CN116768605B - 一种硅酸盐橙色复相荧光陶瓷及其制备方法 - Google Patents

一种硅酸盐橙色复相荧光陶瓷及其制备方法 Download PDF

Info

Publication number
CN116768605B
CN116768605B CN202210240145.3A CN202210240145A CN116768605B CN 116768605 B CN116768605 B CN 116768605B CN 202210240145 A CN202210240145 A CN 202210240145A CN 116768605 B CN116768605 B CN 116768605B
Authority
CN
China
Prior art keywords
phase
fluorescent
sintering
silicate orange
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210240145.3A
Other languages
English (en)
Other versions
CN116768605A (zh
Inventor
刘学建
彭星淋
黄政仁
姚秀敏
张延收
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202210240145.3A priority Critical patent/CN116768605B/zh
Publication of CN116768605A publication Critical patent/CN116768605A/zh
Application granted granted Critical
Publication of CN116768605B publication Critical patent/CN116768605B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1655Solid materials characterised by a crystal matrix silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]

Abstract

本发明公开一种硅酸盐橙色复相荧光陶瓷及其制备方法。所述硅酸盐橙色复相荧光陶瓷包括氧化镁基质相以及分散在氧化镁基质相中的硅酸盐橙色荧光分散相,所述硅酸盐橙色荧光分散相的含量为20~50wt%;所述氧化镁基质相和硅酸盐橙色荧光分散相不发生化学反应或生成固溶体,并在硅酸盐橙色复相荧光陶瓷中保持各自的物相。和目前报道的荧光陶瓷相比,本发明所述硅酸盐橙色复相荧光陶瓷热导率较高,因此具有优异的热稳定性和高的发光饱和阈值,另外还弥补了市面上橙色荧光陶瓷的不足,可以和黄色或者绿色荧光材料一起封装为光谱补充橙光成分,从而提高显色指数,降低相关色温。

Description

一种硅酸盐橙色复相荧光陶瓷及其制备方法
技术领域
本发明涉及一种硅酸盐橙色复相荧光陶瓷及其制备方法,属于发光材料技术领域。
背景技术
蓝色激光二极管(LD)芯片由于不存在蓝色发光二极管(LED)芯片在高功率密度下的“效率滚降”问题,可结合荧光材料实现超高亮度高、远距离和小光束照明,并应用于汽车大灯、户外照明、激光电视以及激光影院等许多重要领域,具有广阔的市场前景。
目前LD照明面临着显色指数偏低和发光饱和阈值偏低两大难题。前者主要是由于光谱中缺乏橙红光成分,后者主要是由于荧光材料的热导率较低。一方面,以YAG:Ce3+为代表的石榴石体系荧光材料,由于晶体场劈裂效应较弱发光多集中在黄绿色波段,因此需要通过改变基质化学组成、掺杂发红光的稀土/过渡金属离子以及复合橙红色荧光材料等方法为光谱补充橙红光成分,从而提高显色指数。另一方面,由于封装在硅树脂中的荧光粉的热导率一般只有0.1~0.2W m-1K-1,用于激光照明不仅会造成黄化效应,影响器件的使用寿命、发光效率并造成色漂移,同时会导致器件在较低的入射激光功率密度下发生发光饱和。荧光陶瓷是目前综合性能最为优异、最有发展前景的一类激光照明用荧光材料,其热导率相对较高,在激光的照射下能够实现有效的散热,从而提高荧光材料的发光饱和阈值,实现大功率、高亮度的激光照明。
