WO2021015261A1 - 蛍光部材およびその製造方法、並びに発光装置 - Google Patents

蛍光部材およびその製造方法、並びに発光装置 Download PDF

Info

Publication number
WO2021015261A1
WO2021015261A1 PCT/JP2020/028517 JP2020028517W WO2021015261A1 WO 2021015261 A1 WO2021015261 A1 WO 2021015261A1 JP 2020028517 W JP2020028517 W JP 2020028517W WO 2021015261 A1 WO2021015261 A1 WO 2021015261A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescent member
matrix
light
phosphor particles
fluorescent
Prior art date
Application number
PCT/JP2020/028517
Other languages
English (en)
French (fr)
Inventor
多々見 純一
絵美 高橋
拓実 高橋
Original Assignee
地方独立行政法人神奈川県立産業技術総合研究所
国立大学法人横浜国立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 地方独立行政法人神奈川県立産業技術総合研究所, 国立大学法人横浜国立大学 filed Critical 地方独立行政法人神奈川県立産業技術総合研究所
Priority to JP2020567995A priority Critical patent/JP6927509B2/ja
Priority to US17/273,263 priority patent/US11447696B2/en
Priority to CN202080005111.5A priority patent/CN114144497A/zh
Priority to EP20843555.2A priority patent/EP4006122A4/en
Publication of WO2021015261A1 publication Critical patent/WO2021015261A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/053Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4578Coating or impregnating of green ceramics or unset concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/502Water
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present invention relates to a fluorescent member and a method for manufacturing the same.
  • the present invention also relates to a light emitting device including a semiconductor light emitting element and the fluorescent member.
  • Light emitting devices equipped with semiconductor light emitting elements such as light emitting diodes (LEDs: Light Emission Diodes) and laser diodes (LDs: Laser Diodes) are excellent in terms of low power consumption and long life, and are excellent for lighting devices and liquid crystal displays. It is used as a back light for devices and a light source for laser devices. Among them, white LEDs are becoming widely used as alternative lighting for fluorescent lamps.
  • LEDs Light Emission Diodes
  • LDs Laser Diodes
  • a white LED is known to emit white light by combining a light emitting diode, which is a primary light source, and a fluorescent member.
  • a fluorescent member a molded product in which phosphor particles are dispersed in a resin has been developed.
  • the molding processability becomes excellent.
  • the temperature tends to be high due to the heat generated from the light emitting diode which is the primary light source and the heat generated by the energy conversion loss during the excitation-light emission process in the fluorescent member, the thermal conductivity is low and the heat resistance is low.
  • the resin (matrix) deteriorates. This problem is particularly serious when using high power LEDs and lasers.
  • a phosphor-dispersed glass in which the phosphor particles are dispersed in glass having excellent heat resistance, or a yellow phosphor Ce: YAG fluorescent particles are dispersed in transparent YAG ceramics. Fluorescent dispersion YAG ceramics have been reported. Further, a phosphor-dispersed sialon ceramic in which fluorescent particles are dispersed in a matrix made of a sialone-based compound has been proposed (Patent Document 1). Further, a wavelength conversion member in which inorganic phosphor particles are dispersed in magnesium oxide has been proposed (Patent Document 2). Attempts have also been made to make the entire plate fluorescent.
  • Non-Patent Documents 1 to 5 Although it is not an application example of the fluorescent member, a method of sintering ceramics by the "low temperature sintering" method specified in "Means for Solving Problems" described later has been reported (Non-Patent Documents 1 to 5). ).
  • the above-mentioned method of converting the entire plate into a phosphor requires high-temperature firing, and there is a problem that the system that can be densified is limited.
  • a temperature of 1000 to 1400 ° C. is exemplified as the sintering temperature.
  • the fluorescent member using Sialon as a matrix requires a high-temperature firing process of, for example, about 1000 to 1500 ° C. for densification of the matrix. When such a high temperature treatment is performed, there is a problem that the dispersed phosphor particles are likely to be deteriorated.
  • the fluorescent member using glass as a matrix can be plated at a relatively low temperature.
  • glass since glass has an inherently low thermal conductivity, there is a problem in applying the above-mentioned high-power LED and laser-pumped illumination.
  • the present invention has been made in view of the above circumstances, and does not require a high-temperature firing process (high-temperature process exceeding 250 ° C.), and has a fluorescent member having both thermal conductivity and fluorescence, a method for producing the same, and light emission.
  • the purpose is to provide the device.
  • [1] A matrix containing magnesium oxide and magnesium hydroxide as main components, A fluorescent member which is a sintered body for wavelength conversion and contains phosphor particles dispersed in the matrix.
  • [2] The fluorescent member according to [1], which has a thermal conductivity of 5 W / (m ⁇ K) or more.
  • [3] The fluorescent member according to [1] or [2], wherein the mass ratio of the magnesium hydroxide to the magnesium oxide in the matrix is 0.4 or less.
  • [4] The fluorescent member according to any one of [1] to [3], wherein the fluorescent particle contains nitride phosphor particles.
  • [5] The fluorescent member according to any one of [1] to [4], wherein the relative density is 85% or more.
  • [6] At least a preformed body of a mixture of the raw material powder of the matrix and the phosphor particles was obtained. It is a sintered body obtained by impregnating the preformed body with water and then sintering under pressure, and is a high temperature process exceeding 250 ° C. with respect to the preformed body after being impregnated with water.
  • [7] The fluorescent member according to [6], wherein the average particle size of the magnesium oxide in the matrix determined by the ISO13383-1: 2012 interception method is 0.1 ⁇ m to 10 ⁇ m.
  • the matrix is a method for producing a fluorescent member, which contains magnesium oxide and magnesium hydroxide as main components.
  • the present invention it is possible to provide a fluorescent member having both thermal conductivity and fluorescence, a method for producing the same, and a light emitting device without requiring a high-temperature firing process (high-temperature process exceeding 250 ° C.). ..
  • the schematic cross-sectional view which shows an example of the light emitting device which concerns on this embodiment.
  • SEM image of the preformed body of Experimental Example A SEM image of the sintered body of Experimental Example A.
  • SEM image of the fluorescent member of Example 1b X-ray profile of the fluorescent member of Example 1a. Fluorescence spectra of the fluorescent members of Example 1a and Comparative Example 2.
  • Fluorescence spectrum of the fluorescent member of Example 6b Fluorescence spectrum of the fluorescent member of Example 3b. Scanning transmission electron microscope (STEM) image of Example 1b. The oxygen mapping diagram of Example 1b.
  • the fluorescent member according to the present embodiment includes a sintered body for wavelength conversion, which contains a matrix containing magnesium oxide and magnesium hydroxide as main components and phosphor particles dispersed in the matrix.
  • the shape of the fluorescent member include a disk shape, a flat plate shape, a convex lens shape, a concave lens shape, a spherical shape, a hemispherical shape, a cubic shape, a rectangular parallelepiped shape, a columnar shape such as a prism or a cylinder, and a tubular shape such as a prism or a cylinder.
  • the fluorescent member of the present embodiment can be used by arranging it on the emission light side of, for example, a blue LED which is an excitation light source.
  • the phosphor particles absorb at least a part of the first light emitted from the semiconductor light emitting element or the like as excitation light, and emit the second light.
  • the phosphor particles in the present specification include not only so-called fluorescence-emitting particles but also phosphorescent particles.
  • the first light refers to light having a specific wavelength or light in a specific band, and the first light may be of one type or a plurality of types. As an example of the case where there are a plurality of types, there is a case where a semiconductor light emitting device that emits the first light of blue light and a semiconductor light emitting element that emits the first light of ultraviolet light are provided.
  • the second light refers to light emitted from the phosphor particles in which at least a part of the first light becomes excitation light of the phosphor particles.
  • a fluorescent member When a fluorescent member is used to obtain white light, for example, a phosphor particle that emits red light by blue light that is excitation light and a phosphor particle that emits green light by blue light that is excitation light are used as the fluorescent member. Incorporate. Further, the fluorescent member is assumed to have a transparency of transmitting blue light which is the excitation light and which does not contribute to the excitation. As a result, the blue light transmitted through the fluorescent member and the red light and green light emitted from the fluorescent member are mixed to obtain white light. In another example, phosphor particles that use ultraviolet light or purple light as excitation light and emit blue light to a fluorescent member, phosphor particles that emit red light by excitation light of ultraviolet light or purple light, and ultraviolet light.
  • the fluorescent member of the present embodiment contains phosphor particles that emit green light by excitation light of light or purple light. As a result, the blue light, red light, and green light emitted from the fluorescent member are mixed. As a result, white light can be obtained by the fluorescent member of the present embodiment.
  • the design in addition to the design in which a part of the excitation light is transmitted through the fluorescent member, the design may be such that the entire excitation light is absorbed by the fluorescent member.
  • the fluorescent member of the present embodiment preferably has a mode in which the phosphor particles are uniformly present throughout, from the viewpoint that the emission of fluorescence is uniform without bias and the total transmittance of the excitation light is uniform without bias. By doing so, the excitation light transmitted through the fluorescent member and the fluorescence emitted from the fluorescent member are mixed, and it becomes easy to adjust the color of the emitted light of the fluorescent member.
  • a concentration gradient may be provided in the distribution of the phosphor particles, or a fluorescent member containing different phosphor particles depending on the region may be used. Such a fluorescent member can be easily obtained by changing the process during the manufacturing process. It is also possible to join different types of fluorescent members.
  • a suitable example of the thickness of the fluorescent member may vary depending on the application, but is, for example, 100 ⁇ m or more.
  • An optical film can be provided on at least one of the entrance surface side and the exit surface side of the fluorescent member.
  • an antireflection film can be provided as the optical film.
  • the fluorescent member of the present embodiment can be obtained without requiring a high-temperature firing process (high-temperature process exceeding 250 ° C.) as described later. Therefore, it is possible to fundamentally solve the problems of deterioration and alteration of the phosphor particles, and to significantly increase the types of applicable phosphor particles. In addition, deterioration of the phosphor particles can be prevented. As a result, it is possible to provide a fluorescent member for wavelength conversion having excellent fluorescence.
  • matrix refers to components excluding fluorescent particles and trace components of less than 1% by mass in the fluorescent member, and may include additives that are optionally added.
  • the main component means a component contained in the matrix in an amount of 90% by mass or more.
  • magnesium oxide and magnesium hydroxide are the main components of the matrix. The ratio of magnesium oxide to magnesium hydroxide does not matter. Examples of components other than the main component include sodium chloride (NaCl), zinc oxide (ZnO), barium titanate (BaTIO 3 ), and calcium carbonate (CaCO 3 ). Moreover, you may add a dispersant.
  • the mass ratio of magnesium hydroxide to magnesium oxide ([magnesium hydroxide] / [magnesium oxide]) in the matrix of the fluorescent member according to the present embodiment can be appropriately designed depending on the application, but it effectively enhances thermal conductivity. From the viewpoint, it is preferably 0.4 or less, more preferably 0.3 or less, and further preferably 0.25 or less.
  • the lower limit of the mass ratio of magnesium hydroxide to magnesium oxide is not particularly limited as long as it can be densified, but it is preferably 0.1 or more from the viewpoint of easily performing the densification process at a low temperature.
  • the average particle size of magnesium oxide in the matrix is not particularly limited, but from the viewpoint of thermal conductivity, it is preferably 0.1 ⁇ m to 10 ⁇ m.
  • the average particle size of magnesium oxide in the matrix is determined by measuring as follows using a linear intercept method or the like based on ISO13383-1: 2012. That is, after the observation surface is mirror-polished and plasma-etched to clarify the crystal particles, a microstructure photograph of the crystal particles is obtained with a scanning electron microscope. A straight line is drawn on the obtained microstructure photograph, and the intersection distance between the straight line and the particle interface is measured to obtain the particle diameter. The measurement of the particle size is repeated, and the obtained values are averaged to obtain the average particle size of magnesium oxide.
  • the thermal conductivity when a resin is used as the matrix of the fluorescent member is about 0.1 W / (m ⁇ K), and the thermal conductivity when glass is used is about 1 W / (m ⁇ K). ..
  • the thermal conductivity can be significantly improved. By optimizing the manufacturing process of the fluorescent member, it is easy to set the thermal conductivity to 5 W / (m ⁇ K) or more.
  • the thermal conductivity of the fluorescent member of the present embodiment is preferably 5 W / (m ⁇ K) or more, more preferably 6 W / (m), from the viewpoint of making the thermal conductivity more excellent. ⁇ K) or higher, more preferably 8 W / (m ⁇ K) or higher.
  • the upper limit of thermal conductivity is not limited, but in the case of a matrix containing magnesium oxide and magnesium hydroxide as the main components, it is theoretically 50 W / (m ⁇ K) or less, so the process is changed to achieve thermal conductivity. By controlling the path, even higher thermal conductivity can be achieved.
  • the thermal conductivity referred to in the present specification means the thermal conductivity of the fluorescent member measured according to JIS R1611, and specifically, the value measured by the method described in the examples.
  • Aluminum garnet (LAG-based phosphor, europium and / or chromium-activated nitrogen-containing calcium aluminosilicate (CaO-Al 2 O 3 -SiO 2 ) -based phosphor, europium-activated silicate ((Sr, Sr,) Ba) 2 SiO 4 ) -based phosphors and the like can be mentioned.
  • nitride phosphor particles are preferable.
  • ⁇ -sialon is used as the nitride phosphor particles. Examples thereof include a fluorescent substance, a ⁇ -sialon fluorescent substance, CASN, and S-CASN.
  • nitride phosphor particles containing nitrogen in the phosphor composition are suitable.
  • the nitride phosphor comprising strontium and silicon crystal phase e.g., SCASN, Sr 2 Si 5 N 8
  • a nitride phosphor containing calcium and silicon in the crystalline phase e.g.
  • nitride phosphors containing strontium, silicon and aluminum in the crystal phase eg SCASN, Sr 2 Si 5 N 8
  • barium, nitride phosphors containing silicon in the crystal phase eg BSON
  • calcium, silicon and aluminum Nitride phosphors included in the phase eg, SCASN, CASN, CASON
