WO2021243522A1 - 含气孔的荧光陶瓷的制造方法 - Google Patents

含气孔的荧光陶瓷的制造方法 Download PDF

Info

Publication number
WO2021243522A1
WO2021243522A1 PCT/CN2020/093766 CN2020093766W WO2021243522A1 WO 2021243522 A1 WO2021243522 A1 WO 2021243522A1 CN 2020093766 W CN2020093766 W CN 2020093766W WO 2021243522 A1 WO2021243522 A1 WO 2021243522A1
Authority
WO
WIPO (PCT)
Prior art keywords
pore
ceramic
containing fluorescent
fluorescent ceramic
fluorescent
Prior art date
Application number
PCT/CN2020/093766
Other languages
English (en)
French (fr)
Inventor
周天亮
倪国琴
Original Assignee
苏州君诺新材科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州君诺新材科技有限公司 filed Critical 苏州君诺新材科技有限公司
Priority to PCT/CN2020/093766 priority Critical patent/WO2021243522A1/zh
Publication of WO2021243522A1 publication Critical patent/WO2021243522A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof

Definitions

  • the invention belongs to the field of ceramics, and in particular relates to a method for manufacturing fluorescent ceramics containing pores.
  • Ceramics are an important type of industrial products. In addition to structural ceramics, most ceramic products contain or must require a certain amount of pores (porosity) in order to obtain special required properties. Pores can play a variety of roles in ceramics, such as refraction and scattering of light, absorption of gas, loading of solids, absorption of liquids, improving thermal insulation performance, enhancing electromagnetic wave absorption performance, or reducing the specific gravity of ceramics , Making ceramic products lighter and so on.
  • Patent Document 1 (Cheng Zhiyuan, Wang Wei, Artificial bone, porous bioceramic material, pore former and preparation method of pore former, application number: 201810691632.5) discloses an artificial bone, porous bioceramic material, pore former and preparation method.
  • the porogen preparation method, the pore former is a natural substance (organic substance) after carbonization treatment.
  • the pore former particles will become gas during high-temperature sintering.
  • Patent Document 2 (Yue Xin, Yang Dianlai, Xu Zhuangzhi, Hu Jinling, Gao Linlin, a method for preparing silicon carbide ceramic filters by adding a pore former process, application number: 201611119995.9) discloses a method for preparing carbonization by adding a pore former process
  • the method of the silicon ceramic filter, the step is to add one or more of low melting point substances such as wood chips, carbon powder, fiber, etc. as a pore-forming agent to the composite ceramic powder with silicon carbide as the main component;
  • the forming method is to prepare a ceramic green body, and the green body is sintered to remove the pore-forming agent to obtain a porous green body.
  • Patent Document 3 Wang Yaobin, a porous ceramic prepared by using honey as a pore former and a preparation method thereof, application number: 201810062318.0 discloses a porous ceramic prepared by using honey as a pore former and a preparation method thereof.
  • Patent Document 4 Wei Xianhao, Zhang Xiaolei, Deng Jun, a pore former for preparing honeycomb ceramic carrier and its preparation method, application number: 201810727162.3 discloses a pore former for preparing honeycomb ceramic carrier and its The preparation method, the raw materials include tapioca starch, corn stalk powder and other pore-forming agents.
  • Patent Document 5 (Shi Qi, Wu Jingjun, Fan Yuxuan, Zhou Luliang, a method for preparing an organic pore former suitable for grouting and a porous ceramic material prepared therefrom, application number: 201810806751.0) discloses a suitable The invention relates to a preparation method of an organic pore former for grouting and the prepared porous ceramic material.
  • the specific methods include wrapping organic pore formers such as carbon powder, wood chips, plastics, etc.
  • Patent Document 6 discloses a Nano-scale porous ceramic pore former and its preparation method and application.
  • the main component of the pore former is acrylic-modified nano crystalline cellulose, which is a natural organic polymer material and meets environmental protection requirements.
  • Patent Document 7 (Shu Xiaoshan, Zhang Jianwu, Gongping, Tang Xingyou, A method for preparing daily-use porous ceramics with composite pore formers, application number: 201710466903.2) discloses a daily-use porous ceramics with composite pore formers
  • the preparation method is to modify the pore former on the basis of the traditional daily ceramic preparation process, the pulp is decomposed and then dried and pulverized into pulp fiber micropowder mixed with microcrystalline cellulose, and the hydrolyzed silane coupling agent is used
  • KH550 carries out surface modification. The modification makes the hydroxyl groups on the surface of microcrystalline cellulose and pulp fiber micropowders replaced by amino groups.
  • Patent Document 8 Li Xiaolei, Han Xiaocui, Ji Huiming, Wang Jian, Chen Bo, Method for preparing O-Sialon porous ceramics by adding PMMA pore former, application number: 201310664869.1 discloses a method for preparing O-Sialon porous ceramics by adding PMMA pore former Ceramic method.
  • Patent Document 9 Liu Hongwei, Lv Shengdong, Liu Xingdong, Yue Jiaxing, a ceramic grinding wheel, application number: 201810966272.5 discloses a method for manufacturing a ceramic grinding wheel.
  • the pore former is polytetrafluoroethylene (PTFE) and polyimide.
  • Patent Document 10 (Guo Jian, Liu Feng, Porous Ceramic Raw Materials, Porous Ceramics and Preparation Methods and Applications thereof, Application No.: 201910042866.1) discloses a porous ceramic raw material, porous ceramics and preparation methods and applications thereof.
  • the porous ceramic raw materials include Alumina, silica, titania and sintering accelerator, and adding a binder (acting as a pore-forming agent), and then mix and granulate to obtain a mixture; dry the mixture into a shape to obtain a green body; The green body is debinding and sintered to obtain a porous ceramic green body.
  • the use of organic matter as a pore-forming agent also has the following problems: 1 During the debinding process of the ceramic body, due to the low oxygen content inside the body, the oxidation and decomposition of organic matter in an oxygen-deficient environment will produce a large amount of harmful substances, which will be poisonous. The environment also affects the body of the operator; 2The pore former is organic, and it is very easy to produce residual carbon during the debinding process, that is, the organic matter is directly carbonized, which causes the transparency and strength of the ceramic to decrease; 3Organic pore former The uniformity of the holes is poor.
  • a problem in laser illumination is how to enhance the scattering of the laser, that is, make the spot as uniform as possible.
  • Patent Document 11 Li Gan, Jian Shuai, Wang Yangang, Xu Yanzheng, Fluorescent Ceramics and Methods of Preparation, Application Number: 201810193602.1
  • Patent Document 12 Liu Xuejian, Li Shuxing, Yao Xiumin, Huang Zhengren, A fluorescent ceramic with a characteristic microstructure and its preparation method and application, application number: 201710801901.4
  • the use of organic materials as pore formers to obtain fluorescent ceramics also has the following problems: 1.
  • the oxidation and decomposition of organic matter in an oxygen-deficient environment will produce a large amount of harmful Substances are harmful to the environment and have an impact on the body of the operator;
  • the pore former is an organic matter, and it is very easy to produce residual carbon during the debinding process, that is, the organic matter is directly carbonized, which causes the transparency of the ceramic to decrease and the strength to decrease;
  • 3Organic The pore-forming agent has poor pore-making uniformity, and the finally obtained fluorescent ceramic for laser illumination has poor spot uniformity.
  • the object of the present invention is a method for producing pore-containing fluorescent ceramics.
  • the luminescent ceramic uses a relatively environmentally friendly process, and selects organic-free materials as pore formers to obtain a fluorescent ceramic for laser lighting with relatively uniform porosity and no carbon residues, which effectively solves the current preparation process of fluorescent ceramics for laser lighting.
  • the present invention is the result of a series of studies conducted based on the above-mentioned knowledge, thereby successfully providing a method for manufacturing a pore-containing fluorescent ceramic. That is, a method for producing a pore-containing fluorescent ceramic is characterized by using ice crystals as a pore-forming agent for the pore-containing fluorescent ceramic.
  • the porosity of the fluorescent ceramic is 10% to 30%
  • the substance that produces fluorescence in the fluorescent ceramic is Y 3 Al 5 O 12 :Ce
  • the average of the Y 3 Al 5 O 12 :Ce powder raw material The particle size is 6-15 ⁇ m, and the dispersion of the powder is 3-6.
  • the invention provides a method for manufacturing pore-containing fluorescent ceramics, which includes the following steps:
  • the mass ratio of deionized water, liquid nitrogen and Y 3 Al 5 O 12 :Ce powder is 1:x:10, where 5 ⁇ x ⁇ 10. Due to the condensation of liquid nitrogen, deionized water freezes and forms ice crystals.
  • the pressure ranges from 100 MPa to 200 MPa, and the second preset time is from 5 min to 15 min.
  • the preset temperature is 1600°C to 1800°C
  • the third preset time is 4h to 12h.
  • the present invention provides a pore-containing fluorescent ceramic, wherein the fluorescent ceramic is Y 3 Al 5 O 12 :Ce, which is manufactured by the manufacturing method described in any one of the foregoing.
  • the porosity of the fluorescent ceramic is 10-30%.
  • the present invention provides a light-emitting device, which includes the pore-containing fluorescent ceramic of the present invention.
  • a pore-containing fluorescent ceramic prepared according to the implementation method of the present invention has the following beneficial effects: 1. Use a relatively environmentally friendly process, and select organic-free materials as pore formers; 2. Obtain one A fluorescent ceramic for laser illumination with relatively uniform porosity and no carbon residue, which effectively solves various problems existing in the current preparation process of fluorescent ceramics.
  • Fig. 1 is an emission spectrum diagram of the fluorescent ceramic obtained in Example 1 of the present invention.
  • the present invention is the result of a series of studies conducted based on the above-mentioned knowledge, thereby successfully providing a method for manufacturing a pore-containing fluorescent ceramic. That is, a method for producing a pore-containing fluorescent ceramic is characterized by using ice crystals as a pore-forming agent for the pore-containing fluorescent ceramic.
  • the porosity of the fluorescent ceramic is 10% to 30%
  • the substance that produces fluorescence in the fluorescent ceramic is Y 3 Al 5 O 12 :Ce
  • the average of the Y 3 Al 5 O 12 :Ce powder raw material The particle size is 6-15 ⁇ m, and the dispersion of the powder is 3-6.
  • the fluorescent ceramics are Y 3 Al 5 O 12 :Ce, and the average particle size of the Y 3 Al 5 O 12 :Ce powder raw material is 6 ⁇ 15 ⁇ m, in one embodiment of the present application, the average particle size is preferably 7 ⁇ m; in another embodiment of the present application, the average particle size is preferably 12 ⁇ m.
  • the dispersion degree of the Y 3 Al 5 O 12 :Ce powder is 3-6. In the embodiment of the present application, the dispersion degree of the Y 3 Al 5 O 12 :Ce powder is preferably 5.
  • the invention provides a method for manufacturing pore-containing fluorescent ceramics, and the steps are as follows:
  • the first preset time should be as short as possible, that is, after 30 minutes of roller milling, the material in the ball milling tank should be quickly taken out, and the time should be controlled within one minute to prevent the ice crystals in the material from melting and causing the material to melt.
  • the preset pressure can be added with a certain pressure according to the actual situation, such as 150 MPa.
  • the mass ratio of deionized water, liquid nitrogen and Y 3 Al 5 O 12 :Ce powder is 1:x:10, where 5 ⁇ x ⁇ 10, in an embodiment of the present application, x Preferably it is 8.
  • the pressure that is, the preset preset range is 100 MPa to 200 MPa
  • the holding pressure that is, the second preset time is 5 min to 15 min.
  • the pressure range is preferably 180 MPa
  • the time for maintaining the pressure is preferably 10 min.
  • the sintering temperature that is, the preset temperature
  • the sintering time that is, the third preset time
  • the sintering temperature is preferably 1750° C.
  • the sintering time is preferably 8 hours.
  • the present invention provides a light-emitting device, which includes the pore-containing fluorescent ceramic of the present invention.
  • Fluorescent ceramics were obtained in Test Example 1, and the various data are shown in Table 1.
  • the emission spectrum under the excitation of blue light at 450 nm is shown in Figure 1.
  • the fluorescent material obtained in Example 8 was analyzed using a fluorescence spectrometer. It can be seen that the material can be excited by blue light, and the main peak of the emission spectrum is located near 744nm. The highest intensity of the spectral luminescence peak under blue excitation and the half-height width of the emission spectrum are shown in Table 1. It can be seen that the luminescence intensity of the corresponding luminescent material of Example 8 is relatively high, and the half-height width is relatively wide, about 177 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种含气孔荧光陶瓷的制备方法,制备该荧光陶瓷所用的发光材料为一定粒径及离散度的Y 3Al 5O 12:Ce粉体,使用冰晶作该含气孔的荧光陶瓷的造孔剂。与现有技术相比,该方法选用不含有机物的材料为造孔剂;获得气孔率相对均匀的、无碳残留的激光照明用荧光陶瓷。

Description

含气孔的荧光陶瓷的制造方法 技术领域
本发明属于陶瓷领域,尤其是涉及含气孔的荧光陶瓷的制造方法。
背景技术
陶瓷是一类重要的工业制品。除结构陶瓷外,多数的陶瓷制品都含有或者必须要求有一定的气孔含量(气孔率),以便获得特殊要求的性能。气孔在陶瓷中,能起到多种作用,如对光的折射、散射,对气体的吸附,对固体的负载,对液体的吸收,提高隔热性能,增强电磁波吸收性能,或者降低陶瓷的比重,使陶瓷产品更加轻盈等。
获得含气孔的陶瓷,最可行也是最为普遍的方法就是在生产陶瓷的过程中添加造孔剂。如专利文献1(程志远,王威,人工骨、多孔生物陶瓷材料、造孔剂及造孔剂制备方法,申请号:201810691632.5)公开了一种人工骨、多孔生物陶瓷材料、造孔剂及造孔剂制备方法,造孔剂为碳化处理后的天然物质(有机物)。造孔剂颗粒在高温烧结过程中会变成气体排出。如专利文献2(岳鑫,杨殿来,许壮志,胡金玲,高琳琳,一种添加造孔剂工艺制备碳化硅陶瓷过滤器的方法,申请号:201611119995.9)公开了一种添加造孔剂工艺制备碳化硅陶瓷过滤器的方法,其步骤为将木屑、碳粉、纤维等低熔点物质中的一种或几种作为造孔剂,添加到以碳化硅为主要成分的复合陶瓷粉体中;通过模压成型的方法,制备得到陶瓷坯体,坯体进行排烧,除去造孔剂得到多孔坯体。多孔坯体经烧结后得到碳化硅陶瓷过滤器。如专利文献3(王耀斌,一种以蜂蜜为造孔剂制备的多孔陶瓷及其制备方法,申请号:201810062318.0)公开了一种以蜂蜜为造孔剂制备的多孔陶瓷及其制备方法。如专利文献4(魏献浩,张小雷,邓军,一种用于制备蜂窝陶瓷载体的造孔剂及其制备方法,申请号:201810727162.3)公开了一种用于制备蜂窝陶瓷载体的造孔剂及其制备方法,其原料中包括木薯淀粉、玉米秸秆粉等其造孔剂的作用。如专利文献5(石棋,武敬君,范羽宣,周露亮,一种适用于注浆成型用有机造孔剂的制备方法及其制得的多孔陶瓷材料,申请号:201810806751.0)公开了一种适用于注浆成型用有机造孔剂的制备方法及其制得的多孔陶瓷材料。其具体方法包括以铝源、硅源、锆源材料对有机造孔剂如碳粉、木屑、塑料等进行包裹,将包裹物脱水、干燥、陈化或煅烧、过筛、碾细,得到包裹型造孔剂粉体,将包裹型碳粉按一定比例加入到陶瓷浆料中,加入一定量的分散剂,球磨混合均匀,制得均匀分散、稳定悬浮的陶瓷泥浆,再经注浆成型、烧结, 得到孔结构均匀的多孔陶瓷。如专利文献6(张浩,王莉,张晓静,魏媛,洪亮,王娜,邓倩,一种纳米级多孔陶瓷用造孔剂及其制备方法和应用,申请号:201510169693.1)公开了一种纳米级的多孔陶瓷用造孔剂及其制备方法和应用,该造孔剂的主要成份是经过丙烯酸改性的纳米结晶纤维素,为天然有机高分子材料,符合环保要求。如专利文献7(舒小山,章建武,宫平,汤兴友,一种添加复合造孔剂的日用多孔陶瓷的制备方法,申请号:201710466903.2)公开了一种添加复合造孔剂的日用多孔陶瓷的制备方法,在传统日用陶瓷制备工艺的基础上对造孔剂进行改性,将浆粕进行疏解后干燥粉碎成浆粕纤维微粉与微晶纤维素混合,利用水解后的硅烷偶良剂KH550进行表面改性,改性使得微晶纤维素和浆粕纤维微粉表面的羟基被氨基取代,在降低造孔剂表面能的同时添加到陶瓷浆料中也改善了其在陶瓷浆料基材中的分散状态,通过烧结,可以获得尺寸均一且排列松散的孔隙结构,气孔率显著提高。如专利文献8(李晓雷,韩霄翠,季惠明,王健,陈博,添加PMMA造孔剂制备O-Sialon多孔陶瓷的方法,申请号:201310664869.1)公开了一种添加PMMA造孔剂制备O-Sialon多孔陶瓷的方法。以无水乙醇作为分散介质,PVB作为分散剂和粘结剂,PEG-400和正丁醇作为增塑剂,实现陶瓷粉体和PMMA的均匀分散,然后喷雾造粒,成型,排胶,烧结得到制品。如专利文献9(刘宏伟,吕升东,刘星星,岳家兴,一种陶瓷砂轮,申请号:201810966272.5)公开了一种陶瓷砂轮制作方法,造孔剂为聚四氟乙烯(PTFE)、聚酰亚胺(PI)、双马来酰亚胺(BMI)、聚乙烯醇(PVA)、聚乙烯醇缩丁醛(PVB)、聚碳酸酯(PC)中的两种或两种以上。如专利文献10(郭剑,刘锋,多孔陶瓷原料、多孔陶瓷及其制备方法与应用,申请号:201910042866.1)公开了一种多孔陶瓷原料、多孔陶瓷及其制备方法与应用,多孔陶瓷原料包括氧化铝、二氧化硅、二氧化钛和促烧剂,并加入粘结剂(起造孔剂的作用),然后混合造粒,获得混料;将混料干压成型,获得素坯;之后将素坯进行排胶、烧结,即可获得多孔陶瓷的坯体。
从以上公开的文献可以看到,无论是何种陶瓷,只要是造孔,一定要使用造孔剂,而且造孔剂一定是有机物。这是因为有机造孔剂具有明显的优势,即当有机物有陶瓷粉体共混,最后压制成坯体后,在对陶瓷坯体热处理过程中(即排胶过程),有机物氧化分解,释放出气体的会在坯体内形成气孔。陶瓷内部的气孔大小、气孔率,与有机物的种类、相对含量、加热速度、温度等有直接关系。通过调控上述参数,即可控制陶瓷制成品的气孔性质。
但使用有机物做造孔剂也存在如下问题:①.陶瓷坯体在排胶过程中,由于坯体内部的氧气含量较少,有机物在缺氧环境下氧化分解会产生大量的有害物质,会毒害环境,对操作工人的身体也有影响;②造孔剂为有机物,在排胶分解过程中极容易产生残碳,即有机物直接碳化,这导致陶瓷的透明度下降,强度降低;③有机造孔剂造孔的均匀性较差。
对于激光照明,其主要是通过荧光材料将蓝色激光转换成其他波长光,进而得到白光。随着激光显示和照明技术的不断发展,对于荧光材料要求也越苛刻,需满足发光亮度高、光转换效率高、能承受大功率激光激发以及高的导热性等要求,只有荧光陶瓷能满足激光照明的需求。但激光的特点是准直性强。当激光照射到荧光陶瓷时,只有激光光斑照射位置上的荧光体才会发光,所得光斑的均匀性极差。因此距离激光光斑中心越近的位置,白光中蓝光激光比例高,白光偏蓝,色温偏高;距离激光光斑中心越远的位置,白光中蓝光激光比例低,白光偏黄,色温偏低。因此,激光照明中一个难题便是如何增强激光的散射,即尽可能地让光斑均匀。为此有诸多公开的方法,如专利文献11(李乾,简帅,王艳刚,许颜正,荧光陶瓷及其制备方法,申请号:201810193602.1)和专利文献12(刘学建,李淑星,姚秀敏,黄政仁,一种具有特征微观结构的荧光陶瓷及其制备方法和应用,申请号:201710801901.4)都采用造孔剂获得含有一定气孔率的荧光陶瓷应用于激光照明,不过和其他使用造孔剂制备的陶瓷类似,使用有机造物为造孔剂获得荧光陶瓷同样存在如下问题:①.陶瓷坯体在排胶过程中,由于坯体内部的氧气含量较少,有机物在缺氧环境下氧化分解会产生大量的有害物质,会毒害环境,对操作工人的身体也有影响;②造孔剂为有机物,在排胶分解过程中极容易产生残碳,即有机物直接碳化,这导致陶瓷的透明度下降,强度降低;③有机造孔剂造孔的均匀性较差,最终获得的激光照明用荧光陶瓷的光斑均匀性也差。
因此,如果存在一种全新的、获得含气孔但不使用有机造孔剂的荧光陶瓷制备方法,则可以解决激光照明用荧光陶瓷现有的技术问题。
发明内容
本发明的目的在于一种含气孔的荧光陶瓷的制造方法。该发光陶使用相对环保的工艺,选用不含有机物的材料为造孔剂,获得一种气孔率相对均匀的、无碳残留的激光照明用荧光陶瓷,有效解决当前激光照明用荧光陶瓷制备过程中存在的各类问题。
本发明是基于上述认识进行的一系列研究的结果,由此成功提供了一种含气孔的荧光陶瓷的制造方法。即,一种含气孔的荧光陶瓷的制造方法,其特征在于使用冰晶作所述含气孔的荧光陶瓷的造孔剂。
优选的,所述荧光陶瓷的气孔率为10~30%,所述荧光陶瓷中产生荧光的物质为Y 3Al 5O 12:Ce,所述Y 3Al 5O 12:Ce粉体原料的平均粒径为6~15μm,粉体的离散度为3~6。
本发明提供的一种含气孔的荧光陶瓷的制造方法,包括如下步骤:
A)将去离子水、液氮和Y 3Al 5O 12:Ce粉体按照一定质量比例装入球磨罐中;
B)将球磨罐放在辊磨机上,开始辊磨;
C)辊磨30分钟后,将球磨罐内的物料在第一预设时间内取出,并装入模具内;
D)对模具内的物料施加以预设压力,并保持所述预设压力第二预设时间;
E)撤去所述预设压力,将模具内材料取出,可获得一种含气孔的荧光陶瓷的生坯;
F)将所述生坯放入真空烧结炉内,在预设温度下烧结第三预设时间,获得一种含气孔的荧光陶瓷。
所述步骤A)中,去离子水、液氮和Y 3Al 5O 12:Ce粉体的质量比例为1:x:10,其中5<x<10。由于液氮的冷凝作用,去离子水会结冰,形成冰晶。
所述步骤D)中,压力的范围为100MPa~200MPa,所述第二预设时间为5min~15min。
所述步骤F)中,预设温度为1600℃~1800℃,所述第三预设时间为4h~12h。
同时本发明提供了一种含气孔的荧光陶瓷,所述荧光陶瓷中产生荧光的物质为Y 3Al 5O 12:Ce,采用前述任一项所述的制造方法制造。
所述荧光陶瓷的气孔率为10~30%。
同时,本发明提供了一种发光装置,该装置包含本发明所述的含气孔的荧光陶瓷。
有益效果
与现有技术相比,依据本发明实施方法制备的一种含气孔的荧光陶瓷,具有如下有益效果:1.使用相对环保的工艺,选用不含有机物的材料为造孔剂;2.获得一种气孔率相对均匀的、无碳残留的激光照明用荧光陶瓷,有效解决当前荧光陶瓷制备过程中存在的各类问题。
附图说明
图1为本发明实施例1中得到的荧光陶瓷的发射光谱图。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明是基于上述认识进行的一系列研究的结果,由此成功提供了一种含气孔的荧光陶瓷的制造方法。即,一种含气孔的荧光陶瓷的制造方法,其特征在于使用冰晶作所述含气孔的荧光陶瓷的造孔剂。
优选的,所述荧光陶瓷的气孔率为10~30%,所述荧光陶瓷中产生荧光的物质为Y 3Al 5O 12:Ce,所述Y 3Al 5O 12:Ce粉体原料的平均粒径为6~15μm,粉体的离散度为3~6。
本申请提出一种含气孔的荧光陶瓷的制造方法,该荧光陶瓷中产生荧光的物质为Y 3Al 5O 12:Ce,Y 3Al 5O 12:Ce粉体原料的平均粒径为6~15μm,在本申请一实施例中,平均粒径优选为7μm;在本申请另一实施例中,平均粒径优选为12μm。Y 3Al 5O 12:Ce粉体的离散度为3~6,在本申请实施例中,Y 3Al 5O 12:Ce粉体的离散度优选为5。
本发明提供的一种含气孔的荧光陶瓷的制造方法,其步骤如下:
A)将去离子水、液氮和Y 3Al 5O 12:Ce粉体按照一定质量比例装入球磨罐中,期间要控制液氮的添加速率,以保证去离子水能快速结晶;
B)将球磨罐放在辊磨机上,开始辊磨;
C)辊磨30分钟后,将球磨罐内的物料在第一预设时间内取出,并装入模具内;
D)对模具内的物料施加以压力,并保持预设压力第二预设时间;E)撤去预设压力,将模具内材料取出,即可获得一种含气孔的荧光陶瓷的生坯;
F)将生坯放入真空烧结炉内,在预设温度下烧结第三预设时间,即可获得一种含气孔的荧光陶瓷。
其中,所述第一预设时间应该尽可能短,也即辊磨30分钟后,应将球磨罐内的物料快速取出,时间要控制在一分钟以内,以免物料中的冰晶融化,并将物料装入模具内;所述预设压力可根据实际情况加一定的压力,如150MPa。
所述步骤A)中,去离子水、液氮和Y 3Al 5O 12:Ce粉体的质量比例为1:x:10,其中5<x<10,在本申请一实施例中,x优选为8。
所述步骤D)中,压力也即预设预设的范围为100MPa~200MPa,所述保持压力也即第二预设时间为5min~15min,在本申请一实施例中,压力的范围优选为180MPa,保持压力的时间优选为10min。
具体的,所述步骤F)中,烧结温度也即预设温度可以为1600℃~1800℃,所述烧结时间也即第三预设时间为4h~12h。在本申请一实施例中,烧结温度优选为1750℃,烧结时间优选为8h。
同时,本发明提供了一种发光装置,该装置包含本发明所述的含气孔的荧光陶瓷。
为了进一步说明本发明,以下结合实施例对本发明提供的一种含气孔的荧光陶瓷的制造方法进行详细描述。
以下对比例和实施例中所用的试剂均为市售。
对比例1
A)选取平均粒径为7μm、离散度为5的Y 3Al 5O 12:Ce粉体,将去离子水、丙三纯和Y 3Al 5O 12:Ce粉体按照30:1:100的质量比例装入球磨罐中;
B)将球磨罐放在辊磨机上,开始辊磨;
C)辊磨30分钟后,将球磨罐内的物料迅速取出,并装入模具内;
D)对模具内的物料施加以180MPa压力,并保持压力10min;
E)撤去压力,将模具内材料取出,即可获得一种含气孔的荧光陶瓷的生坯;
F)将生坯放入真空烧结炉内,在1750℃下烧结时间8h,即可获得一种含气孔的荧光陶瓷。
测试对比例1中得到荧光陶瓷,各项数据见表个1。
实施例1
A)选取平均粒径为7μm、离散度为5的Y 3Al 5O 12:Ce粉体,将去离子水、液氮和Y 3Al 5O 12:Ce粉体按照1:8:10的质量比例装入球磨罐中;
B)将球磨罐放在辊磨机上,开始辊磨;
C)辊磨30分钟后,将球磨罐内的物料迅速取出,并装入模具内;
D)对模具内的物料施加以180MPa压力,并保持压力10min;
E)撤去压力,将模具内材料取出,即可获得一种含气孔的荧光陶瓷的生坯;
F)将生坯放入真空烧结炉内,在1750℃下烧结时间8h,即可获得一种含气孔的荧光陶瓷。
测试实施例1中得到荧光陶瓷,各项数据见表个1。蓝光450nm激发下的发射光谱图为图1。
实施例2
A)选取平均粒径为12μm、离散度为5的Y 3Al 5O 12:Ce粉体,将去离子水、液氮和Y 3Al 5O 12:Ce粉体按照1:8:10的质量比例装入球磨罐中;
B)将球磨罐放在辊磨机上,开始辊磨;
C)辊磨30分钟后,将球磨罐内的物料迅速取出,并装入模具内;
D)对模具内的物料施加以180MPa压力,并保持压力10min;
E)撤去压力,将模具内材料取出,即可获得一种含气孔的荧光陶瓷的生坯;
F)将生坯放入真空烧结炉内,在1750℃下烧结时间8h,即可获得一种含气孔的荧光陶瓷。
测试实施例2中得到荧光陶瓷,各项数据见表格1。
利用荧光光谱仪对实施例8中得到荧光材料进行分析。可见该材料能被蓝光激发,发射光谱的主峰位于744nm附近,蓝光激发下光谱发光峰最高的强度及发射光谱的半高宽见表格1。可见实施例8对应发光材料的发光强度较高,半高宽较宽,约有177nm。
表格1
Figure PCTCN2020093766-appb-000001
上述的实施例仅用来举例说明本发明的实施方式,以及阐释本发明的技术特征,并非用来限制本发明的保护范围。任何熟悉此技术者可轻易完成的改变或等同性的安排均属于本发明所主张的范围,本发明的权利保护范围应以权利要求为准。

Claims (10)

  1. 一种含气孔的荧光陶瓷的制造方法,其特征在于使用冰晶作所述含气孔的荧光陶瓷的造孔剂。
  2. 如权利要求1所述的含气孔的荧光陶瓷的制造方法,其特征在于,所述方法包含如下步骤:
    A)将去离子水、液氮和Y 3Al 5O 12:Ce粉体按照一定质量比例装入球磨罐中;
    B)将球磨罐放在辊磨机上,开始辊磨;
    C)辊磨30分钟后,将球磨罐内的物料在第一预设时间内取出,并装入模具内;
    D)对模具内的物料施加以预设压力,并保持所述预设压力第二预设时间;
    E)撤去所述预设压力,将模具内材料取出,可获得一种含气孔的荧光陶瓷的生坯;
    F)将所述生坯放入真空烧结炉内,在预设温度下烧结第三预设时间,获得一种含气孔的荧光陶瓷。
  3. 如权利要求2所述的含气孔的荧光陶瓷的制造方法,其特征在于所述Y 3Al 5O 12:Ce粉体原料的平均粒径为6~15μm。
  4. 如权利要求2所述的含气孔的荧光陶瓷的制造方法,其特征在于所述Y 3Al 5O 12:Ce粉体的离散度为3~6。
  5. 如权利要求2所述的一项含气孔的荧光陶瓷的制造方法,其特征在于,步骤A)中,所述去离子水、液氮和Y 3Al 5O 12:Ce粉体的质量比例为1:x:10,其中5<x<10。
  6. 如权利要求2所述的一项含气孔的荧光陶瓷的制造方法,其特征在于,步骤D)中,所述预设压力的范围为100MPa~200MPa,所述第二预设时间为5分钟~15分钟。
  7. 如权利要求2所述的一项含气孔的荧光陶瓷的制造方法,其特征在于,步骤F)中,所述预设温度为1600℃~1800℃,所述第三预设时间为4h~12h。
  8. 一种含气孔的荧光陶瓷,其特征在于,所述荧光陶瓷中产生荧光的物质为Y 3Al 5O 12:Ce,采用权利要求1至7任一项所述的制造方法制造。
  9. 如权利要求8所述的含气孔的荧光陶瓷,其特征在于,所述荧光陶瓷的气孔率为10~30%。
  10. 一种发光装置,包含光源和发光材料,其特征在于,所述发光材料包括权利要求1-3任一项所述的含气孔的荧光陶瓷。
PCT/CN2020/093766 2020-06-01 2020-06-01 含气孔的荧光陶瓷的制造方法 WO2021243522A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/093766 WO2021243522A1 (zh) 2020-06-01 2020-06-01 含气孔的荧光陶瓷的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/093766 WO2021243522A1 (zh) 2020-06-01 2020-06-01 含气孔的荧光陶瓷的制造方法

Publications (1)

Publication Number Publication Date
WO2021243522A1 true WO2021243522A1 (zh) 2021-12-09

Family

ID=78830095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093766 WO2021243522A1 (zh) 2020-06-01 2020-06-01 含气孔的荧光陶瓷的制造方法

Country Status (1)

Country Link
WO (1) WO2021243522A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116239381A (zh) * 2023-03-16 2023-06-09 海南钇坤智能科技有限公司 一种增强抑制离子转变能力的激光陶瓷材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195437A (ja) * 2010-02-26 2011-10-06 Mino Ceramic Co Ltd セラミックス多孔質断熱材及びその製造方法
CN102424603A (zh) * 2011-09-07 2012-04-25 陕西理工学院 一种以冰为模板制备氧化锆梯度多孔陶瓷的方法
CN102898174A (zh) * 2011-07-29 2013-01-30 深圳光启创新技术有限公司 一种多孔陶瓷微球材料及其制备方法
JP2016069194A (ja) * 2014-09-26 2016-05-09 三井金属鉱業株式会社 多孔質セラミックスの製造方法
CN105814006A (zh) * 2013-12-13 2016-07-27 三井金属矿业株式会社 多孔质陶瓷的制造方法、多孔质陶瓷、承烧板和烧结窑具
CN108863394A (zh) * 2017-05-10 2018-11-23 中国科学院上海硅酸盐研究所 一种凝胶浇注结合冷冻干燥制备多孔陶瓷的方法
CN110615679A (zh) * 2019-06-25 2019-12-27 苏州创思得新材料有限公司 一种高光效陶瓷荧光片及其制备方法
CN110903088A (zh) * 2018-09-14 2020-03-24 深圳光峰科技股份有限公司 一种多孔荧光陶瓷及其制备方法、发光装置和投影装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195437A (ja) * 2010-02-26 2011-10-06 Mino Ceramic Co Ltd セラミックス多孔質断熱材及びその製造方法
CN102898174A (zh) * 2011-07-29 2013-01-30 深圳光启创新技术有限公司 一种多孔陶瓷微球材料及其制备方法
CN102424603A (zh) * 2011-09-07 2012-04-25 陕西理工学院 一种以冰为模板制备氧化锆梯度多孔陶瓷的方法
CN105814006A (zh) * 2013-12-13 2016-07-27 三井金属矿业株式会社 多孔质陶瓷的制造方法、多孔质陶瓷、承烧板和烧结窑具
JP2016069194A (ja) * 2014-09-26 2016-05-09 三井金属鉱業株式会社 多孔質セラミックスの製造方法
CN108863394A (zh) * 2017-05-10 2018-11-23 中国科学院上海硅酸盐研究所 一种凝胶浇注结合冷冻干燥制备多孔陶瓷的方法
CN110903088A (zh) * 2018-09-14 2020-03-24 深圳光峰科技股份有限公司 一种多孔荧光陶瓷及其制备方法、发光装置和投影装置
CN110615679A (zh) * 2019-06-25 2019-12-27 苏州创思得新材料有限公司 一种高光效陶瓷荧光片及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116239381A (zh) * 2023-03-16 2023-06-09 海南钇坤智能科技有限公司 一种增强抑制离子转变能力的激光陶瓷材料及其制备方法
CN116239381B (zh) * 2023-03-16 2024-04-12 海南钇坤智能科技有限公司 一种增强抑制离子转变能力的激光陶瓷材料及其制备方法

Similar Documents

Publication Publication Date Title
Du et al. Massive red-shifting of Ce 3+ emission by Mg 2+ and Si 4+ doping of YAG: Ce transparent ceramic phosphors
Zhang et al. Pore-existing Lu3Al5O12: Ce ceramic phosphor: An efficient green color converter for laser light source
Liu et al. Composition and structure design of three-layered composite phosphors for high color rendering chip-on-board light-emitting diode devices
CN107285745B (zh) 一种氧化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN107285746B (zh) 一种氧化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
Hinklin et al. Transparent, polycrystalline upconverting nanoceramics: towards 3‐D displays
US9287106B1 (en) Translucent alumina filaments and tape cast methods for making
WO2019047822A1 (zh) 一种具有特征微观结构的荧光陶瓷及其制备方法和应用
JP2016204563A (ja) 蛍光部材、その製造方法および発光装置
TW201202396A (en) Phosphor particles, light-emitting diode, and illuminating device and liquid crystal panel backlight device using them
WO2019169868A1 (zh) 荧光陶瓷及其制备方法
WO2018090614A1 (zh) 一种发光陶瓷及发光装置
Huang et al. Tunable chromaticity and high color rendering index of WLEDs with CaAlSiN3: Eu2+ and YAG: Ce3+ dual phosphor‐in‐silica‐glass
CN108863317A (zh) 一种荧光复合陶瓷及其制备方法和应用
CN104061531B (zh) 一种波长转换装置的制作方法
WO2021104399A1 (zh) 荧光陶瓷及其制备方法、发光装置以及投影装置
WO2020052256A1 (zh) 一种多孔荧光陶瓷及其制备方法、发光装置和投影装置
CN112174646A (zh) 一种激光照明用高导热荧光陶瓷及其制备方法
Sanad et al. Tuning the structural, optical, photoluminescence and dielectric properties of Eu 2+-activated mixed strontium aluminate phosphors with different rare earth co-activators
WO2021243522A1 (zh) 含气孔的荧光陶瓷的制造方法
CN108589046A (zh) 一种复合荧光纳米纤维膜的制备方法
CN109437912A (zh) 一种形貌可控的二氧化硅原位包覆碳化硅核壳结构纳米复合材料的制备方法
Sun et al. Significant enhancement of luminescence properties of YAG: Ce ceramics by differential grain sizes control
CN107200589B (zh) 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN114455976B (zh) 荧光玻璃-陶瓷复合材料的制备方法及复合材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938535

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20938535

Country of ref document: EP

Kind code of ref document: A1