Sr3SiO5:Eu2+是一种性能优异的橙黄色荧光粉,在Sr2+的格位掺杂离子半径更大的Ba2+之后,由于晶体场劈裂效应增强,光谱获得进一步红移,根据Ba2+的掺杂量,发射峰位一般可达590nm~610nm。因此,(Sr,Ba)3SiO5:Eu2+橙色荧光粉多用来和YAG:Ce3+黄色荧光粉或者Sr2SiO4:Eu2+绿色荧光粉一起混合封装,从而提高照明器件的显色指数,降低相关色温,实现暖白光照明。
但是,Sr3SiO5:Eu2+或者(Sr,Ba)3SiO5:Eu2+目前还只是作为荧光粉被报道并获得应用,研究人员未能或者没有意识到可以将其烧结成为荧光陶瓷,所以目前仍缺乏相关的研究工作。这可能是由于(Sr,Ba)3SiO5粉体烧结活性差,通过相图可知其低共熔点高达2080℃,在不添加烧结助剂或者第二相的情况下难以烧结致密。但是在添加某些烧结助剂后,由于和荧光粉之间会发生化学反应或形成固溶体,不仅没有起到烧结作用,还会破坏荧光粉的发光结构,并且单相Sr3SiO5:Eu2+或者(Sr,Ba)3SiO5:Eu2+荧光陶瓷的热导率依然偏低,不能有效提高荧光材料的发光饱和阈值。因此,目前亟待解决的问题是制备出具有高热导率的橙色复相荧光陶瓷,以提高照明器件的发光饱和阈值以及显色指数,从而满足大功率、高光学质量激光照明的应用需求。
发明内容
针对上述问题,本发明提供一种硅酸盐橙色复相荧光陶瓷。和目前报道的荧光陶瓷相比,本发明所述硅酸盐橙色复相荧光陶瓷热导率较高,因此具有优异的热稳定性和高的发光饱和阈值,另外还弥补了市面上橙色荧光陶瓷的不足,可以和黄色或者绿色荧光材料一起封装为光谱补充橙光成分,从而提高显色指数,降低相关色温。本发明的复相荧光陶瓷能够用于激光照明和大功率LED照明,有利于提高照明和显示器件的稳定性和显色指数。
第一方面,本发明提供一种硅酸盐橙色复相荧光陶瓷。所述硅酸盐橙色复相荧光陶瓷包括氧化镁基质相以及分散在氧化镁基质相中的硅酸盐橙色荧光分散相,所述硅酸盐橙色荧光分散相的含量为20~50wt%;所述氧化镁基质相和硅酸盐橙色荧光分散相不发生化学反应或生成固溶体,并在硅酸盐橙色复相荧光陶瓷中保持各自的物相。
较佳地,所述硅酸盐橙色荧光分散相选自Sr3SiO5:Eu2+、(Sr,Ba)3SiO5:Eu2+、(Sr,Ba,Ca)3SiO5:Eu2+中至少一种。
较佳地,所述硅酸盐橙色复相荧光陶瓷的室温热导率为10~32W m-1K-1;在入射激光功率为15W时的光通量为60~184lm。
第二方面,本发明提供上述任一项所述的硅酸盐橙色复相荧光陶瓷的制备方法。所述制备方法包括:
(1)把氧化镁粉体和硅酸盐橙色荧光粉混合均匀并过筛,得到混合粉体;
(2)将混合粉体经过成型得到素坯;
(3)将步骤(1)所得混合粉体或步骤(2)所得素坯烧结得到所述硅酸盐橙色复相荧光陶瓷。
较佳地,所述氧化镁粉体的粒径范围为0.05~5微米;所述硅酸盐橙色荧光粉的粒径范围为5~30微米。
较佳地,所述成型的方式为干压成型或/和冷等静压成型,优选为先干压成型后冷等静压成型;所述干压成型的压力为5~15Mpa,保压时间为0.5~1分钟;所述冷等静压成型的压力为200~250MPa,保压时间为1~10分钟。
较佳地,所述烧结的温度为1300~1600℃,保温时间为5分钟~6小时;所述烧结的气氛为真空气氛、Ar/H2气氛或者N2/H2气氛。
较佳地,将所述混合粉体进行烧结时,所述烧结的方式为放电等离子体烧结或热压烧结;所述放电等离子体烧结的压力为30~80MPa,温度为1300~1500℃,保温时间为5~20分钟;所述热压烧结的压力为30~60MPa,温度为1300~1500℃,保温时间为1~2小时。
较佳地,将所将所述素坯进行烧结时,所述烧结的方式选自真空烧结或者常压烧结;所述真空烧结和常压烧结的温度为1400~1600℃,保温时间为4~6小时。
较佳地,在温和的条件下进行混合以减少或避免硅酸盐橙色荧光粉的破坏,优选采用研磨混料的方式进行混合。
有益效果
本发明所述硅酸盐橙色复相荧光陶瓷是一种具有高的热导率、高的致密度和良好的发光性能的硅酸盐橙色荧光陶瓷。当MgO添加量为80wt%时热导率高达32W/m·K,高于常见的YAG:Ce荧光陶瓷和相同Al2O3添加量的Al2O3-YAG:Ce复相荧光陶瓷。
本发明所述硅酸盐橙色复相荧光陶瓷和黄/绿色荧光陶瓷组合可以产生暖白光,能有效降低色温,提高显色指数;
本发明所述硅酸盐橙色复相荧光陶瓷具有宽的激发光谱,可被紫外/蓝光LD以及紫外/蓝光LED激发,实现大功率高亮度的照明,在照明和显示领域具有很好的应用前景。
附图说明
图1为复相荧光陶瓷的XRD图谱,由图可知烧结后的陶瓷保持MgO和荧光粉两种物相不变,说明两者之间没有发生化学反应。
图2为复相荧光陶瓷的激发发射光谱,由图可知复相荧光陶瓷具有一个从紫外到蓝光的宽激发峰,可以在紫外光或者蓝光的激发下发射596nm左右的橙光。
图3为复相荧光陶瓷的热导率随温度的变化曲线,由图可知复相荧光陶瓷的热导率最高可达32K m-1K-1,可以有效增强散热,适用于激光照明或者大功率LED照明。
图4为复相荧光陶瓷的光通量随入射蓝色激光功率的变化曲线,由图可知样品具有较高的发光饱和阈值和光通量。
图5为选择不同基质相烧结的复相荧光陶瓷的样品照片。
具体实施方式
通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。在没有特殊说明的情况下,各百分含量指质量百分含量。
在本公开中,硅酸盐橙色复相荧光陶瓷包括氧化镁基质相和硅酸盐橙色荧光粉分散相。其中,氧化镁基质的引入不仅促进了荧光陶瓷的致密化,而且提高了荧光陶瓷的热导率,由于激光照明或者大功率LED照明在使用过程中会产生大量的热量,热导率的提高可以增强散热,进而可以提高荧光材料的热稳定性和发光饱和阈值,因此热导率的提高至关重要。
当前现有技术虽然提及了包括MgO在内的多种高导热介质陶瓷基质材料,但是所述的荧光陶瓷主体的成分不包含Sr3SiO5:Eu2+、(Sr,Ba)3SiO5:Eu2+、(Sr,Ba,Ca)3SiO5:Eu2+中的至少一种。换句话说,MgO与Sr3SiO5:Eu2+、(Sr,Ba)3SiO5:Eu2+、(Sr,Ba,Ca)3SiO5:Eu2+中的至少一种结合形成的复相荧光陶瓷是没有被报道过的。此外,本发明中陶瓷基质相的选择范围比较窄,经过实验验证目前只有MgO符合。其原因包括两个方面,其一是需要基质相和荧光粉不发生化学反应或生成固溶体,基质相的引入不能破坏荧光粉的发光性能;其二是基质相可以烧结为透明陶瓷,这样才能保证烧结的复相荧光陶瓷是透明或者半透明的,进而满足透射式激光照明器件的应用需求。通过实验表明,Al2O3或者Y2O3作为基质相时,它们会和Sr3SiO5:Eu2+或者(Sr,Ba)3SiO5:Eu2+或者(Sr,Ba,Ca)3SiO5:Eu2+形成固溶体并破坏荧光粉的发光结构,使荧光陶瓷的颜色发生变化,导致不发光或者不再发射橙黄光。氮化铝、氮化硅和氮化硼均很难或者不能制备透明陶瓷,因此也不适合作为本发明的基质相成分。
硅酸盐橙色荧光粉分散相的成分是硅酸盐橙色荧光粉(以下简称“荧光粉”)。荧光粉包括但不限于Sr3SiO5:Eu2+、(Sr,Ba)3SiO5:Eu2+、(Sr,Ba,Ca)3SiO5:Eu2+等硅酸盐橙色荧光粉中至少一种。
硅酸盐橙色荧光粉分散相占复相荧光陶瓷总质量的20~50wt%,优选为30~40wt%。当荧光粉的含量超过50wt%时,所得复相荧光陶瓷由于热导率过低导致发光饱和阈值显著降低,难以应用于激光照明或者大功率LED照明;而当荧光粉的含量低于20wt%时,所得复相荧光陶瓷由于荧光粉含量过低导致发光性能变差。
该复相荧光陶瓷目前还没有被报道,是一种新的体系。其中,选择不与该荧光粉发生反应或者生成固溶体的高热导第二相,是本发明所述复相荧光陶瓷的重点所在。对于荧光陶瓷,可以通过烧结后荧光陶瓷的颜色来判断荧光陶瓷的发光,如果荧光粉烧结的陶瓷的颜色和荧光粉相比发生明显变化,就说明荧光粉的发光结构遭到了破坏,这可能是由于荧光粉和基质相发生了化学反应或者产生了固溶体造成的。高热导基质相的选择除了MgO,本发明还尝试了Al2O3或者Y2O3等常见的第二相,但是烧结后的Al2O3-(Sr,Ba)3SiO5:Eu2+复相荧光陶瓷呈现白色,烧结后的Y2O3-(Sr,Ba)3SiO5:Eu2+复相荧光陶瓷呈现灰黑色,均丧失了发光性能,而烧结后的MgO-(Sr,Ba)3SiO5:Eu2+复相荧光陶瓷依然呈现橙色,保持了良好的发光性能。
所述硅酸盐橙色复相荧光陶瓷的热导率为10~32W m-1K-1。当MgO陶瓷基质相的含量为80wt%,荧光粉分散相的含量为20wt%时,热导率为32W m-1K-1;当MgO陶瓷基质相的含量为50wt%,荧光粉分散相的含量为50wt%时,热导率为10W m-1K-1
以下示例性地说明硅酸盐橙色复相荧光陶瓷的制备过程。
按照质量比分别称量相应质量的MgO粉和荧光粉,分别加入研钵混合均匀,得到混合粉体。其中,上述所有原料的纯度不低于99.5%。本发明选用研钵进行原料物质的混合是为了避免在球磨过程对荧光粉颗粒的破坏,因为在磨球的冲击下,不仅会减少荧光颗粒之间的团聚,同时也会打碎一部分荧光颗粒,损失的荧光颗粒势必会影响发光性能,而温和的手动研磨混料可以避免这个问题。接着,把研磨后的混合粉体过100~200目筛,进一步保证混合均匀。一些技术方案中,所述氧化镁粉体的粒径范围为0.05~5微米;所述硅酸盐橙色荧光粉的粒径范围为5~30微米。粒径过细的粉体会产生二次团聚,粒径过粗的粉体烧结活性差,不利于降低烧结温度,因此氧化镁和荧光粉的粉体粒径在这个范围内是最佳的。
将混合粉体通过干压成型或/和冷等静压成型,得到素坯。成型方式优选为先干压成型后冷等静压成型。作为示例,所述干压成型的压力为5~15Mpa、保压时间为0.5~1分钟,所述冷等静压成型的压力为200~250MPa、保压时间为1~10分钟。
在可选的实施方式中,将混合粉体直接进行烧结,以制备得到硅酸盐橙色复相荧光陶瓷。此时,混合粉体的烧结方式可包括放电等离子体烧结和热压烧结,无需压制成型,便能制备得到致密度较高的陶瓷材料。例如,采用放电等离子体烧结的方式时,无需预先成型,直接把混合粉体装入石墨模具中,且在石墨模具内侧垫一层石墨纸避免石墨模具和混合粉体直接接触,外侧包裹一层碳毡起到保温隔热的作用,把装好的石墨模具放入放电等离子体烧结炉内,最后开始放电等离子烧结。作为示例,所述放电等离子体烧结的压力为30~80MPa,温度为1300~1500℃,时间为5~20分钟;所述热压烧结的压力为30~60MPa,温度为1300~1500℃,时间为1~2小时。
在可选的实施方式中,将素坯进行烧结,以制备得到硅酸盐橙色复相荧光陶瓷。此时,素坯的烧结方法包括真空烧结和常压烧结等,本发明并不做限制,可以根据需要进行选择。作为示例,所述真空烧结和常压烧结的温度为1400~1600℃,时间为4~6小时。
在本发明中,虽然混合粉体和素坯的烧结方式不同,但烧结制度,可在“烧结温度为1300~1600℃,保温时间为5min~6h”范围进行适当调节。烧结气氛可选真空、N2/H2或者Ar/H2气氛。此外,热压烧结和放电等离子烧结等烧结方式的压力可以根据烧结方式灵活选择,范围可为无压至80MPa。对于放电等离子烧结来说,其升温速率一般在50~100℃之间,在烧结完成后降温速率可为50~100℃/min。对于其他烧结方式,其升温速率一般在5~10℃/min之间,在烧结完成后降温速率可为5~10℃/min之间。
对烧结后的硅酸盐橙色复相荧光陶瓷进行机械加工,先用平面磨床打磨再进行双面抛光处理。所得硅酸盐橙色复相荧光陶瓷的形状和大小主要根据烧结的模具以及实际的需要来选择。所得复相荧光陶瓷的加工厚度为0.1mm~2mm。
性能测试:
采用阿基米德排水法测试硅酸盐橙色复相荧光陶瓷的致密度接近100%。
采用激光热导仪测量热扩散系数α,采用高温比热测试仪测量热容Cp,采用阿基米德排水法测量体系密度ρ,通过κ=α·Cp·ρ公式计算硅酸盐橙色复相荧光陶瓷的热导率在10~32W m-1K-1之间。
采用紫外可见分光光度计测量硅酸盐橙色复相荧光陶瓷的总透过率,例如0.4mm厚度的复相荧光陶瓷在800nm处的总透过率为40%左右。
采用激光测试装置测量硅酸盐橙色复相荧光陶瓷的光通量和发光饱和阈值,例如可达184lm和10.4W。
在本发明中,硅酸盐橙色复相荧光陶瓷和目前报道的荧光陶瓷相比,一方面热导率较高,因此具有较高的发光饱和阈值;另一方面弥补了市面上橙色荧光陶瓷的不足,可以和黄色或绿色荧光陶瓷一起封装来提高显色指数,降低相关色温。所得硅酸盐橙色复相荧光陶瓷可以很好地应用于激光照明或大功率LED照明,能够提高照明和显示器件的热稳定性和显色指数。
下面进一步列举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容做出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。下述实施例和对比例中,若无特殊说明,所用硅酸盐橙色荧光粉的粒径范围为5~30微米,氧化镁粉体的粒径范围为0.05~5微米。
实施例1
硅酸盐橙色复相荧光陶瓷的制备:
(1)按照质量分数MgO粉:荧光粉=80:20,分别称取MgO粉16g,Sr3SiO5:Eu2+荧光粉4g,在研钵中研磨直至混合均匀,研磨时间为1h。把研磨后的粉体过200目筛,进一步保证混合均匀。
(2)采用放电等离子体烧结的方式,无需预先成型,直接把混合好的4g粉体装入石墨模具中,石墨模具内侧垫一层石墨纸避免模具和粉体直接接触,外侧包裹一层碳毡起到保温隔热的作用,把装好的模具放入放电等离子体烧结炉内。升温制度为100℃/min,烧结温度为1350℃,保温时间为20min,烧结压力为80MPa,烧结气氛为真空,降温制度为50℃/min。烧结完成后脱模取出样品。
(3)把烧结好的样品用平面磨床打磨后双面抛光至0.4mm。
实施例2
硅酸盐橙色复相荧光陶瓷的制备:
(1)按照质量分数MgO粉:荧光粉=70:30,分别称取MgO粉14g,(Sr,Ba)3SiO5:Eu2+荧光粉6g,在研钵中研磨直至混合均匀,研磨时间为1h。把研磨后的粉体过200目筛,进一步保证混合均匀。
(2)采用放电等离子体烧结的方式,无需预先成型,直接把混合好的4g粉体装入石墨模具中,石墨模具内侧垫一层石墨纸避免模具和粉体直接接触,外侧包裹一层碳毡起到保温隔热的作用,把装好的模具放入放电等离子体烧结炉内。升温制度为100℃/min,烧结温度为1400℃,保温时间为20min,烧结压力为80MPa,烧结气氛为真空,降温制度为50℃/min。烧结完成后脱模取出样品。
(3)把烧结好的样品用平面磨床打磨后双面抛光至0.6mm。
实施例3
硅酸盐橙色复相荧光陶瓷的制备:
(1)按照质量分数MgO粉:荧光粉=60:40,分别称取MgO粉12g,(Sr,Ba)3SiO5:Eu2+荧光粉8g,在研钵中研磨直至混合均匀,研磨时间为1h。把研磨后的粉体过200目筛,进一步保证混合均匀。
(2)采用热压烧结的方式,无需预先成型,直接把混合好的4g粉体装入石墨模具中,石墨模具内侧垫一层石墨纸避免模具和粉体直接接触,把装好的模具放入热压烧结炉内。升温制度为10℃/min,烧结温度为1450℃,保温时间为1h,烧结压力为40MPa,烧结气氛为真空,降温制度为10℃/min。烧结完成后脱模取出样品。
(3)把烧结好的样品用平面磨床打磨后双面抛光至0.8mm。
实施例4
硅酸盐橙色复相荧光陶瓷的制备:
(1)按照质量分数MgO粉:荧光粉=50:50,分别称取MgO粉10g,(Sr,Ba)3SiO5:Eu2+荧光粉10g,在研钵中研磨直至混合均匀,研磨时间为1h。把研磨后的粉体过200目筛,进一步保证混合均匀。
(2)将混合粉体2g根据需要装入合适大小和形状的模具,先干压成型后冷等静压成型。所述干压成型的压力为10Mpa,保压时间为1分钟;所述冷等静压成型的压力为200MPa,保压时间为10分钟。
(3)采用真空烧结的方式,把成型好的素坯装入钨坩埚,放入真空钨丝烧结炉内。升温制度为5℃/min,烧结温度为1600℃,保温时间为4h,烧结气氛为真空,降温制度为5℃/min。
(4)把烧结好的样品用平面磨床打磨后双面抛光至2mm。
实施例5
硅酸盐橙色复相荧光陶瓷的制备:
(1)按照质量分数MgO粉:荧光粉=70:30,分别称取MgO粉14g,(Sr,Ba)3SiO5:Eu2+荧光粉6g,在研钵中研磨直至混合均匀,研磨时间为1h。把研磨后的粉体过200目筛,进一步保证混合均匀。
(2)将混合粉体2g根据需要装入合适大小和形状的模具,先干压成型后冷等静压成型。所述干压成型的压力为15Mpa,保压时间为0.5分钟;所述冷等静压成型的压力为250MPa,保压时间为10分钟。
(3)采用常压烧结的方式,把成型好的素坯装入氮化硼坩埚,放入常压烧结炉内。升温制度为10℃/min,烧结温度为1500℃,保温时间为6h,烧结气氛为N2/H2气氛,降温制度为5℃/min。
(4)把烧结好的样品用平面磨床打磨后双面抛光至0.2mm。
实施例6
硅酸盐橙色复相荧光陶瓷的制备:
(1)按照质量分数MgO粉:荧光粉=80:20,分别称取MgO粉16g,(Sr,Ba)3SiO5:Eu2+荧光粉4g,在研钵中研磨直至混合均匀,研磨时间为1h。把研磨后的粉体过200目筛,进一步保证混合均匀。
(2)将混合粉体2g根据需要装入合适大小和形状的模具,先干压成型后冷等静压成型。所述干压成型的压力为15Mpa,保压时间为0.5分钟;所述冷等静压成型的压力为250MPa,保压时间为10分钟;
(3)采用常压烧结的方式,把成型好的素坯装入氮化硼坩埚,放入常压烧结炉内。升温制度为10℃/min,烧结温度为1550℃,保温时间为4h,烧结气氛为Ar/H2气氛,降温制度为5℃/min;
(4)把烧结好的样品用平面磨床打磨后双面抛光至0.1mm。
图1为实施例1-3的复相荧光陶瓷的XRD图谱,由图可知烧结后的陶瓷保持MgO和荧光粉两种物相不变,说明两者之间没有发生化学反应。
图2为实施例1的复相荧光陶瓷的激发发射光谱,由图可知复相荧光陶瓷具有一个从紫外到蓝光的宽激发峰,可以在紫外光或者蓝光的激发下发射596nm左右的橙光。
图3为实施例1-4的复相荧光陶瓷的热导率随温度的变化曲线,由图可知复相荧光陶瓷的热导率最高可达32K m-1K-1,可以有效增强散热,适用于激光照明或者大功率LED照明。
图4为实施例1的复相荧光陶瓷的光通量随入射蓝色激光功率的变化曲线,由图可知样品具有较高的发光饱和阈值和光通量。
对比例1
与实施例1基本相同,区别仅在于选择Al2O3作为基质相。烧结后的Al2O3-(Sr,Ba)3SiO5:Eu2+复相荧光陶瓷呈现白色,说明(Sr,Ba)3SiO5:Eu2+橙色荧光粉的发光中心已经遭到破坏,丧失了发光性能,可能是由(Sr,Ba)3SiO5:Eu2+荧光粉和Al2O3发生了化学反应或者形成了固溶体导致。
对比例2
与实施例1基本相同,区别仅在于选择Y2O3作为基质相。烧结后的Y2O3-(Sr,Ba)3SiO5:Eu2+复相荧光陶瓷呈现灰黑色,说明(Sr,Ba)3SiO5:Eu2+橙色荧光粉的发光中心已经遭到破坏,丧失了发光性能,可能是由(Sr,Ba)3SiO5:Eu2+荧光粉和Y2O3发生了化学反应或者形成了固溶体导致。
图5为选择不同基质相烧结的复相荧光陶瓷的样品照片,由图可知烧结后的Al2O3-(Sr,Ba)3SiO5:Eu2+复相荧光陶瓷呈现白色,烧结后的Y2O3-(Sr,Ba)3SiO5:Eu2+复相荧光陶瓷呈现灰黑色,均丧失了发光性能,而烧结后的MgO-(Sr,Ba)3SiO5:Eu2+复相荧光陶瓷依然呈现橙色,保持了良好的发光性能。

Claims (11)

1.一种硅酸盐橙色复相荧光陶瓷,其特征在于,所述硅酸盐橙色复相荧光陶瓷为氧化镁基质相以及分散在氧化镁基质相中的硅酸盐橙色荧光分散相,所述硅酸盐橙色荧光分散相选自Sr3SiO5:Eu2+、(Sr,Ba)3SiO5:Eu2+、(Sr,Ba,Ca)3SiO5:Eu2+中至少一种,所述硅酸盐橙色荧光分散相的含量为20~50wt%;所述氧化镁基质相和硅酸盐橙色荧光分散相不发生化学反应,并在硅酸盐橙色复相荧光陶瓷中保持各自的物相。
2. 根据权利要求1所述的硅酸盐橙色复相荧光陶瓷,其特征在于,所述硅酸盐橙色复相荧光陶瓷的室温热导率为10~32 W m-1 K-1;在入射激光功率为15 W时的光通量为60~184 lm。
3.制备权利要求1或2所述的硅酸盐橙色复相荧光陶瓷的方法,其特征在于,包括:
(1)把氧化镁粉体和硅酸盐橙色荧光粉混合均匀并过筛,得到混合粉体;
(2)将混合粉体经过成型得到素坯;
(3)将步骤(1)所得混合粉体或步骤(2)所得素坯烧结得到所述硅酸盐橙色复相荧光陶瓷。
4.根据权利要求3所述的制备方法,其特征在于,所述氧化镁粉体的粒径范围为0.05~5微米;所述硅酸盐橙色荧光粉的粒径范围为5~30微米。
5. 根据权利要求3所述的制备方法,其特征在于,所述成型的方式为干压成型或/和冷等静压成型;所述干压成型的压力为5~15Mpa,保压时间为0.5~1分钟;所述冷等静压成型的压力为200~250 MPa,保压时间为1~10分钟。
6.根据权利要求5所述的制备方法,其特征在于,所述成型的方式为先干压成型后冷等静压成型。
7.根据权利要求3所述的制备方法,其特征在于,所述烧结的温度为1300~1600℃,保温时间为5分钟~6小时;所述烧结的气氛为真空气氛、Ar/H2气氛或者N2/H2气氛。
8. 根据权利要求3所述的制备方法,其特征在于,将所述混合粉体进行烧结时,所述烧结的方式为放电等离子体烧结或热压烧结;所述放电等离子体烧结的压力为30~80 MPa,温度为1300~1500℃,保温时间为5~20分钟;所述热压烧结的压力为30~60 MPa,温度为1300~1500℃,保温时间为1~2小时。
9.根据权利要求3所述的制备方法,其特征在于,将所述素坯进行烧结时,所述烧结的方式选自真空烧结或者常压烧结;所述真空烧结和常压烧结的温度为1400~1600℃,保温时间为4~6小时。
10.根据权利要求3所述的制备方法,其特征在于,在温和的条件下进行混合以减少或避免硅酸盐橙色荧光粉的破坏。
11.根据权利要求10所述的制备方法,其特征在于,采用研磨混料的方式进行混合。
CN202210240145.3A 2022-03-10 2022-03-10 一种硅酸盐橙色复相荧光陶瓷及其制备方法 Active CN116768605B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210240145.3A CN116768605B (zh) 2022-03-10 2022-03-10 一种硅酸盐橙色复相荧光陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210240145.3A CN116768605B (zh) 2022-03-10 2022-03-10 一种硅酸盐橙色复相荧光陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN116768605A CN116768605A (zh) 2023-09-19
CN116768605B true CN116768605B (zh) 2024-03-12

Family

ID=87990188

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210240145.3A Active CN116768605B (zh) 2022-03-10 2022-03-10 一种硅酸盐橙色复相荧光陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN116768605B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076624A (zh) * 2008-04-29 2011-05-25 肖特公开股份有限公司 特别用于包含半导体光源的白色或彩色光源的转换材料、其制造方法以及包含所述转换材料的光源
CN105368448A (zh) * 2015-12-03 2016-03-02 河北利福光电技术有限公司 一种碱土金属硅酸盐黄-橙色荧光粉及其制备方法和应用
WO2016061408A1 (en) * 2014-10-15 2016-04-21 Nitto Denko Corporation Phosphor ceramics containing metal silicates for yellow and white emission
CN109678475A (zh) * 2018-12-11 2019-04-26 中国科学院上海硅酸盐研究所 一种激光照明用高导热Al2O3/YAG:Ce复相荧光陶瓷及其制备方法
CN111377713A (zh) * 2019-11-27 2020-07-07 中国科学院上海硅酸盐研究所 一种复相荧光陶瓷及其制备方法
CN112174646A (zh) * 2020-09-28 2021-01-05 东北大学 一种激光照明用高导热荧光陶瓷及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076624A (zh) * 2008-04-29 2011-05-25 肖特公开股份有限公司 特别用于包含半导体光源的白色或彩色光源的转换材料、其制造方法以及包含所述转换材料的光源
WO2016061408A1 (en) * 2014-10-15 2016-04-21 Nitto Denko Corporation Phosphor ceramics containing metal silicates for yellow and white emission
CN105368448A (zh) * 2015-12-03 2016-03-02 河北利福光电技术有限公司 一种碱土金属硅酸盐黄-橙色荧光粉及其制备方法和应用
CN109678475A (zh) * 2018-12-11 2019-04-26 中国科学院上海硅酸盐研究所 一种激光照明用高导热Al2O3/YAG:Ce复相荧光陶瓷及其制备方法
CN111377713A (zh) * 2019-11-27 2020-07-07 中国科学院上海硅酸盐研究所 一种复相荧光陶瓷及其制备方法
CN112174646A (zh) * 2020-09-28 2021-01-05 东北大学 一种激光照明用高导热荧光陶瓷及其制备方法

Also Published As

Publication number Publication date
CN116768605A (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
US10753574B2 (en) Sintered phosphor, light emitting device, illumination device, vehicle headlamp, and method for manufacturing sintered phosphor
JP5575488B2 (ja) 合成モノリシックセラミック発光変換体を含む照明システム
CN101697367B (zh) 一种利用透明陶瓷制备led的方法
CN107540368B (zh) 复相半透明荧光陶瓷的制备方法和led模组
CN110720060B (zh) 波长转换体和其制造方法以及使用了波长转换体的发光装置
JP2016204563A (ja) 蛍光部材、その製造方法および発光装置
CN108863317B (zh) 一种荧光复合陶瓷及其制备方法和应用
CN109467453A (zh) 一种具有特征微观结构的荧光陶瓷及其制备方法和应用
CN108503352B (zh) 一种石榴石基红色荧光陶瓷材料及其制备方法
WO2016173528A1 (zh) 一种用于大功率光源的发光陶瓷及发光装置
CN104177079B (zh) 用于白光LED荧光转换的含Sr的Ce:YAG基透明陶瓷及其制备方法
CN111517804B (zh) 一种氮化物红色复相荧光陶瓷及其制备方法
CN104609848A (zh) 一种用于白光led荧光转换的复合相透明陶瓷及其制备方法
JP2016204561A (ja) 蛍光部材、その製造方法および発光装置
CN112159209A (zh) 高显指高热导荧光陶瓷、制备方法及在激光显示中的应用
CN108300473A (zh) 一种波长转换装置及其制备方法、发光装置和投影装置
CN102249660B (zh) GaInN白光LED用复合结构荧光陶瓷及其制备方法
CN110316963A (zh) 一种荧光玻璃陶瓷材料以及含该材料的发光装置
Wu et al. Cyan-green-emitting Ca 3 Sc 2 Si 3 O 12: Ce 3+ transparent ceramics: A promising color converter for high-brightness laser lighting.
CN116768605B (zh) 一种硅酸盐橙色复相荧光陶瓷及其制备方法
CN113603462B (zh) 一种陶瓷-玻璃复合结构荧光色轮及其制备方法和在激光显示源中的应用
CN112645592B (zh) 一种高效可调复合荧光玻璃材料的制备和应用
WO2021015261A1 (ja) 蛍光部材およびその製造方法、並びに発光装置
CN109020558B (zh) 一种大功率暖白光固态照明用SiAlON荧光透明陶瓷及其制备方法
CN216818372U (zh) 一种荧光转换复合层及白光发光器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant