CN112174646A - 一种激光照明用高导热荧光陶瓷及其制备方法 - Google Patents

一种激光照明用高导热荧光陶瓷及其制备方法 Download PDF

Info

Publication number
CN112174646A
CN112174646A CN202011043763.6A CN202011043763A CN112174646A CN 112174646 A CN112174646 A CN 112174646A CN 202011043763 A CN202011043763 A CN 202011043763A CN 112174646 A CN112174646 A CN 112174646A
Authority
CN
China
Prior art keywords
yag
mgo
fluorescent ceramic
temperature
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011043763.6A
Other languages
English (en)
Inventor
孙旭东
于华倩
赵环宇
李晓东
李继光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN202011043763.6A priority Critical patent/CN112174646A/zh
Publication of CN112174646A publication Critical patent/CN112174646A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/053Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及一种激光照明用高导热荧光陶瓷及其制备方法,该荧光陶瓷包括钇铝石榴石相(YAG:Ce)和MgO高导热相,其中,钇铝石榴石相的质量分数为20~80%;由MgO纳米粉体和YAG:Ce荧光粉球磨混合后采用热压烧结加热等静压烧结得到,本发明制得的荧光陶瓷结晶度好,具有高的热导率和良好的发光强度,可承受大功率的激光辐照,而且在较低温度下制备,极大地降低两相之间的反应速度,制备工艺简单,耗能低。

Description

一种激光照明用高导热荧光陶瓷及其制备方法
技术领域
本发明涉及一种激光照明用高导热荧光陶瓷及其制备方法,属于激光照明材料技术领域。
背景技术
近年来,国内外科研人员投入大量精力改善LED的效率骤减问题,但随着LED的发展逐渐进入瓶颈期,功率与效率之间的矛盾没有得到根本解决。此时,基于激光二极管(Laser Diodes,LD)的激光光源进入大众视野。相比于LED光源,LD不存在“效率骤减”现象,而且发光效率更高,照射距离更远,体积更小,可控性更好,成为未来固态照明的发展方向。随着激光照明技术的不断发展,针对LD光源的特性开发新一代的荧光材料迫在眉睫。由于LD的功率密度远高于LED,所以要求荧光材料具有更高的热导率、优异的抗辐照能力和良好的发光性能。
传统用于LED的荧光陶瓷,一般分为两种,一种是纯相荧光陶瓷,如YAG:Ce陶瓷;另一种是复相荧光陶瓷,如Al2O3-YAG:Ce陶瓷。在室温下,YAG陶瓷的热导率约为9-14W/m/K,Al2O3陶瓷的热导率约为32-35W/m/K。导热能力的不足会严重影响荧光陶瓷在大功率激光照明中的应用。因此,需要进一步提高激光照明用荧光陶瓷的热导率,开发出一种既具有优异的发光性能,又具有高热导率的荧光陶瓷。
发明内容
(一)要解决的技术问题
为了解决现有技术的上述问题,本发明提供一种激光照明用高导热YAG:Ce-MgO荧光陶瓷及其制备方法。
(二)技术方案
为了达到上述目的,本发明采用的主要技术方案包括:
一种激光照明用高导热荧光陶瓷,其包括钇铝石榴石相即YAG:Ce和MgO高导热相,其中,钇铝石榴石相的质量分数为20~80%。
一种激光照明用高导热荧光陶瓷的制备方法,其包括如下步骤:
S1:准确称量原料粉体:MgO粉体和YAG:Ce荧光粉体;
S2:向上述原料粉体中添加分散剂,以无水乙醇为分散介质,采用球磨法混合原料粉体;将球磨后的浆料置于烘箱中干燥;再经过过筛和煅烧,获得混合均匀的原料粉体混合物;
S3:将S2获得的原料粉体混合物填入不锈钢模具中单轴压制,获得素坯;
S4:将S3得到的素坯置于石墨模具中,采用热压烧结方法,得到YAG:Ce-MgO荧光陶瓷;
S5:将S4得到的YAG:Ce-MgO荧光陶瓷采用热等静压烧结使其进一步致密化,获得致密的YAG:Ce-MgO荧光陶瓷;
S6:对S5得到的荧光陶瓷进行退火处理。
如上所述的制备方法,优选地,在步骤S1中,所述YAG:Ce荧光粉体的颗粒尺寸为10~15μm,MgO的颗粒尺寸为50~100nm。
经大量实验研究发现YAG:Ce荧光粉体选择大尺寸颗粒可以提高材料发光强度,MgO粉体选择纳米颗粒有助于提高陶瓷的烧结活性,YAG:Ce荧光粉体的颗粒尺寸优选10~15μm,MgO的颗粒尺寸优选50~100nm。
如上所述的制备方法,优选地,在步骤S1中,所述YAG:Ce相的质量分数为原料粉体总质量的20~80%。
如上所述的制备方法,优选地,在步骤S2中,所述分散剂为柠檬酸铵或聚丙烯酸铵,添加量为原料粉体总质量的0.5~2%,煅烧温度为500~800℃。
经大量实验研究发现采用质量分数为0.5~2%的柠檬酸铵或聚丙烯酸铵作为分散剂可以有效的避免纳米粉体的团聚,使YAG:Ce均匀的分散于MgO之间。
如上所述的制备方法,优选地,在步骤S3中,所述单轴压制的压力为10~50MPa。
如上所述的制备方法,优选地,在步骤S4中,所述热压烧结的条件是以10~50℃/min的升温速率升至1100~1450℃,保温0.5~2h,热压压力为20~50MPa。
研究发现若温度低于1100℃,则陶瓷很难烧结致密化,若温度高于1450℃,YAG:Ce和MgO反应加剧,会严重降低陶瓷的发光性能。
如上所述的制备方法,优选地,在步骤S5中,所述热等静压烧结的条件是以10~40℃/min的升温速率升至1150~1500℃,保温0.5~2h,其中,热等静压压力为100~200MPa。
本发明采用热等静压工艺,可以有效排除陶瓷内部的闭气孔,从而达到陶瓷的致密化。若温度低于此范围,则进一步致密化的驱动力不足。若高于1450℃,则晶粒会发生异常长大,形成不易排出的晶内气孔,影响进一步致密化。
如上所述的制备方法,优选地,在步骤S6中,所述退火处理的条件是以按5~10℃/min的升温速率升至1000~1300℃,保温2~4h,退火气氛为空气气氛。
在1000~1300℃,保温2~4h,这个退火条件下,可以有效的去除在烧结过程中渗入的碳元素。
(三)有益效果
本发明的有益效果是:
本发明提供的激光照明用高导热YAG:Ce-MgO荧光陶瓷,是在YAG:Ce结构中引入MgO,由于MgO的热导率(36-48W/m/K)显著高于YAG和Al2O3,所以本发明制备的复相荧光陶瓷的热导率优于现有的技术方案。同时,由于MgO自身具有良好的光学性能,常用于制备透明陶瓷,所以在本发明中,复相荧光陶瓷的发光性能不会因为MgO的加入而降低。因此,YAG:Ce-MgO荧光陶瓷结晶度好,具有高的热导率和良好的发光强度,可承受大功率的激光辐照。
本发明提供的激光照明用高导热复相荧光陶瓷的制备方法,是由MgO纳米粉体和YAG:Ce荧光粉球磨混合后,采用热压烧结加热等静压烧结得到,使得复相荧光陶瓷可以在较低温度下制备,有效地降低了两相之间的反应速度,基本保持了YAG:Ce荧光粉和包裹在其周围的MgO高导热相的结构,从而保证了烧结后的荧光陶瓷拥有优异的发光性能和良好的导热能力,而且制备工艺简单,耗能低。
附图说明
图1为实施例1得到的YAG:Ce-MgO荧光陶瓷的X射线衍射图谱;
图2为实施例1得到的YAG:Ce-MgO荧光陶瓷的激发发射光谱;
图3为实施例1得到的YAG:Ce-MgO荧光陶瓷的扫描电镜照片;
图4为测得的热导率结果。
具体实施方式
为了更好的解释本发明,以便于理解,下面结合附图,通过具体实施方式,对本发明作详细描述。其中,实施例中所用的YAG:Ce可购自深圳格亮广电有限公司,MgO可购自上海阿拉丁生化科技股份有限公司。
实施例1
一种激光照明用高导热YAG:Ce-MgO荧光陶瓷的制备方法,其包括如下步骤:S1:按照YAG:Ce荧光粉体占原料粉体(MgO粉体和YAG:Ce荧光粉体)总质量的40%,准确称量MgO粉体和YAG:Ce荧光粉体。其中YAG:Ce荧光粉体的颗粒尺寸为10-15μm,MgO的颗粒尺寸为50-100nm。
S2:添加粉体总质量的1%的柠檬酸铵作为分散剂,以无水乙醇为分散介质,采用球磨方法将粉体混和均匀,经过100℃干燥和200目筛网过筛得到混合均匀的粉体。再将粉体在空气气氛下煅烧,煅烧温度为600℃,保温时间为1h。
S3:将S2获得的原料粉体混合物填入不锈钢模具中单轴压制,压力为30MPa,获得素坯。
S4:将S3得到的素坯置于石墨模具中,采用热压烧结方法,按40℃/min的升温速率升至1200℃,保温1h,热压压力为40MPa,从而得到YAG:Ce-MgO荧光陶瓷。
S5:将S4得到的YAG:Ce-MgO荧光陶瓷采用热等静压烧结,按30℃/min的升温速率升至1250℃,保温1h,热等静压压力为100MPa,使其进一步致密化。
S6:将烧结后的复相荧光陶瓷进行退火处理,按照7℃/min的升温速率升至1100℃,保温3h。再经过打磨抛光,得到YAG:Ce-MgO复相荧光陶瓷。
对上述方法制备的荧光陶瓷进行X射线衍射检测,获得YAG:Ce-MgO荧光陶瓷的X射线衍射图谱,如图1所示,结果说明陶瓷中主要物相为YAG和MgO,并含有少量的Y2O3和MgAl2O4。说明在烧结过程中,YAG和MgO会发生反应,生成少量Y2O3和MgAl2O4。利用荧光分光光度计对上述制备的YAG:Ce-MgO荧光陶瓷和YAG:Ce粉体分别进行荧光光谱的检测,结果如图2所示,从图中可以看出,荧光陶瓷和粉体的激发和发射光谱基本重合,这说明添加MgO不会影响YAG:Ce的激发和发射。图3是YAG:Ce-MgO荧光陶瓷的扫描电镜背散射照片。通过照片可以清晰的看出,YAG相均匀地分散于MgO相之中。MgO作为连续相有助于提高荧光陶瓷的热导率。
实施例2
S1:按照YAG:Ce荧光粉体占原料粉体(MgO粉体和YAG:Ce荧光粉体)总质量的30%,准确称量MgO粉体和YAG:Ce荧光粉体。其中YAG:Ce荧光粉体的颗粒尺寸为10-15μm,MgO的颗粒尺寸为50-100nm。
S2:添加粉体总质量的0.5%的柠檬酸铵作为分散剂,以无水乙醇为分散介质,采用球磨方法将粉体混和均匀,经过100℃干燥和200目筛网过筛得到混合均匀的粉体。再将粉体在空气气氛下煅烧,煅烧温度为700℃,保温时间为1h。
S3:将S2获得的原料粉体混合物填入不锈钢模具中单轴压制,压力为25MPa,获得素坯。
S4:将S3得到的素坯置于石墨模具中,采用热压烧结方法,按照50℃/min的升温速率升至1200℃,保温1h,热压压力为30MPa,从而得到YAG:Ce-MgO荧光陶瓷。
S5:将S4得到的YAG:Ce-MgO荧光陶瓷采用热等静压烧结,按40℃/min的升温速率升至1250℃,保温0.5h,热等静压压力为100MPa,使其进一步致密化。
S6:将烧结后的复相荧光陶瓷进行退火处理,按照8℃/min的升温速率升至1000℃,保温2h。再经过打磨抛光,得到YAG:Ce-MgO复相荧光陶瓷。
采用激光导热仪测得上述制得的30%YAG:Ce-MgO复相荧光陶瓷在室温下的热导率为25.2W/m/K。
实施例3
S1:按照YAG:Ce荧光粉体占原料粉体(MgO粉体和YAG:Ce荧光粉体)总质量的50%,准确称量MgO粉体和YAG:Ce荧光粉体。其中YAG:Ce荧光粉体的颗粒尺寸为10-15μm,MgO的颗粒尺寸为50-100nm。
S2:添加粉体总质量的1%的聚丙烯酸铵作为分散剂,以无水乙醇为分散介质,采用球磨方法将粉体混和均匀,经过100℃干燥和200目筛网过筛得到混合均匀的粉体。再将粉体在空气气氛下煅烧,煅烧温度为700℃,保温时间为1h。
S3:将S2获得的原料粉体混合物填入不锈钢模具中单轴压制,压力为35MPa,获得素坯。
S4:将S3得到的素坯置于石墨模具中,采用热压烧结方法,按照30℃/min的升温速率升至1400℃,保温1h,热压压力为40MPa,从而得到YAG:Ce-MgO荧光陶瓷。
S5:将S4得到的YAG:Ce-MgO荧光陶瓷采用热等静压烧结,按照20℃/min的升温速率升至1450℃,保温1h,热等静压压力为120MPa,使其进一步致密化。
S6:将烧结后的复相荧光陶瓷进行退火处理,按照6℃/min的升温速率升至1200℃,保温2h。再经过打磨抛光,得到YAG:Ce-MgO复相荧光陶瓷。
采用激光导热仪测得上述制得的50%YAG:Ce-MgO复相荧光陶瓷在室温下的热导率为20.1W/m/K。
实施例4
S1:按照YAG:Ce荧光粉体占原料粉体(MgO粉体和YAG:Ce荧光粉体)总质量的70%准确称量MgO粉体和YAG:Ce荧光粉体。其中YAG:Ce荧光粉体的颗粒尺寸为10-15μm,MgO的颗粒尺寸为50-100nm。
S2:添加粉体总质量的0.5%的聚丙烯酸铵作为分散剂,以无水乙醇为分散介质,采用球磨方法将粉体混和均匀,经过100℃干燥和200目筛网过筛得到混合均匀的粉体。再将粉体在空气气氛下煅烧,煅烧温度为500℃,保温时间为1h。
S3:将S2获得的原料粉体混合物填入不锈钢模具中单轴压制,压力为450MPa,获得素坯。
S4:将S3得到的素坯置于石墨模具中,采用热压烧结方法,按照20℃/min的升温速率升至1400℃,保温2h,热压压力为50MPa,从而得到YAG:Ce-MgO荧光陶瓷。
S5:将S4得到的YAG:Ce-MgO荧光陶瓷采用热等静压烧结,按照20℃/min的升温速率升至1450℃,保温2h,热等静压压力为150MPa,使其进一步致密化。
S6:将烧结后的复相荧光陶瓷进行退火处理,按照6℃/min的升温速率升至1200℃,保温3h。再经过打磨抛光,得到YAG:Ce-MgO复相荧光陶瓷。
采用激光导热仪测得上述制得的30%YAG:Ce-MgO复相荧光陶瓷在室温下的热导率为15.8W/m/K。
对比例1
制备YAG:Ce含量为质量百分比40%的YAG:Ce-Al2O3复相荧光陶瓷,按如下方法进行:
(1)按照YAG:Ce荧光粉体占原料粉体(Al2O3粉体和YAG:Ce荧光粉体)总质量的40%,准确称量Al2O3粉体和YAG:Ce荧光粉体。
(2)添加粉体总质量的1%的柠檬酸铵作为分散剂,以无水乙醇为分散介质,采用球磨方法将粉体混和均匀,经过100℃干燥和200目筛网过筛得到混合均匀的粉体。再将粉体在空气气氛下煅烧,煅烧温度为600℃,保温时间为1h。
(3)将(2)获得的原料粉体混合物填入不锈钢模具中单轴压制,压力为30MPa,获得素坯。
(4)将(3)得到的素坯置于石墨模具中,采用热压烧结方法,按40℃/min的升温速率升至1400℃,保温1h,热压压力为40MPa,从而得到YAG:Ce-Al2O3荧光陶瓷。
(5)将(4)得到的YAG:Ce-Al2O3荧光陶瓷采用热等静压烧结,按30℃/min的升温速率升至1450℃,保温1h,热等静压压力为100MPa,使其进一步致密化。
(6)将烧结后的复相荧光陶瓷进行退火处理,按照7℃/min的升温速率升至1100℃,保温3h,再经过打磨抛光,得到YAG:Ce-Al2O3复相荧光陶瓷。
对比例2
制备YAG:Ce含量为质量百分比为40%的YAG:Ce-YAG荧光陶瓷
(1)按照Y3Al5O12(YAG)的比例准确称量Al2O3粉体和Y2O3粉体,以无水乙醇为分散介质,采用球磨方法将粉体混和均匀,经过100℃干燥和200目筛网过筛,再经过900℃煅烧2h得到混合均匀的YAG前驱粉体。
(2)按照YAG:Ce荧光粉体占原料粉体(YAG前驱体粉体和YAG:Ce荧光粉体)总质量的40%,准确称量YAG:Ce荧光粉体和S1制备的YAG前驱体粉体。
(3)添加粉体总质量的1%的柠檬酸铵作为分散剂,以无水乙醇为分散介质,采用球磨方法将粉体混和均匀;经过100℃干燥和200目筛网过筛得到混合均匀的粉体。再将粉体在空气气氛下煅烧,煅烧温度为600℃,保温时间为1h。
(4)将(3)获得的原料粉体混合物填入不锈钢模具中单轴压制,压力为30MPa,获得素坯。
(5)将(4)得到的素坯置于石墨模具中,采用热压烧结方法,按40℃/min的升温速率升至1400℃,保温1h,热压压力为40MPa;得到YAG:Ce-YAG荧光陶瓷。
(6)将(5)得到的YAG:Ce-YAG荧光陶瓷采用热等静压烧结,按30℃/min的升温速率升至1450℃,保温1h,热等静压压力为100MPa,使其进一步致密化。
(7)将烧结后的复相荧光陶瓷进行退火处理,按照7℃/min的升温速率升至1100℃,保温3h。再经过打磨抛光,得到YAG:Ce-YAG复相荧光陶瓷。
利用激光导热仪分别测试本发明以实施例1为代表、对比例1和对比例2中制备的荧光陶瓷的热导率,如图4所示。通过图中可以清晰的看出本发明制备的YAG:Ce-MgO荧光陶瓷的热导率要高于对比例中相同条件下制备的其他荧光陶瓷。因此,本发明所述荧光陶瓷具备良好的热性能,可以有效提高激光辐照下的散热能力,在大功率激光照明领域拥有绝佳的应用前景。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明做其它形式的限制,任何本领域技术人员可以利用上述公开的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (9)

1.一种激光照明用高导热荧光陶瓷,其特征在于,其包括钇铝石榴石相即YAG:Ce和MgO高导热相,其中,钇铝石榴石相的质量分数为20~80%。
2.一种激光照明用高导热荧光陶瓷的制备方法,其特征在于,其包括如下步骤:
S1:准确称量原料粉体:MgO粉体和YAG:Ce荧光粉体;
S2:向上述原料粉体中添加分散剂,以无水乙醇为分散介质,采用球磨法混合原料粉体;将球磨后的浆料置于烘箱中干燥;再经过过筛和煅烧,获得混合均匀的原料粉体混合物;
S3:将步骤S2获得的原料粉体混合物填入不锈钢模具中单轴压制,获得素坯;
S4:将步骤S3得到的素坯置于石墨模具中,采用热压烧结方法,得到YAG:Ce-MgO荧光陶瓷;
S5:将步骤S4得到的YAG:Ce-MgO荧光陶瓷采用热等静压烧结使其进一步致密化,获得致密的YAG:Ce-MgO荧光陶瓷;
S6:对S5得到的荧光陶瓷进行退火处理。
3.如权利要求2所述的制备方法,其特征在于,在步骤S1中,所述YAG:Ce荧光粉体的颗粒尺寸为10~15μm,MgO的颗粒尺寸为50~100nm。
4.如权利要求2所述的制备方法,其特征在于,在步骤S1中,所述YAG:Ce相的质量分数为原料粉体总质量的20~80%。
5.如权利要求2所述的制备方法,其特征在于,在步骤S2中,所述分散剂为柠檬酸铵或聚丙烯酸铵,添加量为原料粉体总质量的0.5~2%,煅烧温度为500~800℃。
6.如权利要求2所述的制备方法,其特征在于,在步骤S3中,所述单轴压制的压力为10~50MPa。
7.如权利要求2所述的制备方法,其特征在于,在步骤S4中,所述热压烧结的条件是以10~50℃/min的升温速率升至1100~1450℃,保温0.5~2h,其中热压压力为20~50MPa。
8.如权利要求2所述的制备方法,其特征在于,在步骤S5中,所述热等静压烧结的条件是以10~40℃/min的升温速率升至1150~1500℃,保温0.5~2h,其中,热等静压压力为100~200MPa。
9.如权利要求2所述的制备方法,其特征在于,在步骤S6中,所述退火处理的条件是以5~10℃/min的升温速率升至1000~1300℃,保温2~4h,退火气氛为空气气氛。
CN202011043763.6A 2020-09-28 2020-09-28 一种激光照明用高导热荧光陶瓷及其制备方法 Pending CN112174646A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011043763.6A CN112174646A (zh) 2020-09-28 2020-09-28 一种激光照明用高导热荧光陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011043763.6A CN112174646A (zh) 2020-09-28 2020-09-28 一种激光照明用高导热荧光陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN112174646A true CN112174646A (zh) 2021-01-05

Family

ID=73947244

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011043763.6A Pending CN112174646A (zh) 2020-09-28 2020-09-28 一种激光照明用高导热荧光陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN112174646A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988862A (zh) * 2022-06-29 2022-09-02 江苏师范大学 一种激光照明用高显色指数荧光陶瓷及其制备方法
CN115180947A (zh) * 2022-06-13 2022-10-14 重庆翰博显示科技研发中心有限公司 一种激光照明用高流明效率陶瓷的制备方法
CN115215646A (zh) * 2022-07-12 2022-10-21 江苏师范大学 一种激光照明用高导热高热稳定性三相荧光陶瓷及其制备方法
CN116262660A (zh) * 2021-12-15 2023-06-16 中国科学院福建物质结构研究所 一种装载荧光粉的氧化镁复相陶瓷及其制备方法和应用
CN116675528A (zh) * 2023-04-28 2023-09-01 中国科学院宁波材料技术与工程研究所 一种绿色荧光陶瓷及其制备方法和应用
CN116768605A (zh) * 2022-03-10 2023-09-19 中国科学院上海硅酸盐研究所 一种硅酸盐橙色复相荧光陶瓷及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101905971A (zh) * 2010-07-23 2010-12-08 中国科学院上海硅酸盐研究所 稀土离子掺杂钇铝石榴石激光陶瓷的制备方法
CN107200589A (zh) * 2016-03-18 2017-09-26 深圳市绎立锐光科技开发有限公司 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN108735877A (zh) * 2017-04-13 2018-11-02 日本电气硝子株式会社 波长转换部件和波长转换元件以及使用它们的发光装置
CN109896852A (zh) * 2017-12-07 2019-06-18 上海航空电器有限公司 用于蓝光激发的白光照明的复相荧光陶瓷、制备方法及光源装置
CN111377713A (zh) * 2019-11-27 2020-07-07 中国科学院上海硅酸盐研究所 一种复相荧光陶瓷及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101905971A (zh) * 2010-07-23 2010-12-08 中国科学院上海硅酸盐研究所 稀土离子掺杂钇铝石榴石激光陶瓷的制备方法
CN107200589A (zh) * 2016-03-18 2017-09-26 深圳市绎立锐光科技开发有限公司 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN108735877A (zh) * 2017-04-13 2018-11-02 日本电气硝子株式会社 波长转换部件和波长转换元件以及使用它们的发光装置
CN109896852A (zh) * 2017-12-07 2019-06-18 上海航空电器有限公司 用于蓝光激发的白光照明的复相荧光陶瓷、制备方法及光源装置
CN111377713A (zh) * 2019-11-27 2020-07-07 中国科学院上海硅酸盐研究所 一种复相荧光陶瓷及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ZHAO HY等: "High-performance Al2O3-YAG:Ce composite ceramic phosphors for miniaturization of high-brightness white light-emitting diodes", 《CERAMICS INTERNATIONAL》 *
段辉平主编: "《材料科学与工程实验教程》", 30 April 2019, 北京航空航天大学出版社 *
钟香崇等编: "《新型高效耐火材料研究》", 30 April 2007, 河南科学技术出版社 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116262660A (zh) * 2021-12-15 2023-06-16 中国科学院福建物质结构研究所 一种装载荧光粉的氧化镁复相陶瓷及其制备方法和应用
CN116262660B (zh) * 2021-12-15 2024-06-11 中国科学院福建物质结构研究所 一种装载荧光粉的氧化镁复相陶瓷及其制备方法和应用
CN116768605A (zh) * 2022-03-10 2023-09-19 中国科学院上海硅酸盐研究所 一种硅酸盐橙色复相荧光陶瓷及其制备方法
CN116768605B (zh) * 2022-03-10 2024-03-12 中国科学院上海硅酸盐研究所 一种硅酸盐橙色复相荧光陶瓷及其制备方法
CN115180947A (zh) * 2022-06-13 2022-10-14 重庆翰博显示科技研发中心有限公司 一种激光照明用高流明效率陶瓷的制备方法
CN114988862A (zh) * 2022-06-29 2022-09-02 江苏师范大学 一种激光照明用高显色指数荧光陶瓷及其制备方法
CN115215646A (zh) * 2022-07-12 2022-10-21 江苏师范大学 一种激光照明用高导热高热稳定性三相荧光陶瓷及其制备方法
CN115215646B (zh) * 2022-07-12 2023-09-05 江苏师范大学 一种激光照明用高导热高热稳定性三相荧光陶瓷及其制备方法
CN116675528A (zh) * 2023-04-28 2023-09-01 中国科学院宁波材料技术与工程研究所 一种绿色荧光陶瓷及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN112174646A (zh) 一种激光照明用高导热荧光陶瓷及其制备方法
CN107285745B (zh) 一种氧化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN107285746B (zh) 一种氧化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
Gu et al. A new CaF 2-YAG: Ce composite phosphor ceramic for high-power and high-color-rendering WLEDs
CN107200588B (zh) 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
JP2016204563A (ja) 蛍光部材、その製造方法および発光装置
WO2018045782A1 (zh) 陶瓷复合材料的制备方法及陶瓷复合材料、光源装置
CN109896852B (zh) 用于蓝光激发的白光照明的复相荧光陶瓷、制备方法及光源装置
CN109467453A (zh) 一种具有特征微观结构的荧光陶瓷及其制备方法和应用
TWI453277B (zh) 具有多相矽鋁氮氧化物為基的陶瓷材料之發光裝置
CN111205081B (zh) 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用
EP2832817A1 (en) Oxynitride phosphor powder
CN108863317A (zh) 一种荧光复合陶瓷及其制备方法和应用
CN110240468A (zh) 荧光陶瓷及其制备方法
CN107200587B (zh) 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN112441817A (zh) 荧光陶瓷及其制备方法、光源装置
Sun et al. Green emitting spinel/Ba2SiO4: Eu2+/spinel sandwich structure robust ceramic phosphor prepared by spark plasma sintering
Zhou et al. Ultra-high efficiency green-emitting LuAG: Ce phosphor-in-ceramic applied for high-power laser lighting
CN107200589B (zh) 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
Sun et al. Significant enhancement of luminescence properties of YAG: Ce ceramics by differential grain sizes control
CN109987932B (zh) 用于白光照明的复相荧光陶瓷、制备方法及光源装置
Zhou et al. Effect of CaO additive on the densification of MgO and MgO-YGAG: Ce ceramics
CN112209714A (zh) 一种一次成型烧结铝基石榴石型发光陶瓷的制备技术
Zhou et al. Mixed precipitants derived nanocrystalline powders and RE doped LuAG transparent ceramics
Chen et al. MgF2-doped MgO-YAG: Ce composite ceramics prepared by pressureless vacuum sintering for laser-driven lighting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210105

RJ01 Rejection of invention patent application after publication