相互补充,提高了受入射激光的显色性。并且在荧光陶瓷中均匀分布了高折射率的散射颗粒,当入射激光照射到散射颗粒上时,激发光源被散射;激发光源被散射后,激发光在陶瓷中的光程变长,从而提升光转换效率。
图2为本申请荧光陶瓷的制备方法一实施例的流程示意图。本申请还提供了一种荧光陶瓷的制备方法,制备方法包括:
S10:按照预定比例配制荧光陶瓷的基质材料、散射材料以及荧光粉颗粒。
具体地,基质材料可以选用纯度为99.0%,粒径0.05μm~1μm的氧化铝。荧光粉颗粒可以选用纯度为99.0%,粒径5μm~30μm的镧系元素掺杂的YAG荧光粉颗粒。
其中,散射材料至少包括造孔剂以及第一散射颗粒、第二散射颗粒。
造孔剂为淀粉(粒径0.1μm~10μm,例如0.1μm、1μm、10μm)或者PMMA微球(粒径0.1μm~10μm,例如0.1μm、1μm、10μm)。第一散射颗粒可以选用纯度为99.0%的二氧化钛、氧化锆、氧化钇、氟化钙或氟化镁中的至少一种。第二散射颗粒可以选用纯度为99.0%的氟化钙、氟化镁、氧化钇或氧化锆中的至少一种。
S20:将基质材料以及散射材料在第一溶剂中混合球磨,得到第一球磨浆料。
具体地,将基质材料以及散射材料按照预设配比混合,以第一溶剂作为液相介质,放入球磨罐中,进行球磨混料,球磨转速为120r/min~300r/min,球磨1h~4h后,得到第一球磨浆料。第一溶剂可以为包括苯基、甲基等各个体系的硅油、乙醇、乙二醇、二甲苯、乙基纤维素、萜品醇、丁基卡必醇、PVA、PVB、PAA、PEG中的一种或多种的混合体。
S30:将荧光粉颗粒在第二溶剂中混合球磨,得到第二球磨浆料。
具体地,以第一溶剂作为液相介质,将荧光粉颗粒放入球磨罐中, 进行球磨混料,球磨转速为120r/min~300r/min,球磨0.5h~4h后,得到第二球磨浆料。第二溶剂可以为包括苯基、甲基等各个体系的硅油、乙醇、乙二醇、二甲苯、乙基纤维素、萜品醇、丁基卡必醇、PVA、PVB、PAA、PEG中的一种或多种的混合体。
S40:分别对第一球磨浆料和第二球磨浆料进行干燥,干燥后进行研磨过筛得到第一粉体和第二粉体。
具体地,进行干燥前,可以对第一球磨浆料和第二球磨浆料进行真空除泡,得到适用于流延成型的低气泡甚至无气泡第一球磨浆料和第二球磨浆料。将对第一球磨浆料和第二球磨浆料在真空恒温干燥得到干粉,将干粉在马弗炉中煅烧,除去干粉中的有机成分,然后将该粉末过筛造粒,得到第一粉体和第二粉体。
S50:混合第一粉体和第二粉体,对混合后的粉体进行压制,得到预成型件。
具体地,称取适量的第一粉体和第二粉体装入石墨模具,对混合后的粉体进行压制。压制的方法不特别限定,可使用常规的压制方法如冷等静压法等进行。压制的压力通常在5MPa~200MPa,优选15MPa~100MPa压力下。如果压力太小,会导致孔隙较多较大,影响最终烧结成品的致密度。
S60:将预成型件进行高温排胶处理,得到素坯。
具体地,将载有预成型件的坩埚放入马弗炉中靠近热电偶的位置,开始进行排胶过程。排胶工艺可为:以0.3℃/min~0.6℃/min的升温速率,升温至200℃保温0h~2h,排除坯体中的自由水、结晶水等水分。再以0.4℃/min~0.7℃/min的升温速率升温至500℃保温0h~3h,使坯体中的有机物分解挥发。再以0.4℃/min~0.7℃/min的升温速率升至致密化温度保温2h~6h,通过本过程,陶瓷坯体能够产生一定的强度,不至于坍塌。致密化温度一般低于该陶瓷烧结温度300℃~1000℃,避免原料粉末与陶瓷坯体发生烧结过程,为原料粉末的清除提供便利。冷却方式为炉冷,气氛为大气气氛。通过排胶工艺,不仅清除了坯体中的水分和有机物,还使坯体获得了均匀收缩、实现了一定的致密化,体积收 缩为4%-30%,失重20%-50%。
S70:将素坯进行冷等静压处理。
具体地,在排胶结束后将荧光陶瓷素坯在150MPa~200MPa压力下进行冷等静压处理,以提高陶瓷素坯的致密度。
S80:对冷等静压处理后的素坯进行高温烧结处理,抛光后,得到荧光陶瓷。
将排胶干净的陶瓷坯体再次放入马弗炉中,在1℃/min~3℃/min的升温速率下升温至烧结温度,保温1h~12h,气氛为空气,再随炉冷却至室温,抛光后,得到荧光陶瓷。
经过热处理后得到的荧光陶瓷,还进一步包括对荧光陶瓷的还原处理步骤,该步骤在还原气氛下进行(如氮气/氢气混合气体),该还原处理在略低于热处理烧结温度下进行,还原温度为1200℃~1650℃。该还原处理过程可以将热处理步骤中附着在荧光陶瓷上的杂质去除,避免杂质成为荧光陶瓷在工作环境下的产热中心而影响荧光陶瓷的使用。
优选的,荧光陶瓷的基质可以为氧化铝基质,发光中心为荧光粉,由于氧化铝属于三方晶系,存在双折射现象,所以氧化铝基质的荧光陶瓷中存在着晶界双折射,入射激光在荧光陶瓷中会因晶界双折射而发生散射,被散射的入射激光能够激发其附近更多的发光中心,进而使得发光效率良好。
但是本申请的发明人在长期的研发过程中,发现由于氧化铝基质的折射率与荧光粉的折射率均为1.7-1.8,极为接近,导致荧光陶瓷对其内部的入射激光及荧光的折射或散射作用较弱,容易在陶瓷的横向方向上向四周传导,最终导致荧光陶瓷的荧光光斑较大,光斑扩散较大时,收集透镜的收集效率较低,影响光源系统中的光效利用率。
考虑到粒子散射能力取决于粒子的线度和相对折射率,本申请的发明人在氧化铝-荧光粉两相荧光陶瓷的基础上,在基质中分布有折射率与发光中心差异较大的至少第一散射单元和第二散射单元,且第一散射单元的折射率大于发光中心的折射率,第二散射单元的折射率小于发光中心的折射率。利用荧光陶瓷内第一散射单元、发光中心、第一散射单元 的折射率差异较大的特征(可以理解的是,由于基质与发光中心的折射率接近,第一散射单元和第二散射单元与基质之间的折射率差异也较大),入射激光在各相界面处会发生的散射被强化。通过强化荧光陶瓷对其内部的入射激光和荧光的折射和散射作用,使得激发光在陶瓷中的光程变长,进而减弱荧光在荧光陶瓷内部的横向传导,使得荧光最终从入射激光附近的小范围区域散射出去,即产生的荧光光斑较小,进而提高了荧光陶瓷对荧光的散射性能,从而提高了光源系统中的光效利用率。
区别于现有技术的情况,本申请在荧光陶瓷的基质中均匀分布了具有不同折射率的发光中心、第一散射单元以及第二散射单元,且第一散射单元的折射率大于发光中心的折射率、第二散射单元的折射率小于发光中心的折射率,由于粒子散射能力取决于粒子的线度和相对折射率,入射激光在各个相的界面处会发生散射,因此,可以强化荧光陶瓷对其内部的入射激光和荧光的折射和散射作用,使得激发光在陶瓷中的光程变长,进而减弱荧光在荧光陶瓷内部的横向传导,使得荧光最终从入射激光附近的小范围区域散射出去,即产生的荧光光斑较小,进而提高了荧光陶瓷对荧光的散射性能,从而提高了光源系统中的光效利用率。
下面进一步列举实施例以详细说明本申请。同样应理解,以下实施例只用于对本申请进行进一步说明,不能理解为对本申请保护范围的限制,本领域的技术人员根据本申请的上述内容作出的一些非本质的改进和调整均属于本申请的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
选取纯度为99.0%以上的氧化铝粉、氧化锆粉和氟化镁粉,按质量百分数,称取氧化铝粉99.0%、氧化锆粉0.5%和氟化镁粉0.5%,再用湿法球磨法,以无水乙醇为介质来研磨混合粉体原料,球磨时间为24h,得到第一球磨浆料。
称取YAG:Ce荧光粉,其中,YAG:Ce荧光粉占荧光陶瓷的粉体总 质量的50%,再用湿法球磨法,以PVB乙醇溶液为介质来研磨混合粉体原料,球磨时间为1h,得到第二球磨浆料。其中,PVB乙醇溶液中PVB的质量百分比为0.5%~2%。质量百分比是指某种物质的质量占总质量的百分比,这里是指PVB的质量占由PVB和乙醇组成的溶液的总的百分比值。
在70℃下进行真空干燥,随即进行研磨、过筛处理,装粉待用。
将混合后的荧光陶瓷粉体在80MPa压力下压制成块体。然后将成型后的陶瓷素坯在马弗炉中排胶处理,其排胶工艺为500℃保温2h,900℃保温4h。在排胶结束后将荧光陶瓷素坯在200MPa压力下进行冷等静压处理,以提高陶瓷素坯的致密度。
将陶瓷素坯置于真空炉中,真空度为10-3Pa,1650℃下烧结4h。待真空烧结后,将荧光陶瓷在空气气氛下,1300℃退火处理10h;再对荧光陶瓷进行减薄以及抛光处理,最后得到可用的荧光陶瓷。
实施例2
选取纯度为99.9%以上的氧化铝粉,纯度为99%的氧化钛以及造孔剂,按质量百分数,称取氧化铝粉98.0%、氧化钛粉1.0%和造孔剂1.0%,以无水乙醇为介质来研磨混合粉体原料,球磨时间为24h,得到第一球磨浆料。
称取YAG:Ce荧光粉,其中,YAG:Ce荧光粉占荧光陶瓷的粉体总质量的40%,再用湿法球磨法,以PVB乙醇溶液为介质来研磨混合粉体原料,球磨时间为0.5h,得到第二球磨浆料。其中,PVB乙醇溶液中PVB的质量百分比为0.5%~2%。质量百分比是指某种物质的质量占总质量的百分比,这里是指PVB的质量占由PVB和乙醇组成的溶液的总的百分比值。
在60℃下进行真空干燥,随即进行研磨、过筛处理,装粉待用。
将混合后的荧光陶瓷粉体在50MPa压力下压制成块体。然后将成型后的陶瓷素坯在马弗炉中排胶处理,其排胶工艺为600℃保温2h,1000℃保温6h。在排胶结束后将荧光陶瓷素坯在180MPa压力下进行冷等静压 处理,以提高陶瓷素坯的致密度。
将陶瓷素坯置于真空炉中,真空度为10Pa-3Pa,1600℃下烧结4h。待真空烧结后,将荧光陶瓷在空气气氛下,1350℃退火处理10h;再对荧光陶瓷进行减薄以及抛光处理,最后得到可用的荧光陶瓷。
请参见图3,图3为实施例2所制备的荧光陶瓷的显微组织照片。从图中可看出,在氧化铝陶瓷基质中除去均匀分散的荧光粉颗粒,还存在少量的低折射率相(气孔)和高折射率相(氧化钛)
实施例3
选取纯度在99.9%以上的氧化铝粉、氟化镁、氧化钛和氧化锆,按质量百分数,称取氧化铝粉99.0%、氟化镁0.30%、氧化钛0.30%和氧化锆0.40%,再用湿法球磨法,以无水乙醇为介质来研磨混合粉体原料,球磨时间为36h,得到第一球磨浆料。
称取YAG:Ce荧光粉,其中,YAG:Ce荧光粉占荧光陶瓷的粉体总质量的60%,再用湿法球磨法,以PVB乙醇溶液为介质来研磨混合粉体原料,球磨时间为0.5h,得到第二球磨浆料。其中,PVB乙醇溶液中PVB的质量百分比为0.5%~2%。质量百分比是指某种物质的质量占总质量的百分比,这里是指PVB的质量占由PVB和乙醇组成的溶液的总的百分比值。
在70℃下进行真空干燥,随即进行研磨、过筛处理,装粉待用。
将陶瓷粉体充填到石墨模具中,在5-20MPa压强下进行预压制处理,随后将石墨模具置于SPS热压炉中,在真空/氩气气氛中,1200℃-1600℃下保温烧结0.5h-4h,烧结时压力在20MPa-150MPa。待热压烧结后,将荧光陶瓷在空气气氛下,1300℃退火处理10h;再对荧光陶瓷进行减薄以及抛光处理,最后得到可用的荧光陶瓷。
对比例
选取纯度在99.9%以上的氧化铝粉和YAG:Ce荧光粉,按质量百分数,称取氧化铝粉50.0%、YAG:Ce荧光粉50.0%,再用湿法球磨法,以无水乙醇为介质来研磨混合粉体原料,球磨时间为36h,得到浆料。
在70℃下进行真空干燥,随即进行研磨、过筛处理,装粉待用。
将陶瓷粉体充填到石墨模具中,在50MPa-20MPa压强下进行预压制处理,随后将石墨模具置于SPS热压炉中,在真空/氩气气氛中,1200℃-1600℃下保温烧结0.5h-4h,烧结时压力在200MPa-150MPa。待热压烧结后,将荧光陶瓷在空气气氛下,1300℃退火处理10h;再对荧光陶瓷进行减薄以及抛光处理,最后得到可用的荧光陶瓷。
实施例4
将实施例1、实施例2、实施例3所制得的荧光陶瓷以及未进行优化处理的荧光陶瓷(即对比例)加工成测试样品,置于测试平台中进行测试比较,所得测试结果如下表所示,表中光效特指蓝色入射激光光功率的转换效率。
Figure PCTCN2020131911-appb-000001
Figure PCTCN2020131911-appb-000002
由上表可以看出,由于实施例1-3在荧光陶瓷的基质中均匀分布了具有不同折射率的发光中心、第一散射单元以及第二散射单元,且基质内第一散射单元、发光中心、第一散射单元的折射率差异较大的特征(可以理解的是,由于基质与发光中心的折射率接近,第一散射单元和第二散射单元与基质之间的折射率差异也较大),由于粒子散射能力取决于粒子的线度和相对折射率,入射激光在各个相的界面处会发生散射,因此,可以强化荧光陶瓷对其内部的入射激光和荧光的折射和散射作用,使得激发光在陶瓷中的光程变长,进而减弱荧光在荧光陶瓷内部的横向传导,使得荧光最终从入射激光附近的小范围区域散射出去,即产生的荧光光斑较小,进而提高了荧光陶瓷对荧光的散射性能,从而提高了光源系统中的光效利用率。
本申请还提供了一种发光装置,包括激发光源和上述荧光陶瓷,其中激发光源为入射激光光源,通过该激发光源照射荧光陶瓷,产生高亮度的光。该发光装置可以应用于投影、显示系统,例如液晶显示器(LCD,Liquid Crystal Display)或数码光路处理器(DLP,Digital Light Processor)投影机;也可以应用于照明系统,例如汽车照明灯;也可以应用于3D显示技术领域中。在发光装置中,上述荧光陶瓷还可以制作成为可运动的装置,如色轮,使激发光源发出的激发光源入射到旋转运动的色轮上,从而产生受入射激光。
本申请还提供了一种投影装置,该投影设备可以是教育投影仪、入射激光电视、微投或者影院机等,该投影设备包括上述实施例的发光装置,该发光装置的具体结构参照上述实施例。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (13)