  • Other classifications of nitride phosphors include lanthanum nitrid silicates (eg LSN), alkaline earth metal nitrid silicates (eg Sr 2 Si 5 N 8 ), alkaline earth metal nitrid silicates (CASN,).
  • SCASSN SCASSN, ⁇ -sialon, (Ca, Sr) AlSi 4 N 7 ) and the like can be mentioned. More specifically, for example, ⁇ -sialon which can be expressed by the following general formula; Si 6-z Al z Oz N 8-z : Eu (0 ⁇ z ⁇ 4.2 in the formula), ⁇ -sialon, LSN expressed by the following general formula; Ln x Si 6 N y M z [1] (In the formula [1], Ln represents one or more elements selected from rare earth elements excluding the element used as the activating element, M represents one or more elements selected from the activating elements, and x, y. , Z are values that independently satisfy the following equations.
  • CASN expressed by the following general formula
  • CaAlSiN 3 Eu, SCASN; (Ca, Sr, Ba, Mg) AlSiN 3 : Eu and / or (Ca, Sr, Ba) AlSi (N, O) 3 : Eu, which can be expressed by the following general formula.
  • CASON which can be expressed by the following general formula; (CaAlSiN 3 ) 1-x (Si 2 N 2 O) x : Eu (0 ⁇ x ⁇ 0.5 in the formula), CaAlSi 4 N 7 ; Euy (Sr, Ca, Ba) 1-y: Al 1 + x Si 4-x O x N 7-x (in the formula, 0 ⁇ x ⁇ 4, 0 ⁇ ) can be expressed by the following general formula. y ⁇ 0.2), Sr 2 Si 5 N 8 ; (Sr, Ca, Ba) 2 Al x Si 5-x O x N 8-x : Eu (0 ⁇ x ⁇ 2 in the formula), which can be expressed by the following general formula.
  • a nitride phosphor that does not contain oxygen as a constituent element that is, LSN, CaAlSiN 3
  • a nitride phosphor such as SCASN, Sr 2 Si 5 N 8 , ⁇ -sialon, and BSON.
  • the type of phosphor particles to be added is not particularly limited, and a plurality of types may be added depending on the purpose.
  • the content of phosphor particles in the fluorescent member can be appropriately adjusted according to the shape (thickness, etc.) of the fluorescent member, the required transparency (total transmittance of excitation light), and the fluorescence (fluorescence intensity, emission wavelength).
  • the average particle size of the phosphor particles in the matrix is not particularly limited, but is preferably 500 nm to 30 ⁇ m, preferably 1 ⁇ m to 10 ⁇ m, from the viewpoint of obtaining a good balance of excitation light transmission, good fluorescence characteristics, and dispersibility. Is more preferable.
  • the average particle size of the phosphor particles in the matrix is determined by using the linear intercept method based on ISO13383-1: 2012. The specific measurement method is the same as that for magnesium oxide.
  • the method for producing a fluorescent member of the present embodiment at least the phosphor particles and the raw material powder of the matrix are mixed to obtain a mixture, the mixture is premolded, the preformed body is impregnated with water, and then under pressure. It has a step of obtaining a sintered body through a sintering process. According to the manufacturing method of the present embodiment, it is possible to manufacture a fluorescent member having excellent thermal conductivity and fluorescence without requiring a high temperature process exceeding 250 ° C.
  • sintering refers to a phenomenon in which the surface area of powder decreases, and in the sintering process after obtaining a preformed body and impregnating it with water, the temperature is 250 ° C. or lower under pressure.
  • a method of fixing a fluorescent member at a temperature (hereinafter, also referred to as "low temperature sintering"). It is synonymous with so-called cold sintering.
  • low-temperature sintering water (liquid phase) impregnated in the preformed body is introduced into the particle-particle interface, and the particles are uniformly swollen with an appropriate amount of water.
  • the lower limit of the sintering temperature is not particularly limited, but is preferably room temperature.
  • premolding refers to molding from an amorphous state such as granules to a solid shape having a certain shape by pressure, for example, and refers to a molded body before being impregnated with water.
  • the process of forming the preformed body can also be performed at a temperature exceeding 250 ° C.
  • the particles are in point contact with each other and the surface area does not change significantly. Therefore, in the present specification, "sintering" means a process after impregnation with water. The process of forming the preformed body is not included. The details will be described below.
  • the average particle size calculated as 6 / (S ⁇ ⁇ ) from the specific surface area S and density ⁇ of magnesium oxide in the raw material powder is preferably 20 to 1000 nm, more preferably 30 to 800 nm, and 40 to 40 to. It is more preferably 700 nm.
  • the specific surface area was measured according to ISO9277.
  • the average particle size of magnesium oxide in the raw material powder is in the range of 20 to 1000 nm, it is possible to achieve both good thermal conductivity and mechanical properties.
  • a plurality of magnesium oxides having different average particle sizes may be used in order to promote the compactness more effectively. For example, the denseness may be improved by using the second particles having a relatively small size that fill the gaps formed between the first particles.
  • the average particle size of the phosphor particles used as a raw material is not particularly limited as long as it does not deviate from the object of the present invention, but is preferably 500 nm to 30 ⁇ m from the viewpoint of having a good balance of translucency, dispersibility and fluorescence. More preferably, it is 1 ⁇ m to 10 ⁇ m.
  • the average particle size of the raw material powder of the phosphor particles of the present embodiment is calculated from the specific surface area and the density.
  • the compounding ratio of the raw material powder forming the matrix and the phosphor particles is not particularly limited, and is appropriately adjusted according to the transparency and fluorescence of the target fluorescent member.
  • the content of the phosphor particles is, for example, 0.1 to 30 vol%, and preferably 0.5 to 20 vol% from the viewpoint of denseness. More preferably, it is 1 to 15 vol%.
  • the total transmittance of the fluorescent member of the excitation light is preferably, for example, 10% or more in the optical path direction.
  • the raw material powder and phosphor particles of the matrix may be independently pulverized and / or pulverized before mixing. At least one of the raw material powder and the phosphor particles of the matrix is weighed so as to have a predetermined molar ratio. Additives may be added as long as they do not interfere with the formation of the matrix of the fluorescent member. Examples of the additive include magnesium chloride, hydrochloric acid, acetic acid, ammonia and the like. Magnesium hydroxide is obtained by the reaction between magnesium oxide and water by impregnating a preformed body containing magnesium oxide and phosphor particles with water and then sintering at low temperature using at least magnesium oxide as a raw material powder.
  • the method for obtaining the mixture is not particularly limited, and can be obtained, for example, through a dry or / or wet process.
  • a dry type for example, there is a method of putting the raw materials in a mortar and mixing them. At this time, a dispersant may be added.
  • two or more sieves having different mesh sizes may be used stepwise to obtain a mixture having a predetermined particle size.
  • the preformed body can be formed after obtaining the mixture or at the same time as the step of obtaining the mixture.
  • a slurry can be prepared by mixing with a solvent (ethanol or the like) using a ball mill or the like, and then the solvent is distilled off to obtain a mixture and a preformed body at the same time.
  • further premolding can be performed by pressure or the like.
  • the preforming method the existing method can be used without limitation.
  • the mixture is filled in a mold and pressed to obtain a preformed body.
  • the pressurization may be isotropic or anisotropic (eg, uniaxial). It may also be heated.
  • the temperature at 250 ° C. or lower when heating, and from the viewpoint of the convenience of the apparatus, it is more preferable to carry out by cold hydrostatic pressure pressurization or the like at room temperature. preferable.
  • uniaxial pressure molding is performed at a pressure of 50 MPa for 30 seconds to obtain a premolded product, the preformed product is chamfered, then packed in a vacuum pack, and packed at a pressure of 200 MPa for 1 minute.
  • An example is a method of obtaining a pre-molded article by cold hydrostatic pressure (CIP) molding once or a plurality of times.
  • the maximum pressure for premolding is preferably 5 to 1000 MPa, more preferably 200 to 1000 MPa, and even more preferably 500 to 1000 MPa from the viewpoint of achieving homogenization of the internal structure of the preformed body. ..
  • the preformed body is impregnated with water.
  • the water may contain additives as long as the object of the present invention is not impaired, and may be neutral, acidic or alkaline.
  • Water can be added at atmospheric pressure, but it may also be performed under vacuum or reduced pressure. By performing under vacuum or reduced pressure, water can be uniformly distributed in a short time. This is especially effective when the preformed body is thick.
  • the amount of water added should be sufficient to fill the gaps in the preformed body, and the optimum value may change depending on the relative density of the preformed body. Since the promotion of mass transfer can also be promoted by the process temperature of low-temperature sintering in the next step, the optimum value of the amount of water added may change depending on the process temperature.
  • the amount of water may be limited to the amount required to achieve densification of the fluorescent member. For example, when the preformed body is 100% by mass, the amount of water added can be, for example, 1 to 20% by mass.
  • the maximum pressure is preferably 200 to 1500 MPa, more preferably 300 to 1200 MPa, and even more preferably 500 to 1000 MPa from the viewpoint of sufficient densification.
  • a known method can be applied as a means for applying pressure. Pressurization by hydrostatic pressure is particularly suitable because it can be pressurized isotropically.
  • the pressurization time varies depending on the mechanism of the chemical reaction contributing to densification and the pressure, but is preferably 1 to 60 min.
  • the preformed body When performed at room temperature, the preformed body is impregnated with water, then packed in a vacuum pack, and CIP molded once or multiple times at a pressure of 1000 MPa for 60 minutes using a cold hydrostatic pressure presser. By doing so, a method of obtaining a sintered body can be exemplified. Further, in the case of heating, it can be molded by using a WIP heating isostatic pressing (WIP) apparatus.
  • WIP WIP heating isostatic pressing
  • the ratio of magnesium oxide to magnesium hydroxide is preferably higher than the former, and from the viewpoint of densification of the fluorescent member, a large amount of water is added and magnesium hydroxide is reacted by the reaction between magnesium oxide and water. It is preferable to generate. Since the densification of the fluorescent member can be promoted by heating, the densification may be promoted by performing a high temperature process at a temperature of 250 ° C. or lower. From the viewpoint of energy saving and simplicity of the apparatus, it is desirable to perform low temperature sintering at room temperature.
  • the fluorescent member of the present embodiment can be manufactured by various manufacturing methods. For example, a mixture of phosphor particles, a raw material powder containing at least magnesium oxide, and ice particles is obtained, and this is preformed below the freezing point and then subjected to the low temperature sintering, or without the preforming. May be carried out to obtain a fluorescent member. Further, a fluorescent member can be obtained by combining the freeze-drying method and low-temperature sintering. Specifically, a mixture of phosphor particles, a raw material powder containing at least magnesium oxide, and water and a solvent having a lower sublimation point than water (methanol, etc.) is obtained, and this is sprayed and liquid by a freeze-drying method. An example is a method of obtaining a fluorescent member by forming droplets and removing a solvent while leaving water, and then sintering the granules at a low temperature.
  • the relative density of the fluorescent member is preferably 85% or more from the viewpoint of effectively increasing the luminous efficiency.
  • the relative density is obtained by dividing the density of the fluorescent member measured according to the Archimedes method based on JIS Z 2501: 2000 by the true density of the raw material powder of the matrix component (excluding phosphor particles). It shall refer to the value (mass ratio) obtained by.
  • a more preferable range of the relative density of the fluorescent member is 88% or more, and more preferably 90% or more.
  • a fluorescent member containing phosphor particles that is highly densified without high-temperature firing by promoting a solid-liquid reaction that promotes mass transfer in a solid through a liquid phase.
  • densification it is possible to reduce pores and provide a fluorescent member having excellent translucency.
  • high thermal conductivity can be realized by using magnesium oxide as a matrix component.
  • high-temperature firing above 250 ° C. is not essential, various phosphor particles can be used. As a result, conventional problems such as deterioration and alteration of phosphor particles due to high-temperature firing and unwilling reaction with the matrix portion can be fundamentally solved, and material design with a higher degree of freedom becomes possible.
  • a high quality fluorescent member can be provided. Then, it is possible to provide a fluorescent member having both high thermal conductivity and fluorescence.
  • the fluorescent member of this embodiment can be expected to be applied not only to high-power LEDs and the like but also to various members.
  • the light emitting device of the present embodiment is a semiconductor light emitting element that emits the first light, and a fluorescent member of the present embodiment that is installed on the emission light side of the semiconductor light emitting element and the first light becomes excitation light and emits the second light. Equipped with.
  • the light emitting device at least one or a plurality of semiconductor light emitting elements and fluorescent members are independently included.
  • FIG. 1 shows a schematic diagram of a white LED which is an example of the light emitting device according to the present embodiment.
  • a blue LED 2 is provided on the substrate 1 as a primary light source, and a fluorescent member 5 is installed in at least a part of the emission light path of the blue LED 2.
  • the fluorescent member 5 may be formed into an arbitrary shape according to the shape of the blue LED 2.
  • a part of the emitted light of the blue LED 2 excites the phosphor particles 4, for example, the yellow phosphor particles dispersed in the matrix 3 of the fluorescent member 5, and emits yellow light.
  • the light that does not contribute to the excitation of the phosphor particles in the fluorescent member passes through the fluorescent member 5 and is emitted from the white LED 10 as blue light.
  • a plurality of emitted lights are mixed to produce white light from the white LED 10.
  • FIG. 1 is an example, and a red LED and / or a green LED may be used instead of or in combination with the blue LED, and a fluorescent member may be used to enhance the quality of the tint of white light.
  • the yellow phosphor particles are an example, and red fluorescent particles and / and green fluorescent particles can be used in place of or in combination with the yellow fluorescent particles.
  • phosphor particles of other colors may be used.
  • a semiconductor light emitting element such as a laser diode may be used instead of the LED.
  • the thickness of the fluorescent member 5 and the concentration of phosphor particles in the fluorescent member 5 are appropriately designed.
  • the excitation light from the blue LED is, for example, light having a wavelength of 300 nm to 500 nm (light in the ultraviolet region to light in the blue region).
  • a white LED 10a made of a fluorescent member 20 composed of a first fluorescent member 21 and a second fluorescent member 22 may be used.
  • the first fluorescent member 21 contains the first phosphor particles 12 that absorb the first light from the blue LED 2 and emit light in the first matrix 11.
  • the second fluorescent member 22 contains the second phosphor particles 14 that absorb the light emitted from the first fluorescent member 21 and further emit long wavelength light in the second matrix 13.
  • Example A (Dense matrix part) DISPERMAG (registered trademark) TN-1 (average particle size 0.57 ⁇ m, manufactured by Tateho Chemical Industries, Ltd.) and PUREMAG (registered trademark) FNM-G (average particle size 0.54 ⁇ m, Tateho Chemical Industries, Ltd.) as raw material MgO powders Co., Ltd.) was weighed so as to have a mass ratio of 7: 3, and mixed with a mixer to obtain a mixture of matrix powders.
  • DISPERMAG registered trademark
  • TN-1 average particle size 0.57 ⁇ m, manufactured by Tateho Chemical Industries, Ltd.
  • PUREMAG registered trademark
  • FNM-G average particle size 0.54 ⁇ m, Tateho Chemical Industries, Ltd.
  • a cylindrical stainless steel mold with a diameter of 15 mm is filled with 1 g of this matrix powder mixture, and is first-ordered by a uniaxial pressure molding machine (trade name: Hydraulic Shop Press, manufactured by Woodward Fab) at 50 MPa for 30 sec. A preformed body was obtained by molding.
  • a hydrostatic pressure was applied at room temperature at 1000 MPa for 1 min to obtain a preformed body.
  • the relative density of the preformed body was 65%.
  • the preformed body was impregnated with 10% by mass of water under reduced pressure ( ⁇ 0.05 MPa).
  • a cold hydrostatic pressure pressurizer (trade name: Dr. CHEF, manufactured by Kobe Steel, Ltd.)
  • hydrostatic pressure is applied at 1000 MPa under the condition of 60 min, and low-temperature sintering is performed.
  • a columnar sintered body was obtained.
  • the relative density was 96%.
  • Example 1a A red phosphor (Cialon Co., Ltd., CASN) was further added as phosphor particles to the mixture of the matrix powders of Experimental Example A. The mixture was sufficiently mixed in a mortar so that the volume ratio of the raw material powder and the phosphor particles was 99: 1 to obtain a phosphor particle-containing mixture. 1 g of this fluorescent particle-containing mixture was filled in a mold in the same manner as in Experimental Example A to form a preformed body under the same conditions as in Experimental Example A, and subsequently, a fluorescent member as a sintered body was obtained. The relative density of the preformed body was 65%, and the relative density of the fluorescent member was 92%.
  • Example 1b The fluorescent member according to Example 1b was obtained by the same method as in Example 1a except that the volume ratio of the matrix: phosphor particles was changed to 9: 1. The relative density of the preformed body was 65%, and the relative density of the fluorescent member was 88%.
  • Example 1c The fluorescent member according to Example 1c was obtained by the same method as in Example 1a except that the volume ratio of the matrix: phosphor particles was changed to 8: 2.
  • Comparative Example 2 The fluorescence according to Comparative Example 2 was the same as in Example 1b except that the premolded product was sintered in the air at 1300 ° C. for 1 hour instead of being impregnated with water and subjected to a low temperature sintering step. Obtained a member. The relative density of the preformed body was 66%, and the relative density of this fluorescent member was 69%.
  • Example 2b An orange phosphor (Sialon Co., Ltd., ⁇ -SiAlON) was mixed with the mixture of Experimental Example A in a dairy pot so that the volume ratio of the matrix: phosphor particles was 9: 1, and the phosphor particles were contained. A mixture of 1 g of this mixture was filled in a mold in the same manner as in Experimental Example A to form a preformed body under the same conditions as in Experimental Example A, and subsequently, a fluorescent member as a sintered body was obtained. The relative density of the preformed body was 67%, and the relative density of the fluorescent member was 92%.
  • Example 2a and 2c Fluorescent members according to Examples 2a and 2c were obtained by the same method as in Example 2b except that the volume ratio of the matrix: phosphor particles was changed to the numerical value shown in Table 1.
  • Example 3a A green phosphor (Sialon Co., Ltd., ⁇ -SiAlON) was mixed with the mixture of Experimental Example A in a dairy pot so that the volume ratio of the matrix: phosphor particles was 99: 1, and the phosphor particles were contained. A mixture of 1 g of this mixture was filled in a mold in the same manner as in Experimental Example A to form a preformed body under the same conditions as in Experimental Example A, and subsequently, a fluorescent member as a sintered body was obtained.
  • Example 3b and 3c Fluorescent members according to Examples 3b and 3c were obtained by the same method as in Example 3a except that the volume ratio of the matrix: phosphor particles was changed to the numerical value shown in Table 1.
  • Example B (Dense matrix part) RF-10CS (average particle size 4 to 10 ⁇ m) and 500 A (average particle size 45 to 60 nm) manufactured by Ube Materials Co., Ltd. are weighed as raw material MgO powder so that the mass ratio is 7: 3, and a mixer is sufficient. A mixture of matrix powders was obtained by mixing with. A mold was filled with 1 g of this matrix powder mixture, and a premolded product was obtained by the same method as in Experimental Example A. Next, in order to homogenize the internal structure, a hydrostatic pressure was applied at room temperature at 200 MPa for 1 min to obtain a preformed body. The relative density of the preformed body was 67%. The preformed body was impregnated with 10% by mass of water by the same method as in Experimental Example A. Then, a columnar sintered body was obtained by the same method as in Experimental Example A. The relative density of the sintered body of Experimental Example B was 91%.
  • Example 4a A red phosphor (Cialon Co., Ltd., CASN) was further added as phosphor particles to the mixture of Experimental Example B.
  • the mixture was sufficiently mixed in a mortar so that the volume ratio of the raw material powder and the phosphor particles was 99: 1 to obtain a mixture containing the phosphor particles.
  • 1 g of this phosphor particle-containing mixture was filled in a mold in the same manner as in Experimental Example B, and a preformed body and a fluorescent member as a sintered body were obtained by the same method as in Experimental Example B.
  • the relative density of the preformed body was 66%, and the relative density of the fluorescent member was 87%.
  • Example 4b The fluorescent member according to Example 4b was obtained by the same material and method as in Example 4a except that the volume ratio of the matrix: phosphor particles was changed to 9: 1. The relative density of the preformed body was 67%, and the relative density of the fluorescent member was 88%.
  • Example C (Dense matrix part) RF-10CS (average particle size 4 to 10 ⁇ m) and DISPERMAG (registered trademark) TN-1 (average particle size 0.57 ⁇ m, manufactured by Tateho Chemical Industries Co., Ltd.) manufactured by Ube Material Industries Ltd. as raw material MgO powders are mass ratio. Weighed so that the ratio was 5: 5, and the mixture was sufficiently mixed with a mixer to obtain a mixture of matrix powders. A mold was filled with 1 g of this matrix powder mixture, and a premolded product was obtained by the same method as in Experimental Example A. Then, in order to homogenize the internal structure, hydrostatic pressure was applied at room temperature at 1000 MPa for 1 min to obtain a preformed body. The relative density of the preformed body was 73%. The preformed body was impregnated with 10% by mass of water by the same method as in Experimental Example A. Then, a columnar sintered body was obtained by the same method as in Experimental Example A.
  • Example 5a A red phosphor (Cialon Co., Ltd., CASN) was further added as phosphor particles to the mixture of Experimental Example C.
  • the mixture was sufficiently mixed in a mortar so that the volume ratio of the raw material powder and the phosphor particles was 9: 1 to obtain a mixture containing the phosphor particles.
  • 1 g of this phosphor particle-containing mixture was filled in a mold in the same manner as in Experimental Example C, and a preformed body and a fluorescent member as a sintered body were obtained by the same method as in Experimental Example C.
  • Example D (Dense matrix part) As a raw material MgO powder, 1 g of 500 A (average particle diameter 45 to 60 nm) manufactured by Ube Material Industries Ltd. was filled in a mold, and a premolded product was obtained by the same method as in Experimental Example A. Next, in order to homogenize the internal structure, a hydrostatic pressure was applied at room temperature at 200 MPa for 1 min to obtain a preformed body. The relative density of the preformed body was 49%. The preformed body was impregnated with 10% by mass of water by the same method as in Experimental Example A. Then, a columnar sintered body was obtained by the same method as in Experimental Example A. The relative density of the sintered body of Experimental Example D was 85%.
  • Example 6a A red phosphor (Cialon Co., Ltd., CASN) was further added as phosphor particles to the mixture of Experimental Example D.
  • the mixture was sufficiently mixed in a mortar so that the volume ratio of the raw material powder and the phosphor particles was 99: 1 to obtain a mixture containing the phosphor particles.
  • 1 g of this phosphor particle-containing mixture was filled in a mold in the same manner as in Experimental Example D, and a preformed body and a fluorescent member as a sintered body were obtained by the same method as in Experimental Example D.
  • the relative density of the preformed body was 47%, and the relative density of the fluorescent member was 80%.
  • Example 6b The fluorescent member according to Example 6b was obtained by the same material and method as in Example 6a except that the volume ratio of the matrix: phosphor particles was changed to 9: 1. The relative density of the preformed body was 50%, and the relative density of the fluorescent member was 84%.
  • Comparative Example 3 An epoxy resin was used as the matrix instead of the raw material powder of the matrix of Example 1a, that is, MgO powder. The same amount of phosphor particles as in Example 1a is added to this epoxy resin in the same amount as in the same example (the content of the fluorescent particles is 1 vol% with respect to the total amount of the fluorescent particle-containing mixture) and sufficiently mixed. As a result, a fluorescent particle-containing mixture was obtained, and a fluorescent member of Comparative Example 3 having the same shape as that of Example 1a was obtained by melt-kneading.
  • Comparative Example 4 An epoxy resin was used as the matrix instead of the raw material powder of the matrix of Example 1b, that is, MgO powder. The same amount of phosphor particles as in Example 1b was blended with this epoxy resin in the same amount as in Example 3 to obtain a fluorescent member of Comparative Example 4 having the same shape as that in Example 1b by the same method as in Comparative Example 3.
  • FIG. 3A shows an SEM image of the preformed body
  • FIG. 3B shows an SEM image of the sintered body after the low-temperature sintering step of Experimental Example A
  • FIG. 3C shows Comparative Example 1 (low-temperature sintering without the water impregnation step). The SEM image of the sintered body after the process is shown.
  • the SEM image of FIG. 3C which was not subjected to the water impregnation step, had a structure equivalent to that of FIG. 3A of the preformed body, and no microstructure change due to low temperature sintering could be confirmed. Further, as described above, it was confirmed that the relative density of the sample of Comparative Example 1 not impregnated with water was 66% with respect to the relative density of 65% of the preformed body, and there was almost no change. On the other hand, the sintered body of Experimental Example A including the water impregnation step had a relative density of 96%, and as shown in FIG. 3B, it was confirmed that the structure of the preformed body was more compact. In addition, grain growth was not confirmed.
  • FIG. 4 shows an SEM image of the fluorescent member of Example 1b.
  • the relative density is higher than that of the sintered body of Experimental Example A (a sample prepared under the same conditions as the fluorescent member of Example 1b except that it does not contain fluorescent particles). It was confirmed that the fluorescent member of Example 1b could visually obtain a dense sintered body equivalent to that of Experimental Example A, although the decrease was observed.
  • the result of X-ray structural analysis of the fluorescent member of Experimental Example A is shown in FIG.
  • the sample for X-ray structure analysis was measured in 2 ⁇ / ⁇ mode using a sample horizontal multipurpose X-ray diffractometer (manufactured by Rigaku Corporation, Ultima IV Co., Ltd.).
  • the fluorescent member of Example 1a has a peculiar peak of magnesium oxide (corresponding peak in FIG. 5 is indicated by a black-painted triangular mark) and a peculiar peak of magnesium hydroxide (in FIG. 5).
  • the corresponding peak is indicated by a black-painted square mark), and it was confirmed that magnesium oxide and magnesium hydroxide were contained as the matrix of the fluorescent member.
  • FIG. 6 shows the results of measuring the emission spectrum of the fluorescent member of Example 1a.
  • a quantum efficiency measurement system QE-2000 manufactured by Otsuka Electronics Co., Ltd.
  • QE-2000 manufactured by Otsuka Electronics Co., Ltd.
  • the figure also shows the emission spectrum of the preformed body of Example 1a and the emission spectrum of the fluorescent member of Comparative Example 2.
  • the fluorescent member of Example 1a obtained the same emission spectrum as the preformed body, that is, the same emission spectrum as the added red phosphor, and the emission intensity increased.
  • Table 1 shows the results of relative density, average particle size, quantum efficiency and thermal conductivity of each experimental example, each example and each comparative example.
  • the relative density is obtained by dividing the density of the fluorescent member measured according to the Archimedes method based on JIS Z 2501: 2000 by the true density of the raw material powder of the matrix component (excluding phosphor particles).
  • the average particle size of magnesium oxide in the fluorescent member was determined by the ISO13383-1: 2012 interception method.
  • the quantum efficiency the quantum efficiency with respect to the excitation wavelength of 455 nm was determined in the reflection mode using the quantum efficiency measurement system QE-2000 (manufactured by Otsuka Electronics Co., Ltd.).
  • the thermal conductivity the thermal conductivity of each sample was determined according to JIS R 1611 using a laser flash method thermal constant measuring device TC-9000 (manufactured by Advance Riko Co., Ltd.).
  • Example 1a The internal quantum efficiency of Example 1a was 64%, whereas the internal quantum efficiency of Comparative Example 3 was 52%. Further, the internal quantum efficiency of Example 1b was 86%, whereas the internal quantum efficiency of Comparative Example 4 was 81%. As shown in these examples, it was confirmed that the quantum efficiency equal to or higher than that of the conventional one can be obtained in this example as well. Moreover, when the thermal conductivity of Comparative Examples 3 and 4 was determined according to ISO 22007-4, it was 0.1 W / (m ⁇ K) in each case.
  • the fluorescent member according to the present invention is used as a member of a light emitting device such as a white LED or a high output LED and also has high thermal conductivity and fluorescence, it includes a display such as a vacuum fluorescent display (VFD) and a PDP. It can be applied and developed for various purposes in combination with the member. It can also be applied to applications other than fluorescent members for wavelength conversion, for example, stress light emitting elements, electron beam irradiation light emitting elements, thermoluminescent light emitting elements and the like.
  • VFD vacuum fluorescent display

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Mechanical Engineering (AREA)

Abstract

本発明に係る蛍光部材は、酸化マグネシウムと水酸化マグネシウムを主成分とするマトリックスと、このマトリックス中に分散された蛍光体粒子と、を含有する波長変換用の焼結体である。蛍光部材の熱伝導率は、5W/(m・K)以上であることが好ましい。高温焼成プロセス(250℃を超える高温プロセス)を必須とせずに、熱伝導性および蛍光性を兼備した蛍光部材およびその製造方法、並びに発光装置を提供する。

Description

蛍光部材およびその製造方法、並びに発光装置
 本発明は、蛍光部材およびその製造方法に関する。また、半導体発光素子および前記蛍光部材を備えてなる発光装置に関する。
 発光ダイオード(LED:Light Emission Diode)、レーザーダイオード(LD:Laser Diode)等の半導体発光素子を搭載した発光装置は、低消費電力化および高寿命化の点で優れており、照明装置、液晶表示装置用バックライト、レーザー装置の光源などに利用されている。中でも、白色LEDは蛍光灯の代替照明として広く普及されつつある。
 白色LEDは、一次光源である発光ダイオードと蛍光部材とを組み合わせて白色発光させる方式が知られている。この蛍光部材として、樹脂中に蛍光体粒子を分散させてなる成形物が開発されている。蛍光部材のマトリックスとして樹脂を用いることで成形加工性が優れたものとなる。しかし、一次光源である発光ダイオードから発生する熱、および蛍光部材における励起-発光プロセスの際のエネルギー変換ロスにより発生する熱などによって高温になりやすいので、熱伝導率が低く、且つ耐熱性の低い樹脂(マトリックス)が劣化してしまうという問題がある。この問題は、特に、高出力のLEDやレーザーを用いる場合に深刻である。
 そこで、蛍光体粒子を分散させるマトリックスとして、樹脂に代えて耐熱性に優れるガラスに蛍光体粒子を分散した蛍光体分散ガラスや、透明YAGセラミックス中に黄色蛍光体のCe:YAG蛍光粒子を分散させた蛍光体分散YAGセラミックスが報告されている。また、サイアロン系化合物からなるマトリックスに蛍光体粒子を分散した蛍光体分散サイアロンセラミックスが提案されている(特許文献1)。更に、無機蛍光体粒子を酸化マグネシウム中に分散させた波長変換部材が提案されている(特許文献2)。また、プレート全体を蛍光体化する試みもなされている。
 なお、蛍光部材の適用例ではないが、後述する「課題を解決するための手段」において特定する「低温焼結」法によりセラミックスを焼結する方法が報告されている(非特許文献1~5)。
国際公開2018/38259号 特開2018-180271号公報
Journal of The American Ceramic Society-Shnjer and Koy、M. W. SHAFER et al. Vol. 42, No. 11、November 1959 J. Am. Ceram. Soc., Clive A. Randall et al., 99 [11] 3489-3507, 2016 J. Am. Ceram. Soc., Clive A. Randall et al., 100: 546-553, 2017 J. Am. Ceram. Soc., Clive A. Randall et al., 100: 669-677, 2017 Journal of Power Sources, Xueliang Sun et al., 393: 193-203, 2018
 前述のプレート全体を蛍光体化する方法は、高温焼成が必要であり、緻密化できる系が限定されるという問題がある。特許文献2の方法によれば、焼結温度として1000~1400℃の温度が例示されている。また、サイアロンをマトリックスとする蛍光部材は、マトリックスの緻密化のために例えば1000~1500℃程度の高温焼成プロセスが必要である。このような高温処理を行うと、分散した蛍光体粒子が劣化しやすいという課題がある。また、高温時にマトリックスと蛍光体粒子が反応する組み合わせを除外する必要があり、適用できる蛍光体粒子が限定されるという問題もある。一方、ガラスをマトリックスとした蛍光部材は、比較的低温でプレート化することが可能である。しかし、ガラスは本質的に熱伝導率が低いため、前述の高出力LEDやレーザー励起照明の応用には課題がある。
 昨今においては、高出力化用途の発光装置のニーズが多く、前述したように、発光ダイオードやレーザーダイオード自身の温度上昇、励起-発光プロセスの際のエネルギー変換ロスにより発生する熱などを効率的に放熱可能な、熱伝導性に優れた蛍光部材の開発が切望されている。
 なお、上記においては白色LED等における課題について述べたが、蛍光部材全般に対して同様の課題が生じ得る。
 本発明は、上記事情に鑑みてなされたものであって、高温焼成プロセス(250℃を超える高温プロセス)を必須とせずに、熱伝導性および蛍光性を兼備した蛍光部材およびその製造方法並びに発光装置を提供することを目的とする。
[1]: 酸化マグネシウムと水酸化マグネシウムを主成分とするマトリックスと、
 前記マトリックス中に分散された蛍光体粒子と、を含有する波長変換用の焼結体である蛍光部材。
[2]: 熱伝導率が5W/(m・K)以上であることを特徴とする[1]に記載の蛍光部材。
[3]: 前記マトリックス中の前記酸化マグネシウムに対する前記水酸化マグネシウムの質量比が0.4以下であることを特徴とする[1]又は[2]に記載の蛍光部材。
[4]: 前記蛍光体粒子が窒化物蛍光体粒子を含むことを特徴とする[1]~[3]のいずれかに記載の蛍光部材。
[5]: 相対密度が85%以上であることを特徴とする[1]~[4]のいずれかに記載の蛍光部材。
[6]: 少なくとも前記マトリックスの原料粉体および前記蛍光体粒子の混合物の予備成形体を得、
 前記予備成形体に水を含浸させ、その後、加圧下で焼結することにより得られた焼結体であり、前記水を含浸させた後の前記予備成形体に対して250℃を超える高温プロセスを行わずに得られたことを特徴とする[1]~[5]のいずれかに記載の蛍光部材。
[7]: 前記マトリックス中の前記酸化マグネシウムのISO13383-1:2012インターセプト法により求めた平均粒子径が0.1μm~10μmであることを特徴とする[6]に記載の蛍光部材。
[8]: 第一光を発光する半導体発光素子と、
 前記半導体発光素子の出射光側に設置され、前記第一光が励起光となり第二光を発光する、[1]~[7]のいずれかの蛍光部材とを備える発光装置。
[9]: 少なくともマトリックスの原料粉体および蛍光体粒子を混合して混合物を得、
 前記混合物を予備成形して予備成形体を得、
 前記予備成形体に水を含浸させ、その後、加圧下で焼結により焼結体を得る工程を含み、且つ前記水を含浸させた後の前記予備成形体に対して250℃を超える高温で処理するプロセスを含まず、
 前記マトリックスは、酸化マグネシウムと水酸化マグネシウムを主成分とする、蛍光部材の製造方法。
[10]: 前記原料粉体の酸化マグネシウムの比表面積と密度から求めた平均粒子径が20nm以上であることを特徴とする[9]に記載の蛍光部材の製造方法。
 本発明によれば、高温焼成プロセス(250℃を超える高温プロセス)を必須とせずに、熱伝導性および蛍光性を兼備した蛍光部材およびその製造方法並びに発光装置を提供できるという優れた効果を奏する。
本実施形態に係る発光装置の一例を示す模式的断面図。 変形例に係る発光装置の一例を示す模式的断面図。 実験例Aの予備成形体のSEM像。 実験例Aの焼結体のSEM像。 比較例1の焼結体のSEM像。 実施例1bの蛍光部材のSEM像。 実施例1aの蛍光部材のX線プロファイル。 実施例1aおよび比較例2の蛍光部材の蛍光スペクトル。 実施例6bの蛍光部材の蛍光スペクトル。 実施例3bの蛍光部材の蛍光スペクトル。 実施例1bの走査透過電子顕微鏡(STEM)像。 実施例1bの酸素マッピング図。
 以下、本発明を適用した実施形態の一例について説明する。なお、本発明の趣旨に合致する限り、他の実施形態も本発明の範疇に含まれる。また、本明細書において特定する数値は、実施形態または実施例に開示した方法により求められる値である。説明を明確にするため、以下の記載および図面は、適宜、簡略化されている。また、本明細書において特に言及していない本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。
[蛍光部材]
 本実施形態に係る蛍光部材は、酸化マグネシウムと水酸化マグネシウムを主成分とするマトリックスと、前記マトリックス中に分散された蛍光体粒子とを含有する、波長変換用の焼結体からなる。蛍光部材の形状は、例えば、円盤状、平板状、凸レンズ状、凹レンズ状、球状、半球状、立方体状、直方体状、角柱や円柱などの柱状、角筒や円筒などの筒状が挙げられる。白色LEDに適用する場合、本実施形態の蛍光部材は、励起光源となる例えば青色LEDの出射光側に配置して用いることができる。
 蛍光部材において、半導体発光素子等から発光される第一光の少なくとも一部を励起光として蛍光体粒子が吸収し、第二光を発光する。なお、本明細書における蛍光体粒子には所謂蛍光を発光する粒子の他、燐光を発光する粒子も含む。なお、第一光とは、特定の波長の光または特定の帯域の光をいい、第一光は一種類でも複数種あってもよい。複数種ある場合の一例として、青色光の第一光を発光する半導体発光素子と、紫外光の第一光を発光する半導体発光素子を有する場合が挙げられる。第二光は、第一光の少なくとも一部が蛍光体粒子の励起光となり、蛍光体粒子から発光される光をいう。第二光も一種類でも複数種あってもよい。複数種ある場合の一例として、同一の蛍光部材に複数種の発光帯域の異なる蛍光体粒子が分散されている場合がある。また、異なる蛍光部材に、それぞれ発光帯域の異なる蛍光体粒子が分散されている態様も例示できる。
 白色光を得るために蛍光部材を用いる場合、例えば励起光である青色光によって赤色光を発光する蛍光体粒子と、励起光である青色光によって緑色光を発光する蛍光体粒子とを蛍光部材に含有させる。さらに、蛍光部材は、励起光である青色光のうち励起に寄与しなかった光を透過する透過性を有するものとする。これにより、蛍光部材を透過した青色光と、蛍光部材から発光した赤色光および緑色光とが混ざり合い、白色光が得られる。
 また、別の例では、紫外光または紫色光を励起光とし、蛍光部材に青色光を発光する蛍光体粒子と、紫外光または紫色光の励起光によって赤色光を発光する蛍光体粒子と、紫外光または紫色光の励起光によって緑色光を発光する蛍光体粒子とを含有させる。これにより、蛍光部材から発光した青色光、赤色光および緑色光が混ざり合う。その結果、本実施形態の蛍光部材により白色光を得ることができる。この場合、励起光の一部が蛍光部材を透過する設計とする態様の他、励起光の全部が蛍光部材に吸収される設計としてもよい。
 本実施形態の蛍光部材は、蛍光の発光が偏りなく均一であるとともに、励起光の全透過率を偏りなく均一とする観点から、全体にわたって蛍光体粒子が均一に存在する態様が好ましい。このようにすることにより蛍光部材を透過した励起光と、蛍光部材から発光した蛍光とが混ざり合って、蛍光部材の出射光の色味を調整することが容易となる。前記態様に代えて、蛍光体粒子の分布に濃度勾配を設けたり、領域により異なる蛍光体粒子を含む蛍光部材を用いたりしてもよい。このような蛍光部材は、製造工程時のプロセス変更により容易に得られる。種類の異なる蛍光部材を接合することも可能である。
 蛍光部材の厚みの好適な例は用途により変動し得るが、例えば、100μm以上である。蛍光部材の入射面側および出射面側の少なくとも一方に光学フィルムを設けることができる。例えば、光学フィルムとして反射防止フィルムを設けることができる。
 本実施形態の蛍光部材によれば、後述するように高温焼成プロセス(250℃を超える高温プロセス)を必須とせずに、蛍光部材を得ることができる。このため、蛍光体粒子の劣化や変質の問題を根本的に解決し、適用できる蛍光体粒子の種類を顕著に増やすことができる。また、蛍光体粒子の劣化を防止できる。その結果、蛍光性に優れた波長変換用の蛍光部材を提供できる。
(マトリックス)
 本明細書においてマトリックスとは、蛍光部材中の蛍光体粒子および1質量%未満の微量成分を除く成分をいい、任意に添加される添加剤も含み得る。また、主成分とは、マトリックス中に90質量%以上含まれる成分をいう。本実施形態では、酸化マグネシウムと水酸化マグネシウムをマトリックスの主成分とする。酸化マグネシウムと水酸化マグネシウムの比率は問わない。主成分以外の成分として、例えば、塩化ナトリウム(NaCl)、酸化亜鉛(ZnO)、チタン酸バリウム(BaTiO)、炭酸カルシウム(CaCO)が例示できる。また、分散剤を添加してもよい。
 本実施形態に係る蛍光部材のマトリックス中の酸化マグネシウムに対する水酸化マグネシウムの質量比([水酸化マグネシウム]/[酸化マグネシウム])は用途により適宜設計可能であるが、熱伝導性を効果的に高める観点からは0.4以下とすることが好ましく、0.3以下とすることがより好ましく、0.25以下とすることが更に好ましい。酸化マグネシウムに対する水酸化マグネシウムの質量比の下限は緻密化できればよく特に限定されないが、緻密化プロセスを低温で容易に行う観点からは0.1以上とすることが好ましい。
 マトリックス中の酸化マグネシウムの平均粒子径は特に限定されないが、熱伝導性の観点からは、0.1μm~10μmであることが好ましい。マトリックス中の酸化マグネシウムの平均粒子径は、ISO13383-1:2012に準拠したリニア・インターセプト法等を用いて、次のように測定することにより求められる。即ち、観察面を鏡面研磨し、プラズマエッチングして結晶粒子を明瞭にした後、走査型電子顕微鏡で結晶粒子の組織写真を得る。得られた組織写真上に直線を引き、直線と粒子界面の交点距離を測定することで粒子径とする。この粒子径の測定を繰り返し、得られた値を平均して、酸化マグネシウムの平均粒子径とする。
 ところで、蛍光部材のマトリックスとして樹脂を用いた場合の熱伝導率は0.1W/(m・K)程度であり、ガラスを用いた場合の熱伝導率は1W/(m・K)程度である。これに対し、酸化マグネシウムおよび水酸化マグネシウムを主成分とするマトリックスを用いた本実施形態の蛍光部材によれば、熱伝導率を大幅に改善できる。蛍光部材の製造プロセスを最適化することにより、熱伝導率を5W/(m・K)以上とすることも容易である。
 本実施形態の蛍光部材の熱伝導率は、熱伝導性をより優れたものとする観点から、熱伝導率が5W/(m・K)以上であることが好ましく、より好ましくは6W/(m・K)以上であり、更に好ましくは8W/(m・K)以上である。熱伝導率の上限は限定されないが、酸化マグネシウムおよび水酸化マグネシウムを主成分とするマトリックスの場合、理論的には50W/(m・K)以下となることから、プロセスを変更して熱伝導の経路を制御することにより、さらに高い熱伝導率が実現できる。なお、本明細書でいう熱伝導率とは、JISR1611に則って測定される蛍光部材の熱伝導率をいい、具体的には、実施例に記載した方法により測定される値をいう。
(蛍光体粒子)
 本実施形態によれば、後述するように加温せずに室温で焼結することも可能であることから、あらゆる蛍光体粒子を用いることが可能である。βサイアロン蛍光体、KSF系蛍光体(KSiF:Mn)、CASN、S-CASN、セリウムで付活されたイットリウム・アルミニウム・ガーネット(YAG)系蛍光体、セリウムで付活されたルテチウム・アルミニウム・ガーネット(LAG系蛍光体、ユウロピウムおよび/またはクロムで付活された窒素含有アルミノ珪酸カルシウム(CaO-Al-SiO)系蛍光体、ユウロピウムで付活されたシリケート((Sr,Ba)SiO)系蛍光体などが挙げられる。レーザー励起等による温度上昇に伴う発光強度の低下を抑制させる観点から、窒化物蛍光体粒子が好ましい。窒化物蛍光体粒子としては、αサイアロン蛍光体、βサイアロン蛍光体、CASN、S-CASN等が例示できる。
 蛍光体粒子は、窒素を蛍光体組成に含む窒化物蛍光体粒子が好適である。具体例として、ストロンチウムおよびケイ素を結晶相に含む窒化物蛍光体(例えば、SCASN、SrSi)、カルシウムおよびケイ素を結晶相に含む窒化物蛍光体(例えばSCASN、CASN、CASON)、ストロンチウム、ケイ素およびアルミニウムを結晶相に含む窒化物蛍光体(例えばSCASN、SrSi)、バリウム、ケイ素を結晶相に含む窒化物蛍光体(例えばBSON)、カルシウム、ケイ素およびアルミニウムを結晶相に含む窒化物蛍光体(例えば、SCASN、CASN、CASON)、が挙げられる。
 窒化物蛍光体の別の側面からの分類としては、ランタンニトリドシリケート(例えばLSN)、アルカリ土類金属ニトリドシリケート(例えばSrSi)、アルカリ土類金属ニトリドシリケート(CASN、SCASN、αサイアロン、(Ca,Sr)AlSi)などが挙げられる。
 さらに、具体的には、例えば、
 次の一般式で表すことができるβサイアロン;
Si6-zAl8-z:Eu(式中0<z<4.2)、αサイアロン、
 次の一般式で表されるLSN;LnSi  [1]
 (式[1]中、Lnは付活元素として用いる元素を除いた希土類元素から選ばれる1種以上の元素を表し、Mは付活元素から選ばれる1種以上の元素を表し、x、y、zは、各々独立に下記式を満たす値である。
  2.7≦x≦3.3、10≦y≦12、0<z≦1.0)
 次の一般式で表されるCASN;CaAlSiN:Eu、
 次の一般式で表すことができるSCASN;(Ca,Sr,Ba,Mg)AlSiN:Euおよび/又は(Ca,Sr,Ba)AlSi(N,O):Eu、
 次の一般式で表すことができるCASON;(CaAlSiN1-x(SiO):Eu(式中0<x<0.5)、
 次の一般式で表すことができるCaAlSi;Euy(Sr,Ca,Ba)1-y:Al1+xSi4-x7-x(式中、0≦x<4、0≦y<0.2)、
 次の一般式で表すことができるSrSi;(Sr,Ca,Ba)AlSi5-x8-x:Eu(式中0≦x≦2)、
 次の一般式で表すことができるBSON;MBa(Sr,Ca,Mg,Zn)12(式中、MはCr、Mn、Fe、ランタノイド(La、Pm、Gd、Luは除く)から選ばれる付活元素を表し、LはSiを含有する周期律表第4族又は第14族に属する金属元素を表し、x、y、zは、各々独立に下記式を満たす値である。
 0.03≦x≦0.9、0.9≦y≦2.95、x+y+z=3)等の蛍光体が挙げられる。
 これらの蛍光体の中でも、焼結したときの輝度が低下しないという観点からは、構成元素として酸素を含まない窒化物蛍光体(不可避的に混入する酸素は含む)、即ち、LSN、CaAlSiN、SCASN、SrSi、βサイアロン、BSON等の窒化物蛍光体を用いることが好ましい。
 添加する蛍光体粒子の種類は、特に限定されず、目的に応じて複数種類を添加してもよい。
 蛍光部材中の蛍光体粒子の含有量は、蛍光部材の形状(厚み等)、求められる透明性(励起光の全透過率)、蛍光性(蛍光強度、発光波長)に応じて適宜調整できる。
 マトリックス中の蛍光体粒子の平均粒子径は特に限定されないが、励起光の透過性、良好な蛍光特性および分散性をバランスよく得る観点からは500nm~30μmであることが好ましく、1μm~10μmであることがより好ましい。マトリックス中の蛍光体粒子の平均粒子径は、ISO13383-1:2012に準拠したリニア・インターセプト法を用いて求められる。具体的な測定方法は、酸化マグネシウムと同様である。
[蛍光部材の製造方法]
 次に、本実施形態に係る蛍光部材の製造方法の一例を説明するが、本発明の蛍光部材の製造方法は以下に限定されない。
 本実施形態の蛍光部材の製造方法は、少なくとも蛍光体粒子およびマトリックスの原料粉体を混合して混合物を得、この混合物を予備成形し、前記予備成形体に水を含浸させ、その後、加圧下で焼結プロセスを経て焼結体を得る工程を有する。本実施形態の製造方法によれば、250℃を超える高温プロセスを必須とせずに、優れた熱伝導性および蛍光性を兼ね備えた蛍光部材を製造することができる。
 ここで本明細書において焼結とは、粉体の表面積が減っていく現象をいい、予備成形体を得て、水を含浸させた後の焼結プロセスにおいて、加圧下において、250℃以下の温度で蛍光部材を固着させる方法をいう(以下、「低温焼結」ともいう)。所謂コールドシンタリングと同義である。低温焼結を行うことにより、後述するように、予備成形体に含浸された水(液相)が粒子-粒子界面に導入され、粒子は適量の水で均一に膨潤される。そして、加圧条件下で、液相を介した物質拡散を促し、酸化マグネシウムの一部と水の反応による水酸化マグネシウムの生成を伴う緻密化したバルクセラミックスが得られる。ここで焼結温度の下限値は特に限定されないが好ましくは室温である。なお、本明細書で予備成形とは、粒状などの無定形状態から、例えば加圧による一定の形の固体形状への成形をいい、水を含浸する前の成形体をいうものとする。なお、予備成形体の形成プロセスは250℃を超える温度で行うことも可能である。また、予備成形体を得る工程においては、粒子同士は互いに点接触し、表面積は大きくは変化しないことから、本明細書で「焼結」とは、水を含浸させた後のプロセスをいうものとし、予備成形体の形成プロセスは含まない。以下、詳細に説明する。
 まず、原料粉体および蛍光体粒子を秤量して混合する。原料粉体の酸化マグネシウムの比表面積Sと密度ρから6/(S・ρ)として計算した平均粒子径は、20~1000nmであることが好ましく、30~800nmであることがより好ましく、40~700nmであることが更に好ましい。なお、比表面積は、ISO9277に則って測定した。原料粉体の酸化マグネシウムの平均粒子径が20~1000nmの範囲にあることにより、良好な熱伝導性および機械的特性の両立を図ることができる。マトリックスの原料粉体は、緻密性をより効果的に促進させるために、平均粒子径が異なる複数の酸化マグネシウムを用いてもよい。例えば、第一粒子同士に形成された隙間を充填する、相対的にサイズの小さい第二粒子を用いることにより緻密性を高められる場合がある。
 原料として用いる蛍光体粒子の平均粒子径は本発明の目的を逸脱しない範囲で特に限定されないが、透光性、分散性および蛍光性をバランスよく兼ね備える観点からは、500nm~30μmであることが好ましく、1μm~10μmであることがより好ましい。なお、本実施形態の蛍光体粒子の原料粉体の平均粒子径は、比表面積と密度より計算して求められる。
 マトリックスを形成する原料粉体と蛍光体粒子の配合比は特に限定されず、目的とする蛍光部材の透明性と蛍光性に応じて適宜調整される。マトリックスを形成する原料粉体を100vol%としたときの蛍光体粒子の含有量は、例えば0.1~30vol%であり、緻密性の観点からは0.5~20vol%であることが好ましく、1~15vol%であることがより好ましい。励起光の蛍光部材の全透過率は、光路方向において例えば10%以上とすることが好ましい。
 マトリックスの原料粉体および蛍光体粒子は、それぞれ独立に、混合前に粉砕処理または/および解砕処理を行ってもよい。マトリックスの原料粉体および蛍光体粒子の少なくとも一種を所定のモル比となるように秤量する。蛍光部材のマトリックスの形成の妨げとならない範囲において、添加剤を加えてもよい。添加剤としては例えば塩化マグネシウム、塩酸、酢酸、アンモニアなどが挙げられる。原料粉体として酸化マグネシウムを少なくとも用い、酸化マグネシウムおよび蛍光体粒子を含む予備成形体に水を含浸させた後に低温焼結することにより、酸化マグネシウムと水との反応により水酸化マグネシウムが得られる。
 混合物を得る方法は特に限定されず、例えば乾式または/および湿式工程を経て得られる。乾式の場合、例えば、原料を乳鉢に入れ混合する方法がある。このとき分散剤を添加してもよい。混合物の粉体のサイズを均質化する観点から、目開きの大きさが異なる2つ以上のふるいを段階的に用い、所定の粒径を有する混合物としてもよい。
 予備成形体は、混合物を得た後、若しくは混合物を得る工程と同時に形成できる。湿式により混合する場合には、ボールミル等により溶剤(エタノール等)を用いて混合してスラリーを調製し、その後、溶剤を留去することにより混合物を得ると同時に予備成形体を得ることもできる。この場合、更に、圧力等により予備成形を行うこともできる。予備成形法は、既存の方法を制限無く利用できる。例えば、混合物を金型に充填し、加圧により予備成形体が得られる。加圧は、等方的であっても異方的(例えば一軸方向)であってもよい。また、加温してもよい。蛍光体粒子の劣化を防止する観点から、加温する場合には250℃以下とすることが好ましく、装置の簡便性の観点からは、室温で冷間静水圧加圧等により実施することがより好ましい。高品質の蛍光部材を得る観点からは、予備成形体の段階で内部構造の均質化を達成するように加圧することが好ましい。内部構造の均質化のためには、原料粉体の凝集体解砕や予備成形体のプロセス条件(加圧条件等)が重要となる。
 予備成形の一例を挙げると、圧力50MPaで30秒間、一軸加圧成形を行ってプレ成形体を得、プレ成形体の面取りを行った後に真空パックに袋詰めを行い、圧力200MPaで、1分間、1回または複数回、冷間静水圧加圧(Cold Isostatic Pressing、CIP)成形することにより予備成形体を得る方法が例示できる。予備成形の最大圧力は、予備成形体の内部構造の均質化を達成する観点から、5~1000MPaとすることが好ましく、200~1000MPaとすることがより好ましく、500~1000MPaとすることが更に好ましい。
 続いて、予備成形体に水を含浸させる。水には、本発明の目的を損なわない範囲で添加剤が含まれていてもよく、中性の他、酸性またはアルカリ性を示していてもよい。水の添加は大気圧化で行うことができるが、真空または減圧下で行ってもよい。真空または減圧下で行うことにより、水を均質に短時間で行き渡らせることができる。予備成形体の厚みがある場合に特に有効である。
 水の添加量は予備成形体の隙間を埋める分量があればよく、予備成形体の相対密度により最適値が変わり得る。物質移動の促進は、次のステップの低温焼結のプロセス温度によっても促すことができるので、プロセス温度によっても水の添加量の最適値は変わり得る。水は蛍光部材の緻密化を達成するために必要な量を上限とすればよい。例えば、予備成形体を100質量%としたときに、水の添加量は例えば1~20質量%とすることができる。
 予備成形体に水を含浸させた後、加圧下で低温焼結を行って焼結体を得る。水の含浸により予備成形体中の酸化マグネシウムのマグネシウムイオンが溶解し、加圧下で液相を介してマグネシウムイオンの物質移動を促し、水酸化マグネシウムもしくは酸化マグネシウムとして析出される。その結果、蛍光部材の緻密化を達成できる。このため、液相を介して物質移動を促すのに充分な圧力が必要である。最大圧力は緻密化を充分に行う観点から、200~1500MPaとすることが好ましく、300~1200MPaとすることがより好ましく、500~1000MPaとすることが更に好ましい。200~1500MPaとすることにより、高温焼成なしにマトリックス部を構成する粒子の液相への溶解析出の促進と、塑性変形とに起因する高密度化を促進できる。圧力を加える手段としては、公知の方法を適用できる。静水圧による加圧は、等方的に加圧できることから特に好適である。加圧時間は、緻密化に寄与する化学反応のメカニズムや圧力によって異なるが、1~60minが好ましい。
 室温で行う場合、予備成形体に水を含浸させた後に真空パックに袋詰めを行い、冷間静水圧加圧装置を用いて、例えば、圧力1000MPaで60分間、1回または複数回、CIP成形することにより焼結体を得る方法が例示できる。また、加温する場合には、WIP加温等方圧加圧加工(Warm Isostatic Pressing、WIP)装置を用いて成形することができる。
 熱伝導性の観点からは、酸化マグネシウムと水酸化マグネシウムの比率は、前者が多い方が好ましく、蛍光部材の緻密化の観点からは水を多く添加して酸化マグネシウムと水の反応により水酸化マグネシウムを生成することが好ましい。蛍光部材の緻密化は加温により促すことができるので、250℃以下の温度で高温プロセスを行って緻密化を促進させてもよい。省エネルギー化および装置の簡便性の観点からは、室温で低温焼結を行うことが望ましい。
 なお、上記製造方法は一例であって、種々の製造方法により本実施形態の蛍光部材を製造できる。例えば、蛍光体粒子、少なくとも酸化マグネシウムを含む原料粉体および氷の粒の混合物を得、これを氷点下で予備成形後に上記低温焼結を行うことにより、または予備成形を行わずに上記低温焼結を行うことにより、蛍光部材を得てもよい。また、凍結乾燥法と低温焼結を組み合わせて蛍光部材を得ることもできる。具体的には、蛍光体粒子、少なくとも酸化マグネシウムを含む原料粉体、および水と水より昇華点が低い溶剤(メタノール等)の混合物を得、これを凍結乾燥法により、スプレーで噴霧して液滴を形成し、水を残しつつ溶剤を除去した造粒体を得、これを上記低温焼結することにより蛍光部材を得る方法が例示できる。
 蛍光部材の相対密度は発光効率を効果的に高める観点からは85%以上とすることが好ましい。ここで、相対密度とは、JIS Z 2501:2000に準拠のアルキメデス法に則って測定される蛍光部材の密度を、マトリックス成分(蛍光体粒子を含まない)の原料粉体の真密度で割ることにより得られる値(質量比)を指すものとする。蛍光部材の相対密度のより好ましい範囲は88%以上であり、更に好ましくは90%以上である。
 本実施形態によれば、液相を介して固体中の物質移動を促す固液反応の促進によって高温焼成なしに高度に緻密化した、蛍光体粒子含有の蛍光部材を提供できる。緻密化により、気孔を低減させ、透光性に優れた蛍光部材を提供できる。しかも、酸化マグネシウムをマトリックス成分として用いることにより高熱伝導性を実現できる。更に、250℃を超える高温焼成を必須としないので、多様な蛍光体粒子を用いることが可能となる。その結果、高温焼成による蛍光体粒子の劣化や変質、マトリックス部との不本意な反応といった従来の課題を根本的に解決し、より自由度の高い材料設計が可能となる。その結果、高品質な蛍光部材を提供することができる。そして、高熱伝導性と蛍光性を兼備した蛍光部材を提供できる。本実施形態の蛍光部材は、高出力LED等のみならず、様々な部材への応用展開が期待できる。
[発光装置]
 本実施形態の発光装置は、第一光を発光する半導体発光素子と、この半導体発光素子の出射光側に設置され、第一光が励起光となり第二光を発光する本実施形態の蛍光部材を具備する。発光装置において、半導体発光素子および蛍光部材は、それぞれ独立に少なくとも一つ又は複数含まれている。
 図1に、本実施形態に係る発光装置の一例である白色LEDの模式図を示す。白色LED10は、基板1上に一次光源として青色LED2が設けられ、この青色LED2の出射光路の少なくとも一部に蛍光部材5が設置されている。青色LED2の形状に応じて蛍光部材5を任意の形状に形成すればよい。青色LED2の出射光の一部は、蛍光部材5のマトリックス3に分散せしめられた蛍光体粒子4、例えば黄色蛍光体粒子を励起し、黄色の光を発光する。また、青色LED2のうち、蛍光部材中の蛍光体粒子の励起に寄与しなかった光は蛍光部材5を透過して、青色光として白色LED10から出射される。複数の出射光が混ざり合って、白色LED10から白色光が作り出される。
 なお、図1の例は一例であり、青色LEDに代えて、又は併用して赤色LEDまたは/および緑色LEDを用い、白色光の色味の品質を高めるために蛍光部材を用いてもよい。また、黄色蛍光体粒子は一例であり、黄色蛍光体粒子に代えて、又は併用して赤色蛍光体粒子または/および緑色蛍光体粒子を用いることができる。無論、その他の色の蛍光体粒子を用いてもよい。更に、LEDに代えてレーザーダイオード等の半導体発光素子を用いてもよいことは言うまでもない。
 白色LED10の場合には、青色LED2の青色光が蛍光部材5を透過する光量、蛍光部材5の蛍光体粒子が青色光を吸収して別の波長の光(緑色光、赤色光等)を発光する光量を最適化するために、蛍光部材5の厚みおよび蛍光部材5中の蛍光体粒子の濃度を適宜設計する。青色LEDからの励起光は、例えば、波長300nm~500nmの光(紫外領域の光から青色領域の光)である。
 図1の白色LED10の蛍光部材5に代えて、図2に示すように、第一蛍光部材21と第二蛍光部材22からなる蛍光部材20を用いてなる白色LED10aを用いてもよい。第一蛍光部材21は、第一マトリックス11中に、青色LED2からの第一光を吸収して発光する第一蛍光体粒子12が含有されている。一方、第二蛍光部材22は、第二マトリックス13中に第一蛍光部材21から発光された光を吸収して、更に長波長光を発光する第二蛍光体粒子14が含有されている。第一蛍光部材21と第二蛍光部材22が接合された蛍光部材20を用いることにより、蛍光部材20の発光光の一部を第二の励起光として、更に長波長の光を出射させることができる。このような構成により、白色の色味を調整することも可能である。
≪実施例≫
 以下、本発明を実施例によりさらに詳細に説明する。但し、本発明は、以下の実施例に限定されるものではない。
[実験例A](マトリックス部の緻密化)
 原料のMgO粉体としてDISPERMAG(登録商標)TN-1(平均粒子径0.57μm、タテホ化学工業株式会社製)、およびPUREMAG(登録商標)FNM-G(平均粒子径0.54μm、タテホ化学工業株式会社製)を質量比が7:3になるように秤量し、ミキサー混合することによりマトリックス粉体の混合物を得た。直径15mmの円筒形状のステンレス製金型にこのマトリックス粉体の混合物1gを金型に充填し、50MPaで30secの条件で一軸加圧成形機(商品名:Hydraulic Shop Press、Woodward Fab製)により一次成形することによりプレ成形体を得た。
 次いで、室温下、1000MPaで1minの条件で静水圧を印加し、予備成形体を得た。予備成形体の相対密度は65%であった。予備成形体に減圧下(-0.05MPa)で水を10質量%含浸させた。その後、室温下、冷間静水圧加圧装置(商品名:Dr.CHEF、株式会社神戸製鋼所製)を用いて、1000MPaで60minの条件で静水圧を印加し、低温焼結を行うことにより円柱状の焼結体を得た。相対密度は96%であった。
[比較例1]
 予備成形体に、水を含浸させる工程を行わなかった以外は、実験例Aと同様の方法により焼結体を得た。予備成形体の相対密度は66%であり、この焼結体の相対密度は66%であった。
[実施例1a]
 実験例Aのマトリックス粉体の混合物に、更に蛍光体粒子として赤色蛍光体(株式会社サイアロン、CASN)を添加した。原料粉体と蛍光体粒子の体積比が99:1になるように乳鉢で充分に混合し、蛍光体粒子含有混合物を得た。この蛍光体粒子含有混合物1gを実験例Aと同様に金型に充填し、実験例Aと同様の条件で予備成形体を形成し、続いて焼結体である蛍光部材を得た。予備成形体の相対密度は65%であり、蛍光部材の相対密度は92%であった。
[実施例1b]
 マトリックス:蛍光体粒子の体積比が9:1になるように変更した以外は、実施例1aと同様の方法により実施例1bに係る蛍光部材を得た。予備成形体の相対密度は65%であり、蛍光部材の相対密度は88%であった。
[実施例1c]
 マトリックス:蛍光体粒子の体積比が8:2になるように変更した以外は、実施例1aと同様の方法により実施例1cに係る蛍光部材を得た。
[比較例2]
 予備成形体に、水を含浸させる工程および低温焼結工程を行う代わりに、1300℃で、1時間大気中で焼結を行った以外の工程は実施例1bと同様として比較例2に係る蛍光部材を得た。予備成形体の相対密度は66%であり、この蛍光部材の相対密度は69%であった。
[実施例2b]
 実験例Aの混合物に、蛍光体粒子として橙色蛍光体(株式会社サイアロン、α-SiAlON)を、マトリックス:蛍光体粒子の体積比が9:1になるように乳鉢で混合し、蛍光体粒子含有の混合物を得た。この混合物1gを実験例Aと同様に金型に充填し、実験例Aと同様の条件で予備成形体を形成し、続いて焼結体である蛍光部材を得た。予備成形体の相対密度は67%であり、蛍光部材の相対密度は92%であった。
[実施例2a、2c]
 マトリックス:蛍光体粒子の体積比を表1に示す数値に変更した以外は、実施例2bと同様の方法により実施例2a、2cに係る蛍光部材を得た。
[実施例3a]
 実験例Aの混合物に、蛍光体粒子として緑色蛍光体(株式会社サイアロン、β-SiAlON)を、マトリックス:蛍光体粒子の体積比が99:1になるように乳鉢で混合し、蛍光体粒子含有の混合物を得た。この混合物1gを実験例Aと同様に金型に充填し、実験例Aと同様の条件で予備成形体を形成し、続いて焼結体である蛍光部材を得た。
[実施例3b、3c]
 マトリックス:蛍光体粒子の体積比を表1に示す数値に変更した以外は、実施例3aと同様の方法により実施例3b、3cに係る蛍光部材を得た。
[実験例B](マトリックス部の緻密化)
 原料のMgO粉体として宇部マテリアルズ株式会社製RF-10CS(平均粒子径4~10μm)および500A(平均粒子径45~60nm)を質量比が7:3になるように秤量し、ミキサーで充分に混合することによりマトリックス粉体の混合物を得た。金型にこのマトリックス粉体の混合物1gを充填し、実験例Aと同様の方法によりプレ成形体を得た。次いで、内部構造の均質化のために、室温下、200MPaで1minの条件で静水圧を印加し、予備成形体を得た。予備成形体の相対密度は67%であった。予備成形体に、実験例Aと同様の方法により、水を10質量%含浸させた。その後、実験例Aと同様の方法により円柱状の焼結体を得た。実験例Bの焼結体の相対密度は91%であった。
[実施例4a]
 実験例Bの混合物に、更に蛍光体粒子として赤色蛍光体(株式会社サイアロン、CASN)を添加した。原料粉体と蛍光体粒子の体積比が99:1になるように乳鉢で充分に混合し、蛍光体粒子含有の混合物を得た。この蛍光体粒子含有混合物1gを実験例Bと同様に金型に充填し、実験例Bと同様の方法により予備成形体および焼結体である蛍光部材を得た。予備成形体の相対密度は66%であり、蛍光部材の相対密度は87%であった。
[実施例4b]
 マトリックス:蛍光体粒子の体積比が9:1になるように変更した以外は、実施例4aと同様の材料および方法により実施例4bに係る蛍光部材を得た。予備成形体の相対密度は67%であり、蛍光部材の相対密度は88%であった。
[実験例C](マトリックス部の緻密化)
 原料のMgO粉体として宇部マテリアルズ株式会社製RF-10CS(平均粒子径4~10μm)およびDISPERMAG(登録商標)TN-1(平均粒子径0.57μm、タテホ化学工業株式会社製)を質量比が5:5になるように秤量し、ミキサーで充分に混合することによりマトリックス粉体の混合物を得た。金型にこのマトリックス粉体の混合物1gを充填し、実験例Aと同様の方法によりプレ成形体を得た。次いで、内部構造の均質化のために、室温下、1000MPaで1minの条件で静水圧を印加し、予備成形体を得た。予備成形体の相対密度は73%であった。予備成形体に、実験例Aと同様の方法により、水を10質量%含浸させた。その後、実験例Aと同様の方法により円柱状の焼結体を得た。
[実施例5a]
 実験例Cの混合物に、更に蛍光体粒子として赤色蛍光体(株式会社サイアロン、CASN)を添加した。原料粉体と蛍光体粒子の体積比が9:1になるように乳鉢で充分に混合し、蛍光体粒子含有の混合物を得た。この蛍光体粒子含有混合物1gを実験例Cと同様に金型に充填し、実験例Cと同様の方法により予備成形体および焼結体である蛍光部材を得た。
[実験例D](マトリックス部の緻密化)
 原料のMgO粉体として宇部マテリアルズ株式会社製500A(平均粒子径45~60nm)1gを金型に充填し、実験例Aと同様の方法によりプレ成形体を得た。次いで、内部構造の均質化のために、室温下、200MPaで1minの条件で静水圧を印加し、予備成形体を得た。予備成形体の相対密度は49%であった。予備成形体に、実験例Aと同様の方法により、水を10質量%含浸させた。その後、実験例Aと同様の方法により円柱状の焼結体を得た。実験例Dの焼結体の相対密度は85%であった。
[実施例6a]
 実験例Dの混合物に、更に蛍光体粒子として赤色蛍光体(株式会社サイアロン、CASN)を添加した。原料粉体と蛍光体粒子の体積比が99:1になるように乳鉢で充分に混合し、蛍光体粒子含有の混合物を得た。この蛍光体粒子含有混合物1gを実験例Dと同様に金型に充填し、実験例Dと同様の方法により予備成形体および焼結体である蛍光部材を得た。予備成形体の相対密度は47%であり、蛍光部材の相対密度は80%であった。
[実施例6b]    
 マトリックス:蛍光体粒子の体積比が9:1になるように変更した以外は、実施例6aと同様の材料および方法により実施例6bに係る蛍光部材を得た。予備成形体の相対密度は50%であり、蛍光部材の相対密度は84%であった。
(比較例3)
 実施例1aのマトリックスの原料粉体、即ち、MgO粉体の代わりにマトリックスとしてエポキシ樹脂を用いた。このエポキシ樹脂に、実施例1aと同じ蛍光体粒子を同実施例と同量(蛍光体粒子の含有量を蛍光体粒子含有混合物合計に対して1vol%となる量)配合して充分に混合することにより蛍光体粒子含有混合物を得、溶融混練により実施例1aと同一形状の比較例3の蛍光部材を得た。
(比較例4)
 実施例1bのマトリックスの原料粉体、即ち、MgO粉体の代わりにマトリックスとしてエポキシ樹脂を用いた。このエポキシ樹脂に、実施例1bと同じ蛍光体粒子を同実施例と同量配合し、比較例3と同様の方法により実施例1bと同一形状の比較例4の蛍光部材を得た。
(SEM像)
 実験例Aの予備成形体、実験例Aと比較例1の焼結体(蛍光体粒子不含以外は実施例の蛍光部材と同じ焼結体)の観察面を鏡面研磨し、プラズマエッチングして結晶粒子を明瞭にして走査型電子顕微鏡(SEM)観察用のサンプルを作製し、破面を走査型電子顕微鏡(SEM、商品名:JSM-6390LV、日本電子社製)で観察した。図3Aに予備成形体のSEM像を、図3Bに実験例Aの低温焼結工程後の焼結体のSEM像を、図3Cに比較例1(水の含浸工程を行わなかった低温焼結工程後の焼結体)のSEM像を示す。
 水の含浸工程を行わなかった図3CのSEM像は、予備成形体の図3Aと同等の構造体であり、低温焼結による微構造変化を確認できなかった。また、前述したように、予備成形体の相対密度65%に対し、水の含浸を行わない比較例1のサンプルにおいては相対密度が66%であり、ほぼ変化しないことを確認した。一方、水の含浸工程を含めた実験例Aの焼結体は相対密度が96%であり、図3Bに示すように、予備成形体の構造がより緻密化していることを確認した。また、粒成長は確認されなかった。
 図4に実施例1bの蛍光部材のSEM像を示す。蛍光体微粒子を10vol%含有した混合物を用いて形成することにより、実験例Aの焼結体(蛍光体粒子不含以外は実施例1bの蛍光部材と同じ条件で作製したサンプル)よりも相対密度の低下が見られるものの、実施例1bの蛍光部材は、目視上、実験例Aと同等の緻密な焼結体が得られることを確認した。
(X線構造解析)
 実験例Aの蛍光部材をX線構造解析した結果を図5に示す。X線構造解析のサンプルに対し、試料水平型多目的X線回折装置Ultima IV(株)リガク社製)を用いて、2θ/θモードで測定を行った。図5に示すように、実施例1aの蛍光部材は、酸化マグネシウムの特有のピーク(図5中の該当ピークを黒塗三角のマークで表示)と、水酸化マグネシウムの特有のピーク(図5中の該当ピークを黒塗四角のマークで表示)が確認され、蛍光部材のマトリックスとして酸化マグネシウムおよび水酸化マグネシウムが含まれることを確認した。
(発光スペクトルの測定)
 実施例1aの蛍光部材について、発光スペクトルの測定を行った結果を図6に示す。測定は、量子効率測定システムQE-2000(大塚電子株式会社製)を用い、反射モードで、455nm励起光とし、500nm~800nmの発光スペクトルの測定を行った。同図には、実施例1aの予備成形体の発光スペクトルおよび比較例2の蛍光部材の発光スペクトルも合わせて示す。図6の予備成形体の発光スペクトルに対し、実施例1aの蛍光部材は予備成形体と同じ、すなわち、添加した赤色蛍光体と同じ発光スペクトルが得られ、発光強度が増加することを確認した。CAXNを用いた他の実施例に係る蛍光部材についても同様の発光スペクトルが得られた。一方、比較例2の蛍光部材では発光スペクトルが確認できず、蛍光体粒子が失活していることを確認した。また、実施例2bの蛍光部材の発光スペクトルを図7に、実施例3bの蛍光部材の発光スペクトルを図8に示す。測定は、上記と同様の方法で行った。これらの図には、添加した蛍光体の発光スペクトルを併せて示す。各蛍光体の発光スペクトルに対し、実施例2b、3bの蛍光部材はそれぞれ同じ発光スペクトルが得られることを確認した。
(走査透過電子顕微鏡-エネルギー分散型X線分析(STEM-EDX))
 実施例1bの蛍光部材の断面の構造観察のため、低温焼結後のバルク状試料を小片状に切り出して、イオンミリング装置(Gatan製 Model 691 PIPS)で薄片化することにより測定試料を作製した。そして、EDX付き走査透過電子顕微鏡(多機能分析透過電子顕微鏡 JEOL製 JEM-F200)を用いて断面の電子顕微鏡観察を行い、酸素マッピング処理を行った。図9にTEM像を、図10に酸素マッピングの結果を示す。図9において、MgO粒子間の粒界には空隙が存在し、空隙中には針状や板状の粒子が多く見られた。また、図10のEDX面分析からは、これらの粒界相はMgO粒子よりも酸素の比率が高いことが理解された。これらの図より、MgO粒子間の隙間にMg(OH)が充填されていることが確認された。
 各実験例、各実施例および各比較例の相対密度、平均粒子径、量子効率および熱伝導率の結果を表1に示す。相対密度は、JIS Z 2501:2000に準拠のアルキメデス法に則って測定される蛍光部材の密度を、マトリックス成分(蛍光体粒子を含まない)の原料粉体の真密度で割ることにより得られる。蛍光部材中の酸化マグネシウムの平均粒子径はISO13383-1:2012インターセプト法により求めた。量子効率は、量子効率測定システムQE-2000(大塚電子株式会社製)を用いて、反射モードにて、励起波長455nmに対する量子効率を求めた。熱伝導率は、レーザフラッシュ法熱定数測定装置  TC-9000(アドバンス理工(株)社製)を用いて、JIS R 1611に則って各サンプルの熱伝導率を求めた。
Figure JPOXMLDOC01-appb-T000001
 本実施例1aの内部量子効率が64%であるのに対し、比較例3の内部量子効率は52%であった。また、本実施例1bの内部量子効率が86%であるのに対し、比較例4の内部量子効率は81%であった。これらの一例に示すように、本実施例においても従来と同等またはそれ以上の量子効率が得られることを確認した。
 また、比較例3、4の熱伝導率をISO 22007-4に則って求めたところ、いずれも0.1W/(m・K)であった。
 この出願は、2019年7月22日に出願された日本出願特願2019-134868を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明に係る蛍光部材は、白色LED、高出力LED等の発光装置の部材としての利用の他、高熱伝導性および蛍光性を兼ね備えることから、蛍光表示管(VFD)、PDP等のディスプレイをはじめとする部材と組み合わせて種々の用途に応用展開することができる。また、波長変換用の蛍光部材以外の用途、例えば、応力発光素子、電子線照射発光素子、熱ルミネッセンス発光素子等に適用することも可能である。
1   基板
2   青色LED
3   マトリックス
4   蛍光体粒子
5   蛍光部材
10  白色LED
11  第一マトリックス
12  第一蛍光体粒子
13  第二マトリックス
14  第二蛍光体粒子
21  第一蛍光部材
22  第二蛍光部材

Claims (10)

  1.  酸化マグネシウムと水酸化マグネシウムを主成分とするマトリックスと、
     前記マトリックス中に分散された蛍光体粒子と、を含有する波長変換用の焼結体である蛍光部材。
  2.  熱伝導率が5W/(m・K)以上であることを特徴とする請求項1に記載の蛍光部材。
  3.  前記マトリックス中の前記酸化マグネシウムに対する前記水酸化マグネシウムの質量比が0.4以下であることを特徴とする請求項1又は2に記載の蛍光部材。
  4.  前記蛍光体粒子が窒化物蛍光体粒子を含むことを特徴とする請求項1~3のいずれかに記載の蛍光部材。
  5.  相対密度が85%以上であることを特徴とする請求項1~4のいずれかに記載の蛍光部材。
  6.  少なくとも前記マトリックスの原料粉体および前記蛍光体粒子の混合物の予備成形体を得、
     前記予備成形体に水を含浸させ、その後、加圧下で焼結することにより得られた焼結体であり、前記水を含浸させた後の前記予備成形体に対して250℃を超える高温プロセスを行わずに得られたことを特徴とする請求項1~5のいずれかに記載の蛍光部材。
  7.  前記マトリックス中の前記酸化マグネシウムのISO13383-1:2012インターセプト法により求めた平均粒子径が0.1μm~10μmであることを特徴とする請求項6に記載の蛍光部材。
  8.  第一光を発光する半導体発光素子と、
     前記半導体発光素子の出射光側に設置され、前記第一光が励起光となり第二光を発光する、請求項1~7のいずれかの蛍光部材と、を備える発光装置。
  9.  少なくともマトリックスの原料粉体および蛍光体粒子の混合物を得、
     前記混合物を予備成形して予備成形体を得、
     前記予備成形体に水を含浸させ、その後、加圧下で焼結により焼結体を得る工程を含み、且つ前記水を含浸させた後の前記予備成形体に対して250℃を超える高温で処理するプロセスを含まず、
     前記マトリックスは、酸化マグネシウムと水酸化マグネシウムを主成分とする、蛍光部材の製造方法。
  10.  前記原料粉体の酸化マグネシウムの比表面積と密度から求めた平均粒子径が20nm以上であることを特徴とする請求項9に記載の蛍光部材の製造方法。
PCT/JP2020/028517 2019-07-22 2020-07-22 蛍光部材およびその製造方法、並びに発光装置 WO2021015261A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020567995A JP6927509B2 (ja) 2019-07-22 2020-07-22 蛍光部材およびその製造方法、並びに発光装置
US17/273,263 US11447696B2 (en) 2019-07-22 2020-07-22 Fluorescent member, its manufacturing method, and light-emitting apparatus
CN202080005111.5A CN114144497A (zh) 2019-07-22 2020-07-22 荧光部件及其制造方法和发光装置
EP20843555.2A EP4006122A4 (en) 2019-07-22 2020-07-22 FLUORESCENT ELEMENT, ASSOCIATED PRODUCTION METHOD, AND ELECTROLUMINESCENT DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019134868 2019-07-22
JP2019-134868 2019-07-22

Publications (1)

Publication Number Publication Date
WO2021015261A1 true WO2021015261A1 (ja) 2021-01-28

Family

ID=74194251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028517 WO2021015261A1 (ja) 2019-07-22 2020-07-22 蛍光部材およびその製造方法、並びに発光装置

Country Status (5)

Country Link
US (1) US11447696B2 (ja)
EP (1) EP4006122A4 (ja)
JP (1) JP6927509B2 (ja)
CN (1) CN114144497A (ja)
WO (1) WO2021015261A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132212A1 (ja) * 2019-12-23 2021-07-01 日本電気硝子株式会社 波長変換部材、発光素子及び発光装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525475A (ja) * 1991-07-19 1993-02-02 Nichia Chem Ind Ltd 蛍光ランプ用蛍光体
JP2001283740A (ja) * 2000-03-01 2001-10-12 Koninkl Philips Electronics Nv Uv発光層を具えたプラズマ画像スクリーン
JP2008066462A (ja) * 2006-09-06 2008-03-21 Fujikura Ltd イルミネーションランプ及びイルミネーションランプユニット
JP2009013412A (ja) * 2007-07-06 2009-01-22 Samsung Sdi Co Ltd 金属化合物で安定化された混成化されたナノ蛍光体膜、その用途およびその製造方法
KR20100000221A (ko) * 2008-06-24 2010-01-06 엘지전자 주식회사 형광체 페이스트 및 그를 이용한 플라즈마 디스플레이 패널제조방법
JP2013062320A (ja) * 2011-09-12 2013-04-04 Olympus Corp 発光装置
JP2015088636A (ja) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 蛍光発光素子、光源装置、およびプロジェクター
WO2018038259A1 (ja) 2016-08-26 2018-03-01 地方独立行政法人神奈川県立産業技術総合研究所 窒化物蛍光体粒子分散型サイアロンセラミックス、蛍光部材、窒化物蛍光体粒子分散型サイアロンセラミックスの製造方法
WO2018189997A1 (ja) * 2017-04-13 2018-10-18 日本電気硝子株式会社 波長変換部材及び波長変換素子、並びにそれらを用いた発光装置
JP2019134868A (ja) 2018-02-05 2019-08-15 株式会社大一商会 遊技機
WO2019239850A1 (ja) * 2018-06-12 2019-12-19 日本電気硝子株式会社 波長変換部材及び波長変換素子、並びにそれらの製造方法、並びに発光装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8593062B2 (en) * 2010-04-29 2013-11-26 General Electric Company Color stable phosphors for LED lamps and methods for preparing them

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525475A (ja) * 1991-07-19 1993-02-02 Nichia Chem Ind Ltd 蛍光ランプ用蛍光体
JP2001283740A (ja) * 2000-03-01 2001-10-12 Koninkl Philips Electronics Nv Uv発光層を具えたプラズマ画像スクリーン
JP2008066462A (ja) * 2006-09-06 2008-03-21 Fujikura Ltd イルミネーションランプ及びイルミネーションランプユニット
JP2009013412A (ja) * 2007-07-06 2009-01-22 Samsung Sdi Co Ltd 金属化合物で安定化された混成化されたナノ蛍光体膜、その用途およびその製造方法
KR20100000221A (ko) * 2008-06-24 2010-01-06 엘지전자 주식회사 형광체 페이스트 및 그를 이용한 플라즈마 디스플레이 패널제조방법
JP2013062320A (ja) * 2011-09-12 2013-04-04 Olympus Corp 発光装置
JP2015088636A (ja) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 蛍光発光素子、光源装置、およびプロジェクター
WO2018038259A1 (ja) 2016-08-26 2018-03-01 地方独立行政法人神奈川県立産業技術総合研究所 窒化物蛍光体粒子分散型サイアロンセラミックス、蛍光部材、窒化物蛍光体粒子分散型サイアロンセラミックスの製造方法
WO2018189997A1 (ja) * 2017-04-13 2018-10-18 日本電気硝子株式会社 波長変換部材及び波長変換素子、並びにそれらを用いた発光装置
JP2018180271A (ja) 2017-04-13 2018-11-15 日本電気硝子株式会社 波長変換部材及び波長変換素子、並びにそれらを用いた発光装置
JP2019134868A (ja) 2018-02-05 2019-08-15 株式会社大一商会 遊技機
WO2019239850A1 (ja) * 2018-06-12 2019-12-19 日本電気硝子株式会社 波長変換部材及び波長変換素子、並びにそれらの製造方法、並びに発光装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CLIVE A. RANDALL ET AL., J. AM. CERAM. SOC., vol. 100, 2017, pages 669 - 677
CLIVE A. RANDALL ET AL., J. AM. CERAM. SOC., vol. 99, no. 11, 2016, pages 3489 - 3507
M. W. SHAFER ET AL., JOURNAL OF THE AMERICAN CERAMIC SOCIETY-SHNJER AND KOY, vol. 42, no. 11, November 1959 (1959-11-01)
XUELIANG SUN ET AL., JOURNAL OF POWER SOURCES, vol. 393, 2018, pages 193 - 203

Also Published As

Publication number Publication date
JPWO2021015261A1 (ja) 2021-09-13
JP6927509B2 (ja) 2021-09-01
US20210317367A1 (en) 2021-10-14
EP4006122A1 (en) 2022-06-01
EP4006122A4 (en) 2023-08-23
CN114144497A (zh) 2022-03-04
US11447696B2 (en) 2022-09-20

Similar Documents

Publication Publication Date Title
US10753574B2 (en) Sintered phosphor, light emitting device, illumination device, vehicle headlamp, and method for manufacturing sintered phosphor
EP2109651B1 (en) Illumination system comprising composite monolithic ceramic luminescence converter
JP7056553B2 (ja) 蛍光体、発光装置、照明装置及び画像表示装置
JP6222612B2 (ja) 透明蛍光サイアロンセラミックスおよびその製造方法
JP6897387B2 (ja) 焼結蛍光体、発光装置、照明装置、画像表示装置および車両用表示灯
EP3495449B1 (en) Wavelength converting member and method for producing the same
JP7277788B2 (ja) 波長変換部材の製造方法及び波長変換部材
EP3505593B1 (en) Nitride phosphor particle dispersion-type sialon ceramic, fluorescent member, and method for producing nitride phosphor particle dispersion-type sialon ceramic
WO2021024914A1 (ja) 蛍光体粒子分散ガラスおよび発光装置
KR20160135294A (ko) 광변환용 세라믹스 복합 재료, 그의 제조 방법, 및 그것을 구비한 발광 장치
JP6927509B2 (ja) 蛍光部材およびその製造方法、並びに発光装置
JP2023026191A (ja) 蛍光部材およびその製造方法、並びに発光装置
WO2018079373A1 (ja) 光波長変換部材及び発光装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020567995

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020843555

Country of ref document: EP

Effective date: 20220222