  1. 一种荧光陶瓷,其特征在于,所述荧光陶瓷至少包括:
    基质;
    分布于所述基质内的发光中心、第一散射单元以及第二散射单元;
    所述第一散射单元的折射率大于所述发光中心的折射率;
    所述第二散射单元的折射率小于所述发光中心的折射率。
  2. 根据权利要求1所述的荧光陶瓷,其特征在于,
    所述第一散射单元为气孔或第一散射颗粒中的至少一种。
  3. 根据权利要求2所述的荧光陶瓷,其特征在于,
    所述气孔的折射率为1,所述气孔的粒径为0.2μm~2μm,所述气孔占所述荧光陶瓷的体积分数为0.01%~10%。
  4. 根据权利要求2所述的荧光陶瓷,其特征在于,
    所述第一散射颗粒的折射率为1.2-2.8,所述第一散射颗粒占所述荧光陶瓷总质量的0.1%~1%;
    所述第一散射颗粒为二氧化钛、氧化锆、氧化钇、氟化钙或氟化镁中的至少一种。
  5. 根据权利要求1所述的荧光陶瓷,其特征在于,
    所述第二散射单元为气孔或第二散射颗粒中的至少一种。
  6. 根据权利要求5所述的荧光陶瓷,其特征在于,
    所述气孔的折射率为1,所述气孔的粒径为0.2μm~2μm,所述气孔占所述荧光陶瓷的体积分数为0.01%~10%。
  7. 根据权利要求5所述的荧光陶瓷,其特征在于,
    所述第二散射颗粒的折射率为1.2-2.1,所述第二散射颗粒占所述荧光陶瓷总质量的0.1%~1%;
    所述第二散射颗粒为氟化钙、氟化镁、氧化钇或氧化锆中的至少一种。
  8. 根据权利要求1所述的荧光陶瓷,其特征在于,所述荧光陶瓷还包括:
    分布于所述基质内的折射率介于所述第一散射单元与所述第二散射单元之间的第三折射率单元。
  9. 根据权利要求1所述的荧光陶瓷,其特征在于,
    所述发光中心为粒径5μm~30μm的镧系元素掺杂的YAG荧光粉颗粒,掺杂量为1%~5%,所述镧系元素掺杂的YAG荧光粉颗粒占所述荧光陶瓷总质量的40%~50%;
    所述基质的材料为粒径0.05μm~1μm的氧化铝,所述氧化铝占所述荧光陶瓷总质量的40%~60%。
  10. 根据权利要求9所述的荧光陶瓷,其特征在于,
    所述镧系元素掺杂的YAG荧光粉颗粒为Ce或Lu掺杂的YAG荧光粉颗粒。
  11. 一种荧光陶瓷的制备方法,其特征在于,所述制备方法包括:
    按照预定比例配制荧光陶瓷的基质材料、散射材料以及荧光粉颗粒,其中,所述散射材料至少包括造孔剂以及第一散射颗粒、第二散射颗粒;
    将所述基质材料以及所述散射材料在第一溶剂中混合球磨,得到第一球磨浆料;
    将所述荧光粉颗粒在第二溶剂中混合球磨,得到第二球磨浆料;
    分别对第一球磨浆料和第二球磨浆料进行干燥,干燥后进行研磨过筛得到第一粉体和第二粉体;
    混合第一粉体和第二粉体,对混合后的粉体进行压制,得到预成型件;
    将所述预成型件进行高温排胶处理,得到素坯;
    将所述素坯进行冷等静压处理;
    对冷等静压处理后的所述素坯进行高温烧结处理,抛光后,得到所述荧光陶瓷。
  12. 一种发光装置,其特征在于,包括激发光源和权利要求1~10任一项所述的荧光陶瓷,所述激发光源为入射激光光源。
  13. 一种投影装置,其特征在于,包括权利要求12所述的发光装置。
PCT/CN2020/131911 2019-11-26 2020-11-26 荧光陶瓷及其制备方法、发光装置以及投影装置 WO2021104399A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20892446.4A EP4015483A4 (en) 2019-11-26 2020-11-26 FLUORESCENT CERAMIC AND PREPARATION METHOD THEREFOR, LUMINESCENT DEVICE AND PROJECTION DEVICE
JP2022519736A JP2023504972A (ja) 2019-11-26 2020-11-26 蛍光セラミックス及びその製造方法、発光装置及び投影装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911175951.1 2019-11-26
CN201911175951.1A CN112939578B (zh) 2019-11-26 2019-11-26 荧光陶瓷及其制备方法、发光装置以及投影装置

Publications (1)

Publication Number Publication Date
WO2021104399A1 true WO2021104399A1 (zh) 2021-06-03

Family

ID=76128649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131911 WO2021104399A1 (zh) 2019-11-26 2020-11-26 荧光陶瓷及其制备方法、发光装置以及投影装置

Country Status (4)

Country Link
EP (1) EP4015483A4 (zh)
JP (1) JP2023504972A (zh)
CN (2) CN116730711A (zh)
WO (1) WO2021104399A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114195485A (zh) * 2021-12-29 2022-03-18 杭州电子科技大学 一种低损耗氟氧化物微波介质陶瓷及其制备方法
CN115073161A (zh) * 2022-06-14 2022-09-20 重庆翰博显示科技研发中心有限公司 一种复合陶瓷的制备方法
CN116239381A (zh) * 2023-03-16 2023-06-09 海南钇坤智能科技有限公司 一种增强抑制离子转变能力的激光陶瓷材料及其制备方法
CN116462510A (zh) * 2023-04-10 2023-07-21 东华大学 一种氟化钙基荧光陶瓷材料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117185832A (zh) * 2022-06-01 2023-12-08 深圳市绎立锐光科技开发有限公司 复相荧光陶瓷、复相荧光陶瓷的制备方法以及发光装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107285745A (zh) * 2016-04-12 2017-10-24 深圳市绎立锐光科技开发有限公司 一种氧化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN107474839A (zh) * 2016-06-07 2017-12-15 深圳市光峰光电技术有限公司 一种发光陶瓷
CN108069710A (zh) * 2016-11-15 2018-05-25 深圳市光峰光电技术有限公司 一种发光陶瓷及发光装置
CN108134006A (zh) * 2018-01-18 2018-06-08 深圳市光科全息技术有限公司 一种led灯封装结构
WO2018105598A1 (ja) * 2016-12-07 2018-06-14 神島化学工業株式会社 セラミック組成物
CN110240468A (zh) * 2018-03-09 2019-09-17 深圳光峰科技股份有限公司 荧光陶瓷及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340240A (ja) * 2004-05-24 2005-12-08 Cimeo Precision Co Ltd 透光色変換部材及びその製造方法
WO2010129350A2 (en) * 2009-04-28 2010-11-11 Qd Vision, Inc. Optical materials, optical, components, devices, and methods
JP5989268B2 (ja) * 2015-02-18 2016-09-07 日東電工株式会社 蛍光体セラミックス、封止光半導体素子、回路基板、光半導体装置および発光装置
JP2016204561A (ja) * 2015-04-24 2016-12-08 太平洋セメント株式会社 蛍光部材、その製造方法および発光装置
CN106896632A (zh) * 2015-12-03 2017-06-27 精工爱普生株式会社 荧光体、波长转换元件、光源装置和投影仪
CN108300473A (zh) * 2016-08-10 2018-07-20 深圳市光峰光电技术有限公司 一种波长转换装置及其制备方法、发光装置和投影装置
CN108105604B (zh) * 2016-11-25 2020-05-29 深圳光峰科技股份有限公司 发光陶瓷结构及其制备方法、相关发光装置和投影装置
CN109020509B (zh) * 2017-06-09 2021-07-06 深圳光峰科技股份有限公司 一种发光陶瓷及其制备方法
CN109467453B (zh) * 2017-09-07 2021-12-07 中国科学院上海硅酸盐研究所 一种具有特征微观结构的荧光陶瓷及其制备方法和应用
EP3549923A1 (en) * 2018-04-05 2019-10-09 Nichia Corporation Ceramic complex, light source for projector, and method for producing ceramic complex

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107285745A (zh) * 2016-04-12 2017-10-24 深圳市绎立锐光科技开发有限公司 一种氧化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN107474839A (zh) * 2016-06-07 2017-12-15 深圳市光峰光电技术有限公司 一种发光陶瓷
CN108069710A (zh) * 2016-11-15 2018-05-25 深圳市光峰光电技术有限公司 一种发光陶瓷及发光装置
WO2018105598A1 (ja) * 2016-12-07 2018-06-14 神島化学工業株式会社 セラミック組成物
CN108134006A (zh) * 2018-01-18 2018-06-08 深圳市光科全息技术有限公司 一种led灯封装结构
CN110240468A (zh) * 2018-03-09 2019-09-17 深圳光峰科技股份有限公司 荧光陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4015483A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114195485A (zh) * 2021-12-29 2022-03-18 杭州电子科技大学 一种低损耗氟氧化物微波介质陶瓷及其制备方法
CN114195485B (zh) * 2021-12-29 2022-12-02 杭州电子科技大学 一种低损耗氟氧化物微波介质陶瓷及其制备方法
CN115073161A (zh) * 2022-06-14 2022-09-20 重庆翰博显示科技研发中心有限公司 一种复合陶瓷的制备方法
CN116239381A (zh) * 2023-03-16 2023-06-09 海南钇坤智能科技有限公司 一种增强抑制离子转变能力的激光陶瓷材料及其制备方法
CN116239381B (zh) * 2023-03-16 2024-04-12 海南钇坤智能科技有限公司 一种增强抑制离子转变能力的激光陶瓷材料及其制备方法
CN116462510A (zh) * 2023-04-10 2023-07-21 东华大学 一种氟化钙基荧光陶瓷材料及其制备方法

Also Published As

Publication number Publication date
JP2023504972A (ja) 2023-02-08
CN112939578B (zh) 2023-07-18
CN112939578A (zh) 2021-06-11
EP4015483A1 (en) 2022-06-22
EP4015483A4 (en) 2023-09-20
CN116730711A (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
WO2021104399A1 (zh) 荧光陶瓷及其制备方法、发光装置以及投影装置
CN109467453B (zh) 一种具有特征微观结构的荧光陶瓷及其制备方法和应用
CN107285745B (zh) 一种氧化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN107285746B (zh) 一种氧化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
JP5862677B2 (ja) CaF2系透光性セラミックスおよびその製造方法
WO2018045782A1 (zh) 陶瓷复合材料的制备方法及陶瓷复合材料、光源装置
CN107200588B (zh) 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
US11245243B2 (en) Light-emitting ceramic and light-emitting device
WO2019169868A1 (zh) 荧光陶瓷及其制备方法
WO2018028265A1 (zh) 一种波长转换装置及其制备方法、发光装置和投影装置
WO2021037226A1 (zh) 荧光陶瓷及其制备方法、光源装置
WO2021135883A1 (zh) 荧光陶瓷的制备方法及荧光陶瓷
CN104844217A (zh) 一种用于暖色温白光LED封装光源的AlON透明陶瓷荧光体的制备方法
JP2019156666A (ja) 透明セラミックスの製造方法、透明セラミックス並びに磁気光学デバイス
WO2018223544A1 (zh) 一种发光陶瓷及其制备方法
CN107200587B (zh) 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN107200589B (zh) 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN109987932B (zh) 用于白光照明的复相荧光陶瓷、制备方法及光源装置
CN111039660B (zh) 一种荧光陶瓷及其制备方法、光源装置和投影装置
JP2006310272A (ja) サブミクロンの結晶粒度を有する全透過率が高いアルミナ放電容器
JP2019099429A (ja) ファラデー回転子用透明セラミックスの製造方法
WO2021248445A1 (zh) 一种透明复相荧光陶瓷及其制备方法
CN104909741A (zh) 一种石榴石型铝酸盐荧光陶瓷的制备方法及所制成的荧光陶瓷
CN111285675A (zh) 激光照明用浓度渐变荧光陶瓷及其制备方法
Tian et al. Large size lenticular shaped phosphors-in-glass by Isobam-APS gel casting to act for converting and condensing in LCD projector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892446

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020892446

Country of ref document: EP

Effective date: 20220316

ENP Entry into the national phase

Ref document number: 2022519736

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE