WO2016173528A1 - 一种用于大功率光源的发光陶瓷及发光装置 - Google Patents

一种用于大功率光源的发光陶瓷及发光装置 Download PDF

Info

Publication number
WO2016173528A1
WO2016173528A1 PCT/CN2016/080645 CN2016080645W WO2016173528A1 WO 2016173528 A1 WO2016173528 A1 WO 2016173528A1 CN 2016080645 W CN2016080645 W CN 2016080645W WO 2016173528 A1 WO2016173528 A1 WO 2016173528A1
Authority
WO
WIPO (PCT)
Prior art keywords
yag
luminescent
luminescent ceramic
grain size
ceramic
Prior art date
Application number
PCT/CN2016/080645
Other languages
English (en)
French (fr)
Inventor
李乾
许颜正
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57199164&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016173528(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2016173528A1 publication Critical patent/WO2016173528A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range

Definitions

  • the present application relates to the field of luminescent ceramics, and more particularly to a luminescent ceramic for a high power light source, and a luminescent device using the luminescent ceramic.
  • YAG yttrium aluminum garnet
  • the traditional YAG luminescent ceramics are mainly developed for the illuminating characteristics of LEDs. Since the power of LED chips is small and the power density of blue light emitted is low, the luminous efficacy of luminescent ceramics developed for LEDs has not received sufficient attention.
  • the commonly used YAG luminescent ceramics are mainly calcined by raw material powders Al 2 O 3 , Y 2 O 3 , CeO 2 , pressed into a sheet under a press machine, and then sintered to obtain a luminescent ceramic, in order to satisfy the LED.
  • the luminescent ceramics must have a certain light transmission property, thereby causing a lower degree of grain growth and a lower luminance in the YAG.
  • a metal salt of an inorganic salt or a metal alkoxide is used as a raw material to carry out a hydrolysis reaction in a solution, and then the resulting gel is sintered by a muffle furnace, so the process It is complicated, and the raw material of the metal alkoxide is very expensive, so large-scale preparation is limited, and the YAG prepared by this method is also low in luminous efficiency.
  • the luminescent ceramics need to withstand higher blue light power density, require good thermal conductivity and uniform illuminating, etc., which makes the traditional illuminating ceramics developed for LEDs unable to meet the requirements of use.
  • the object of the present application is to provide a new luminescent ceramic for a high power light source, in particular for a laser light source, and a illuminating device using the same.
  • the present application discloses a luminescent ceramic for a high power light source comprising a YAG matrix and uniformly dispersed in YAG
  • the luminescent center in the matrix, the luminescent center is YAG phosphor particles with a grain size of 10-20 ⁇ m.
  • the most critical difference between the luminescent ceramics of the present application and the existing YAG ceramics is that a YAG phosphor particle luminescent center having a grain size of 10-20 ⁇ m is dispersed in the matrix of the YAG ceramic; This structure can effectively improve the luminous efficiency of the luminescent ceramic of the present application, thereby meeting the demand for use of a high-power laser light source. It should also be noted that according to the existing YAG ceramic production method, it is impossible to prepare a uniformly dispersed YAG particle luminescent center having a grain size of 10-20 ⁇ m.
  • One important innovation of the present application lies in the preparation process of the luminescent ceramic.
  • the YAG phosphor particles having a grain size of 10-20 ⁇ m are added to the raw material of the YAG ceramic prepared by the high-temperature solid phase method, so that the prepared luminescent ceramic is still a YAG ceramic matrix and has a uniform dispersed grain size. 10-20 ⁇ m YAG particle luminescence center.
  • the raw materials of the YAG ceramics may adopt two forms of raw materials; the first one, that is, the raw materials for the original YAG ceramics, such as Y 2 O 3 , Al 2 O 3 and CeO 2
  • the second is to directly use commercially available YAG phosphor powder, which is ground to a grain size of 4 ⁇ m or less, preferably 2 ⁇ m or less, as a raw material, and is formed into a green body by vacuum sintering to form a luminescent ceramic.
  • YAG ceramics When YAG ceramics are prepared using YAG phosphor powder, they must be ground to a grain size of 4 ⁇ m or less, preferably 2 ⁇ m or less, so that YAG with a small grain size can be obtained at a vacuum sintering temperature. The phosphor powder is melted to form a YAG ceramic, and the large grain size YAG phosphor particles are maintained, thereby securing the luminescent center of the large grain size.
  • the illuminating center is normally 10-20 ⁇ m YAG.
  • Phosphor particles however, in some anomalies, or because of some errors, a small number of YAG phosphor particles have a particle size of 1-10 ⁇ m, but, in principle, the particle size of the luminescent center of the present application is 10-20 ⁇ m.
  • the YAG composition of the YAG matrix has a grain size of 0.5 to 5 ⁇ m.
  • the grain size of YAG in the YAG matrix is the generated YAG.
  • Grain size as mentioned in the background art, in order to make the luminescent ceramic have a certain light transmission property, YAG The degree of grain growth in the film is relatively reduced, that is, the light transmittance of the luminescent ceramic is inversely proportional to the grain size; however, in the luminescent ceramic of the present application, YAG is added due to the addition of large grains. The phosphor particles act as a center of luminescence, and therefore, the grain size of the produced YAG can be small to satisfy higher light transmittance.
  • the grain size of YAG in the YAG matrix of the present application is 0.5-5 ⁇ m.
  • some errors will inevitably occur, causing a small part of the grain to grow abnormally, resulting in YAG with a particle size of about 5 ⁇ m to 20 ⁇ m.
  • the matrix these are only production errors.
  • the error is not specifically limited in the present application.
  • the YAG matrix is Ce doped YAG, and the doping amount is 0.5 to 5%, and the doping amount is preferably 1 ⁇ 3%.
  • the YAG matrix is prepared by solid phase sintering using Y 2 O 3 , Al 2 O 3 and CeO 2 as raw materials.
  • the YAG phosphor particles comprise 10% to 90% of the total mass of the luminescent ceramic, preferably, YAG The phosphor particles account for 70-90% of the total mass of the luminescent ceramic.
  • YAG phosphor particle content 10%-40% can be applied to LED, 40-90% applied to laser, more preferably 70 ⁇ 90% The content can achieve better results.
  • the higher the YAG phosphor particle content the higher the process requirements.
  • the YAG matrix is YAG having a grain size of 4 ⁇ m or less.
  • the phosphor powder is used as a raw material and is prepared by a solid phase sintering method.
  • the YAG matrix is prepared by a solid phase sintering method using YAG phosphor powder having a crystal grain size of 2 ⁇ m or less as a raw material.
  • the luminescent ceramic further comprises a silver plating layer attached to one surface of the luminescent ceramic.
  • the surface of the silver plating layer is further plated with a transition layer
  • the surface of the transition layer is plated with a copper layer or a solder layer
  • the transition layer is a titanium layer or a nickel layer.
  • the luminescent ceramic of the present application further comprises a heat dissipating copper plate soldered to the surface of the copper layer or the solder layer.
  • the luminescent ceramic of the present application further comprises an antireflection film, the silver plating layer is attached to one surface of the luminescent ceramic, and the antireflection film is attached to the other surface of the luminescent ceramic.
  • Another aspect of the present application discloses a light emitting device comprising an excitation light source and a luminescent ceramic of the present application, the excitation light source being a laser light source.
  • the luminescent ceramic of the present application is improved especially for a high-power light source such as a laser, and therefore can be effectively applied to a light-emitting device using a laser as an excitation light source.
  • the luminescent ceramic of the present application uniformly disperses YAG having a grain size of 10-20 ⁇ m in a YAG matrix having a small grain size.
  • Phosphor particles the entire luminescent ceramic has no impurity phase; YAG phosphor particles with large grain size serve as the luminescent center, and there are many luminescent centers and large grain size YAG
  • the phosphor particles are full and well-formed, which greatly improves the luminous efficiency of the luminescent ceramics, enabling the luminescent ceramics to meet the needs of high-power light sources with high blue-light power density.
  • the luminescent ceramic of the present application YAG having a large grain size
  • the phosphor particles and the YAG matrix with small grain size are interlaced and the grain boundaries are pure, which makes the luminescence of the luminescent ceramics more uniform and the halogenation performance is higher than that of the existing system.
  • 1 is a schematic cross-sectional structural view of a luminescent ceramic in an embodiment of the present application; in the figure, 210 is a YAG matrix, 220 It is a YAG phosphor particle with a grain size of 10-20 ⁇ m.
  • the conventional fluorescent light-emitting solid package such as a silica gel-packed phosphor, a glass-encapsulated luminescent glass, or the like, is a light-transmissive silica continuum matrix or a glass continuum matrix, and a phosphor is distributed therein.
  • a phosphor is distributed therein.
  • the blue light can penetrate the transparent substrate and illuminate the phosphor particles, and the energy of photoluminescence is converted, and the generated heat mainly passes through the phosphor.
  • the continuous structure of the matrix is passed out.
  • silica gel and glass have the disadvantages of low heat resistance and poor thermal conductivity.
  • the silica gel system When used in high-power laser light source, the silica gel system will be aged and become brittle due to excessive temperature, and even burned; the heat resistance of the glass system is better. However, the thermal conductivity is low, and the sharply rising temperature still causes a significant decrease in the efficiency of the phosphor.
  • YAG ceramics have good thermal conductivity, but YAG prepared by the existing preparation method Ceramics, which have a small grain growth size, have much lower luminous efficiency than commercial YAG phosphor particles with large grain size.
  • YAG prepared by the existing preparation method Ceramics which have a small grain growth size, have much lower luminous efficiency than commercial YAG phosphor particles with large grain size.
  • you use commercial YAG phosphor particles with large grain size directly to fire YAG Ceramics because the particles are too large, the firing effect is very poor, the large particles cause too many voids; and the preparation is difficult, the high temperature is required to burn the large particle phosphor to a molten state; but such high temperature treatment also destroys the phosphor particles.
  • the surface morphology and luminous efficiency decreased significantly. Therefore, it is not possible to directly adopt a large grain size YAG phosphor particles are fired into YAG ceramics.
  • the present application creatively proposes to add a large grain size commercial YAG to the raw material of the YAG ceramic.
  • Phosphor particles when vacuum sintering, the sintering temperature of YAG ceramics is not enough to burn the large particle phosphor particles to a molten state, so that the finally prepared YAG In the luminescent ceramics, the large grain size is preserved.
  • the cross-sectional view of the luminescent ceramic of the present application is shown in Fig. 1.
  • the YAG matrix 210 produced by sintering the YAG ceramic raw material will have a grain size of 10-20 ⁇ added.
  • the YAG phosphor particles 220 of m are evenly wrapped therein, and the large grain size YAG phosphor particles 220 serve as the illuminating center, effectively solving the YAG matrix 210
  • the problem of small grain growth size is that the commercial YAG phosphor particles with large grain size are rich in grain and well-formed, which greatly improves the luminous efficiency of the luminescent ceramic.
  • the substrate is YAG
  • the illuminating center is also a YAG phosphor particle, which has almost no impurity phase, and the grain boundary is pure, so that the luminescent ceramic of the present application has more uniform luminescence, and the averaging performance is higher than that of the conventional system such as silica gel and glass.
  • Y 2 O 3 , Al 2 O 3 and CeO 2 were used as raw materials to prepare luminescent ceramics, which were doped with 10-20 ⁇ m YAG phosphor particles, as follows:
  • the raw material is Y 2 O 3 with a purity of 99.99% and a particle size of 0.05-1 ⁇ m; Al 9 O 3 with a purity of 99.99 % and a particle size of 0.05-1 ⁇ m; purity of 99.99%, particle size of 0.1- 1 ⁇ m of CeO 2 .
  • the ratio of raw materials Y 2 O 3 , Al 2 O 3 and CeO 2 was calculated and weighed according to the mass ratio of Y 2 O 3 , Al 2 O 3 and CeO 2 of 5.6689:4.2874:0.0434.
  • the ceramic mixed powder is weighed, and a green body is obtained by press molding after adding an adhesion aid. After the green body was discharged at 650 ° C, it was fired in a vacuum sintering furnace, and the luminescent ceramic of this example was obtained after cooling with the furnace.
  • Y 2 O 3 , Al 2 O 3 , and CeO 2 particles are preliminarily incubated at a medium-high temperature of 1100-1450 ° C for 1-5 h, in this example specifically 3 h, to form a YAG phase. Then, the liquid phase sintering is carried out at a high temperature of 1500-1800 °C for about 1-10 h.
  • the temperature is maintained at 1600 ° C for 5 h, so that the YAG phase and the large particles of the phosphor are sintered in the liquid phase. Under the action, a dense, continuous, large-particle PIY ceramic distributed in the YAG continuous phase is formed.
  • the luminescent ceramic prepared in this example is subjected to rough grinding, smoothing, polishing and cutting, thereby preparing a light-emitting device of a laser light source, and a silver layer is plated on the back surface of the luminescent ceramic of the present example, and the silver layer mainly functions as a reflective film.
  • the blue light, visible light, etc. that are directed toward the back are reflected back.
  • Silver plated transition layer Ti or Ni is further plated, and then the luminescent ceramic illuminator of this example is soldered to the copper base by soldering.
  • the luminescent ceramic of this example is polished and added a layer.
  • BLUE PASS AR coating increases the amount of laser light transmitted.
  • commercial YAG phosphor particles were prepared to account for 0%, 10%, 30%, 70% of the total weight of the luminescent ceramics. 90% of PIY ceramics. The percentage of commercial YAG phosphor particles to the total weight of the luminescent ceramics is calculated as the weight ratio of commercial YAG phosphor particles to YAG raw materials.
  • commercial YAG Phosphor particles account for 0% of the total weight of the luminescent ceramics, indicating that no commercial YAG phosphor particles are added to the YAG raw materials; commercial YAG phosphor particles account for 10% of the total weight of the luminescent ceramics, indicating Commercial YAG phosphor particles accounted for 10% of the total weight of YAG phosphor particles after the addition of commercial YAG phosphor particles.
  • the luminous efficiency of this example refers to the 1 watt (abbreviation W) laser going in, how many lumens (abbreviated lm) the excitation light comes out, generally refers to lm/W, lumens / Tile, this example uses a blue laser test.
  • Table 1 show that (1) the luminous efficiency of PIY ceramics with commercial YAG at the same excitation light power The content of large particles of phosphor increases and increases; (2) PIY of large particles of commercial YAG phosphor with a certain mass percentage increase with the increase of excitation light power For ceramics, the luminous efficiency decreases with the increase of excitation light power, especially for commercial YAG phosphors with small particles. Ceramics, the reduction in luminous power is more pronounced. It can be seen that with the gradual increase of power, the unit power density accepted by the luminescent ceramics gradually increases, C The power is high-power laser, so when the luminescent center is insufficient, the luminous efficiency is low, and many blue light is not transformed.
  • the luminous efficiency is greatly improved.
  • YAG Too much phosphor particles can cause large particles to adhere to the matrix particles, which ultimately leads to the inability to bond between the large particles.
  • the YAG phosphor particles are above 90%, they cannot be bonded into layers.
  • the luminescent ceramic prepared in this example the content of YAG phosphor large particles is 70%-90% In the range, due to the luminescent center with large grain size, the luminous efficiency is improved, and there is no impurity phase, the grain boundary is pure, and the shimming performance is good, which can meet the use requirements of high-power light sources such as lasers.
  • this example continues to study the mass ratio of mixed raw materials to commercial phosphors, as well as the time of debinding, calcination and calcination.
  • the results show that the mass ratio of mixed raw materials to commercial phosphors is 10%-90%.
  • Either qualified luminescent ceramics can be prepared, but the mass ratio is more suitable for LED than 10%-40%, and 40-90% is more suitable for laser, preferably 70%-90%.
  • the temperature of green rubber discharge can be 450-650 °C, the temperature in the vacuum sintering furnace is 1500-1800 °C, and the holding time is 1h-10h.
  • the raw materials and the components used in this example are the same as in the first embodiment except that the Y 2 O 3 , Al 2 O 3 and CeO 2 are weighed according to the stoichiometric ratio of the YAG luminescent ceramics, and the mixed raw materials are mixed. After ball milling with a ball mill and an ethanol medium for 24 hours, the ball milled slurry was dried in a vacuum drying oven, and the mixed raw materials obtained after grinding and sieving were used as the first mixed raw material. The first mixed raw material is heated in a tube furnace to a temperature of 1100-1450 ° C, specifically 1200 ° C in this example, and the protective atmosphere is a nitrogen-hydrogen mixed gas.
  • this step is actually to prepare a small grain size YAG powder in advance, so as to prepare YAG ceramics with a small grain size YAG powder in the subsequent step; in this step, all the raw materials generate small crystal grains.
  • the YAG powder of the diameter is also a part of the YAG powder which is small crystal grain size, that is, the YAG precursor powder which is not fully reacted.
  • the powder of the first mixed raw material with the commercial large-particle YAG phosphor particles in a ratio of 10-90% by mass
  • the YAG phosphor particles content of 0%, 10%, 30%, 70% and 90% were prepared separately.
  • the mixed powder is subjected to secondary ball milling using ethanol as a medium in a ball mill tank.
  • the ball milling time is 0.5-5 h, and this example is specifically 4 h. .
  • the ball milled slurry is dried in a vacuum drying oven, ground and sieved to obtain a second mixed raw material.
  • the second mixed raw material is weighed, and a green body is obtained by press molding after adding an adhesion aid.
  • Green blanks through 450-650 After the °C is discharged, the specific discharge temperature of this example is 450 °C, and it is fired in a vacuum sintering furnace, and the luminescent ceramic of this example is obtained after cooling with the furnace.
  • the process of firing in a vacuum sintering furnace is specifically, at 1500-1800
  • the liquid phase sintering is carried out for about 1-10 h in the high temperature phase of °C.
  • the temperature is kept at 1600 °C for 5 h, so that YAG phase, YAG
  • the phase and the large particles of the phosphor form a dense, continuous, large-particle PIY ceramic distributed in the YAG continuous phase under the action of liquid phase sintering.
  • the process of producing a light-emitting device of a laser light source using the luminescent ceramic of this example is the same as that of the first embodiment, and will not be described here.
  • the luminescence efficiency of the luminescent ceramic prepared in this example was measured by the same method as in the first embodiment, and the result was similar to that of the first embodiment.
  • the large particle YAG was used.
  • the content of the large particle YAG phosphor particles prepared in this example is 70% to 90%
  • the unit power density accepted by luminescent ceramics gradually increases, although the luminous efficiency will still decrease, but due to the luminescent center with more large grain size, the luminous efficiency with power
  • the increase and decrease are small; there is no impurity phase, the grain boundary is pure, and the uniform light performance is good, which can meet the needs of high-power light sources such as lasers.
  • Use small particle commercial phosphor a particle size less than 10 ⁇ m, large particle commercial phosphor b, particle size greater than 10 ⁇ m , generally 15-20 ⁇ m.
  • the commercial phosphor a is mixed with ethanol and ball milled in an agate ball mill for 10-48h, in this case for 48h, and the phosphor particles are ground to 4 ⁇ m. Hereinafter, it is preferably ground to 2 ⁇ m or less.
  • the mass percentage of a:b is about 10% to 90%, specifically 80% in this example.
  • the mixed phosphor powder is filled into a soft spherule tank, such as pp, nylon, etc., using a soft grinding ball for ball milling, such as glass, nylon balls, medium is ethanol, and added to the total powder quality of 0.1-3 % LiF powder, specifically 3% in this example, as a sintering aid, the types of additives can also be selected from TEOS, BaF 2 , MgO, Y 2 O 3 , etc., ball milling time 0.5-5h, in this case specifically 5h, After drying, the raw material powder was obtained.
  • the raw material powder is weighed, and a green body is obtained by press molding after adding an adhesion aid.
  • Green blanks through 450-650 After the °C is discharged, the specific discharge temperature of this example is 550 °C, and it is fired in a vacuum sintering furnace at a temperature of 1500-1800 °C, and the holding time is 1h-10h. In this example, the temperature is 1500 °C. 10h, the luminescent ceramic of this example was obtained after cooling with the furnace.
  • the process of producing a light-emitting device of a laser light source using the luminescent ceramic of this example is the same as that of the first embodiment, and will not be described here.
  • the luminescence efficiency of the luminescent ceramic prepared in this example was measured by the same method as in the first embodiment, and the results showed that the luminescence efficiency of the luminescent ceramic of the present example was 70% of the YAG phosphor particle content of the large particles in the first embodiment and the second embodiment.
  • the luminescence ceramics have the same detection result, and the luminous efficiency is about 65%. With the increase of power, the luminous efficiency of the luminescent ceramics will decrease somewhat, but the decrease is relatively small. Even at C power, the luminous efficiency is also about 62%, able to meet the needs of high-power light sources such as lasers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种用于大功率光源的发光陶瓷及发光装置。该发光陶瓷包括YAG基质(210)和均匀分散于YAG基质(210)中的发光中心,发光中心为晶粒粒径10-20μm的YAG荧光粉颗粒(220)。该发光陶瓷在YAG基质(210)中均匀分散晶粒粒径10-20μm的YAG荧光粉颗粒(220),整个发光陶瓷没有杂相;大晶粒粒径的YAG荧光粉颗粒(220)作为发光中心,发光中心多,且大晶粒粒径YAG荧光粉颗粒(220)饱满、形貌健全,提高了发光陶瓷的发光效率,使得发光陶瓷能够满足高蓝光功率密度的大功率光源的使用需求。该发光陶瓷具有大晶粒YAG荧光粉颗粒(220)和小晶粒YAG基质(210)交错构造,晶界纯净,使得发光陶瓷的发光更均匀。

Description

一种用于大功率光源的发光陶瓷及发光装置 技术领域
本申请涉及发光陶瓷领域,特别是涉及一种用于大功率光源的发光陶瓷,以及采用该发光陶瓷的发光装置。
背景技术
钇铝石榴石 (Y3Al5O12, 缩写 YAG) 的研究始于 20 世纪 80 年代。传统的 YAG 发光陶瓷主要针对 LED 的发光特性开发,由于 LED 芯片的功率较小,发出的蓝光功率密度较低,因此针对 LED 开发的发光陶瓷的光效并没有得到足够的重视。比如固相法制备 YAG 中,常用的 YAG 发光陶瓷主要由原料粉末 Al2O3 、 Y2O3 、 CeO2 煅烧后,在压力机下压制成片,然后烧结得到发光陶瓷,为了满足 LED 的使用需求,发光陶瓷必须具有一定的透光性能,由此导致 YAG 中的晶粒成长程度较低,亮度偏低。又比如在溶胶 - 凝胶法制备 YAG 中,需使无机盐或金属醇盐的金属络合物为原料在溶液中发生水解反应,然后将生成的凝胶用马弗炉烧结发生反应,所以工艺比较复杂,而且金属醇盐的原料价格非常昂贵,因此大规模制备受到限制,并且,采用这种方法制备的 YAG 其发光效率同样偏低。
技术问题
在激光光源的应用中,由于激光功率远大于 LED ,发光陶瓷需要承受更高的蓝光功率密度,需要良好的导热和均匀的发光等,这就使传统的,针对 LED 开发的发光陶瓷无法满足使用要求。
技术解决方案
本申请的目的是提供一种新的用于大功率光源、特别是适用于激光光源的发光陶瓷,及其采用该发光陶瓷的发光装置。
本申请采用了以下技术方案:
本申请公开了一种用于大功率光源的发光陶瓷,该发光陶瓷包括 YAG 基质和均匀分散于 YAG 基质中的发光中心,发光中心为晶粒粒径 10-20 µ m 的 YAG 荧光粉颗粒。
需要说明的是,本申请的发光陶瓷与现有的 YAG 陶瓷相比,最关键的区别在于,在 YAG 陶瓷的基质中分散有晶粒粒径 10-20 µ m 的 YAG 荧光粉颗粒发光中心;这一结构能够有效的提高本申请的发光陶瓷的发光效率,从而满足大功率的激光光源的使用需求。还需要说明的是,根据现有的 YAG 陶瓷生产方法,无法制备出均匀分散的晶粒粒径 10-20 µ m 的 YAG 颗粒发光中心,本申请的一个重要革新在于在发光陶瓷的制备过程中,将晶粒粒径 10-20 µ m 的 YAG 荧光粉颗粒添加到高温固相法制备 YAG 陶瓷的原材料中,使得制备出的发光陶瓷仍然是 YAG 陶瓷基质,并具有均匀分散的晶粒粒径 10-20 µ m 的 YAG 颗粒发光中心。需要说明的是,本申请的实现方式中, YAG 陶瓷的原材料可以采用两种形式的原材料;第一种,即原始的生成 YAG 陶瓷的原材料,如 Y2O3 、 Al2O3 和 CeO2 ;第二种,是直接采用市场购买的 YAG 荧光粉粉末,将其研磨到晶粒粒径 4 µ m 以下,优选的 2 µ m 以下,作为原材料,经过制生坯、真空烧结形成发光陶瓷。在采用 YAG 荧光粉粉末制备 YAG 陶瓷时,必须将其研磨到晶粒粒径 4 µ m 以下,最好是 2 µ m 以下,这样可以在真空烧结的温度下,使小晶粒粒径的 YAG 荧光粉粉末熔融生成 YAG 陶瓷,而大晶粒粒径的 YAG 荧光粉颗粒仍然保持,从而保障大晶粒粒径的发光中心。
还需要说明的是,本申请中,发光中心正常情况下是 10-20 µ m 的 YAG 荧光粉颗粒,但是,在一些异常情况,或者因为一些误差也会导致少数的 YAG 荧光粉颗粒的粒径在 1-10 µ m ,但是,原则上,本申请的发光中心的粒径为 10-20 µ m 。
优选的,组成 YAG 基质的 YAG 的晶粒粒径为 0.5~5 µ m 。
需要说明的是, YAG 基质中的 YAG 的晶粒粒径就是生成的 YAG 的晶粒粒径,如背景技术所提到的,为了使发光陶瓷具有一定的透光性能, YAG 中的晶粒成长程度会相对降低,也就是说,发光陶瓷的透光性能和晶粒是呈反比的;但是,本申请的发光陶瓷中,由于添加了大晶粒的 YAG 荧光粉颗粒作为发光中心,因此,生成的 YAG 的晶粒粒径可以很小,以满足更高的透光性能。
还需要说明的是,本申请的 YAG 基质中 YAG 的晶粒粒径为 0.5~5 µ m ,但是,在制备过程中,不可避免的会产生一些误差,造成一小部分晶粒异常生长,从而产生粒径 5 µ m-20 µ m 左右的 YAG 基质,这些都只是生产误差,在保障发光陶瓷的透光性的情况下,本申请对误差不做具体限定。
优选的, YAG 基质为 Ce 掺杂的 YAG ,掺杂量为 0.5~5% ,优选地掺杂量为 1~3% 。
优选的, YAG 基质为以 Y2O3 、 Al2O3 和 CeO2 为原料,通过固相烧结法制备。
优选的, YAG 荧光粉颗粒占发光陶瓷总质量的 10%~90% ,优选的, YAG 荧光粉颗粒占发光陶瓷总质量的 70~90% 。
需要说明的是, YAG 荧光粉颗粒含量越高,其透过率就会越低,蓝光功率越高,经本申请研究显示, YAG 荧光粉颗粒含量 10%-40% 可应用于 LED , 40-90% 应用于激光,更优选的 70~90% 的含量能够达到更好的效果。但是,需要补充说明的是, YAG 荧光粉颗粒含量越高,对工艺要求也越高。
本申请的一种实现方式中, YAG 基质为以晶粒粒径 4 µ m 以下的 YAG 荧光粉粉末为原料,通过固相烧结法制备;优选的, YAG 基质为以晶粒粒径 2 µ m 以下的 YAG 荧光粉粉末为原料,通过固相烧结法制备。
优选的,发光陶瓷还包括附着于发光陶瓷其一表面的镀银层。
优选的,镀银层的表面还镀有过渡层,过渡层的表面镀有铜层或焊料层,过渡层为钛层或镍层。
优选的,本申请的发光陶瓷还包括散热铜板,散热铜板焊接于铜层或焊料层表面。
优选的,本申请的发光陶瓷还包括增透膜,镀银层附着于发光陶瓷的其一表面,增透膜附着于发光陶瓷的另一表面。
本申请的另一面公开了一种发光装置,包括激发光源和本申请的发光陶瓷,激发光源为激光光源。
需要说明的是,本申请的发光陶瓷是特别针对激光这种大功率的光源而改进的,因此,可以有效的应用于以激光为激发光源的发光装置中。
有益效果
本申请的有益效果在于:
本申请的发光陶瓷,在小晶粒粒径的 YAG 基质中均匀分散有晶粒粒径 10-20 µ m 的 YAG 荧光粉颗粒,整个发光陶瓷没有杂相;大晶粒粒径的 YAG 荧光粉颗粒作为发光中心,发光中心多,且大晶粒粒径的 YAG 荧光粉颗粒饱满、形貌健全,大大提高了发光陶瓷的发光效率,使得发光陶瓷能够满足高蓝光功率密度的大功率光源的使用需求。本申请的发光陶瓷,大晶粒粒径的 YAG 荧光粉颗粒和小晶粒粒径的 YAG 基质交错构造,晶界纯净,使得发光陶瓷的发光更均匀,匀光性能高于现有的体系。
附图说明
图 1 是本申请实施例中发光陶瓷的截面结构示意图;图中, 210 为 YAG 基质, 220 为晶粒粒径 10-20 µ m 的 YAG 荧光粉颗粒。
本发明的最佳实施方式
传统的荧光发光固体封装,如硅胶封装荧光粉、玻璃封装发光玻璃等,其基质为可透光的硅胶连续体基质或玻璃连续体基质,荧光粉分布于其中。当蓝光入射到发光体时,蓝光可穿透透明的基质照射在荧光粉颗粒之上,进行光致发光的能量转化,产生的热量主要通过荧光粉 - 基质的连续结构传递出去。但是硅胶和玻璃具有耐热性低和导热率差的缺点,当在大功率激光光源中使用时,硅胶体系会因温度过高而老化发脆,甚至被烧毁;玻璃体系的耐热虽然好一些,但是导热率低,急剧上升的温度仍会使荧光粉的效率出现明显的下降。
YAG 陶瓷具有很好的导热性,但是,现有的制备方法所制备的 YAG 陶瓷,其晶粒成长的尺寸较小,相比大晶粒粒径商业用 YAG 荧光粉颗粒,其发光效率要低很多。但是,如果直接使用大晶粒粒径的商用 YAG 荧光粉颗粒来烧制 YAG 陶瓷,由于颗粒太大其烧成效果很差,大颗粒造成的空隙太多;且制备困难,需要极高的温度将大颗粒荧光粉烧至熔融状态;但这样高温处理也破坏了荧光粉颗粒的表面形态,发光效率出现明显下降。因此,不能直接采用大晶粒粒径的 YAG 荧光粉颗粒烧制 YAG 陶瓷。
因此,本申请创造性的提出,在 YAG 陶瓷的原材料中添加大晶粒粒径商业用 YAG 荧光粉颗粒,在真空烧结时, YAG 陶瓷的烧结温度,不足以使大颗粒荧光粉颗粒烧至熔融状态,使得最终制备出的 YAG 发光陶瓷中,大晶粒粒径得以保存,本申请的发光陶瓷的截面图如图 1 所示, YAG 陶瓷原材料烧结生产的 YAG 基质 210 将添加的晶粒粒径 10-20 µ m 的 YAG 荧光粉颗粒 220 均匀的包裹其中,大晶粒粒径的 YAG 荧光粉颗粒 220 作为发光中心,有效的解决了 YAG 基质 210 晶粒成长尺寸小的问题,由于所采用的大晶粒粒径的商用 YAG 荧光粉颗粒晶粒饱满、形貌健全,大大提高了发光陶瓷的发光效率。此外,本申请的发光陶瓷,基质是 YAG ,发光中心也是 YAG 荧光粉颗粒,几乎没有杂相,晶界纯净,使本申请的发光陶瓷的发光更均匀,匀光性能高于硅胶、玻璃等传统体系。
下面通过具体实施例对本申请作进一步详细说明。以下实施例仅对本申请进行进一步说明,不应理解为对本申请的限制。
实施例一
本例采用 Y2O3 、 Al2O3 和 CeO2 作为原材料制备发光陶瓷,其中掺杂 10-20 µ m 的 YAG 荧光粉颗粒,具体如下:
原料选用纯度为 99.99 %,颗粒大小为 0.05-1 µ m 的 Y2O3 ;纯度为 99.99 %,颗粒大小为 0.05-1 µ m 的 Al2O3 ;纯度为 99.99 %,颗粒大小为 0.1-1 µ m 的 CeO2 。按照 YAG 发光陶瓷的化学计量比,计算出原料 Y2O3 、 Al2O3 和 CeO2 的用量比,按照 Y2O3 、 Al2O3 和 CeO2 质量比 5.6689:4.2874:0.0434 称取原材料,把这些原材料,使用球磨罐和乙醇介质球磨 24h ,然后将商业 YAG 荧光粉颗粒加入球磨罐中继续球磨 0.5-5h ,本例具体球磨 2h ,球磨后的浆料在真空干燥箱内烘干,研碎,过筛后得到陶瓷混合粉料。
称取陶瓷混合粉料,加入粘接助剂后通过模压成型制得生坯。生坯经过 650 ℃排胶后,在真空烧结炉中烧制,随炉冷却后得到本例的发光陶瓷。在真空烧结炉中烧制的过程中, Y2O3 、 Al2O3 、 CeO2 颗粒之间预先在 1100-1450 ℃的中高温下保温 1-5h ,本例具体为 3h ,生成 YAG 相,然后在 1500-1800 ℃的高温阶段下进行约 1-10h 的液相烧结,本例具体为 1600 ℃保温 5h ,使得 YAG 相之间, YAG 相与荧光粉大颗粒之间在液相烧结的作用下形成致密的、连续的、大颗粒分布在 YAG 连续相中的 PIY 陶瓷。
将本例制备的发光陶瓷经过粗磨、磨平、抛光、切割后,制备激光光源的发光装置,并且,在本例的发光陶瓷的背面镀一层银,银层主要起反射膜的作用,将射向背部的蓝光、可见光等反射回去。银上再镀过渡层 Ti 或 Ni ,其上再镀一层铜或焊料层,然后通过焊接将本例的发光陶瓷发光体焊接在铜底座上。另外,为了进一步减少激光在陶瓷表面的反射,本例的发光陶瓷,经过抛光后增加一层 BLUE PASS 增透膜,增加激光的透过量。
本例分别制备了商业 YAG 荧光粉颗粒占发光陶瓷总重量的 0% 、 10% 、 30% 、 70% 和 90% 的 PIY 陶瓷。商业 YAG 荧光粉颗粒占发光陶瓷总重量的百分比,按照商业 YAG 荧光粉颗粒与 YAG 原材料的重量比例计算。例如,商业 YAG 荧光粉颗粒占发光陶瓷总重量的 0% ,表示在 YAG 原材料中不添加商业 YAG 荧光粉颗粒;商业 YAG 荧光粉颗粒占发光陶瓷总重量的 10% ,表示在 YAG 原材料中添加商业 YAG 荧光粉颗粒后,商业 YAG 荧光粉颗粒占总重量的 10% 。
采用不同的功率,分别对本例制备的不同含量商业 YAG 荧光粉颗粒的 PIY 陶瓷,进行发光效率测定。本例的发光效率指的是 1 瓦(缩写 W )激光进去,多少流明(缩写 lm )的激发光出来,一般指 lm/W ,流明 / 瓦,本例采用蓝色激光测试。
结果如表 1 所示,表 1 中功率 C>B>A , A=1 W/mm2 , B=3 W/mm2 , C=10 W/mm2
表 1 PIY 陶瓷发光效率(单位: lm/W )测试
商业 YAG 荧光粉(重量 % ) A 功率下的发光效率 B 功率下的发光效率 C 功率下的发光效率
0% 55 46 34
10% 62 54 46
30% 72 68 58
70% 85 81 73
90% 89 86 81
表 1 的结果显示,( 1 )在相同激发光功率下, PIY 陶瓷的发光效率随着商业 YAG 荧光粉大颗粒的含量增加而增高;( 2 )随着激发光功率的提高,特定质量百分比的商业 YAG 荧光粉大颗粒的 PIY 陶瓷,其发光效率随着激发光功率的提高而减小,特别是商业 YAG 荧光粉大颗粒含量较小的 PIY 陶瓷,发光功率减小更明显。可见,随着功率的逐渐增大,发光陶瓷所接受的单位功率密度逐渐增大, C 功率为高功率激光,所以在发光中心不足时,其发光效率低,有很多蓝光没有得到转变,随着大颗粒荧光粉含量的增加,其发光效率获得大幅度的提高。但是, YAG 荧光粉颗粒太多会导致基质颗粒分别附着大颗粒,最后导致大颗粒之间无法粘接,当 YAG 荧光粉颗粒含量在 90% 以上时,无法粘接成层。
本例制备的发光陶瓷, YAG 荧光粉大颗粒的含量在 70%-90% 范围内时,由于具有大晶粒粒径的发光中心,提高了发光效率,且没有杂相,晶界纯净,匀光性能好,能够满足激光等大功率光源的使用需求。
在以上试验的基础上,本例继续对混合原料与商业荧光粉的质量比,以及排胶、煅烧和煅烧保温时间进行研究,结果显示,混合原料与商业荧光粉质量比 10%-90% 均可以制备出质量合格的发光陶瓷,只是,质量比 10%-40% 更适用于 LED ,而 40-90% 则更适用于激光,优选的 70%-90% 效果最佳。生坯排胶的温度在 450-650 ℃均可,在真空烧结炉中烧制的温度为 1500-1800 ℃,保温时间为 1h-10h 。
实施例二
本例采用的原材料及各组分的用量都与实施例一相同,所不同的是,按照 YAG 发光陶瓷的化学计量比称取 Y2O3 、 Al2O3 和 CeO2 后,将混合原料用球磨罐和乙醇介质球磨 24h ,球磨后的浆料在真空干燥箱内烘干,研碎、过筛后得到的混合原料,作为第一混合原料。将第一混合原料在管式炉中加热至 1100-1450 ℃煅烧,本例具体为 1200 ℃,保护气氛为氮氢混合气。煅烧后得到小颗粒的 YAG 粉末,或未充分反应的 YAG 前驱粉体。需要说明的是,此步骤实际上就是预先制备小晶粒粒径的 YAG 粉末,以便于后续采用小晶粒粒径的 YAG 粉末制备 YAG 陶瓷;而此步骤中是所有原材料都生成小晶粒粒径的 YAG 粉末,还是部分生成小晶粒粒径的 YAG 粉末即未充分反应的 YAG 前驱粉体,这并不重要,因为后续的烧结成 YAG 陶瓷步骤会形成 YAG 相;因此,此步骤煅烧后得到未充分反应的 YAG 前驱粉体也是可以的,之所以会得到未充分反应的 YAG 前驱粉体,这与煅烧温度和时间相关,在此不做具体限定。
将第一混合原料煅烧后的粉末与商用大颗粒的 YAG 荧光粉颗粒混合,比例为质量百分比 10-90% ,本例具体分别制备了 YAG 荧光粉颗粒含量 0% 、 10% 、 30% 、 70% 和 90% 作为试验和对照。混合后的粉末在球磨罐中使用乙醇作为介质进行二次球磨,为了不破坏 YAG 荧光粉颗粒的形貌,球磨时间为 0.5-5h ,本例具体为 4h 。球磨后的浆料在真空干燥箱内烘干,研碎,过筛后得到第二混合原料。
称取第二混合原料,加入粘接助剂后通过模压成型制得生坯。生坯经过 450-650 ℃排胶后,本例具体的排胶温度为 450 ℃,在真空烧结炉中烧制,随炉冷却后得到本例的发光陶瓷。其中,在真空烧结炉中烧制的过程具体为,在 1500-1800 ℃的高温阶段下进行约 1-10h 的液相烧结,本例具体为 1600 ℃保温 5h ,使得 YAG 相之间, YAG 相与荧光粉大颗粒之间在液相烧结的作用下形成致密的、连续的、大颗粒分布在 YAG 连续相中的 PIY 陶瓷。
需要说明的是,本例的发光陶瓷制备过程中,由于 Y2O3 、 Al2O3 和 CeO2 预先有进行煅烧,因此,不需要对第二混合原料进行两段煅烧,直接在高温阶段下进行液相烧结形成 YAG 发光陶瓷。
采用本例的发光陶瓷制备激光光源的发光装置的工序与实施例一相同,在此不累述。
采用与实施例一相同的方法对本例制备的发光陶瓷进行发光效率检测,结果与实施例一相似,在相同功率下,大颗粒的 YAG 荧光粉颗粒的含量越大,发光效率越高;而对于同一发光陶瓷而言,功率越大,发光效率下降越多;但是,对于大颗粒的 YAG 荧光粉颗粒的含量较大的发光陶瓷而言,随着功率的增大,发光效率的下降幅度相对较小。因此,本例制备的大颗粒的 YAG 荧光粉颗粒的含量为 70%-90% 时, 随着功率的逐渐增大,发光陶瓷所接受的单位功率密度逐渐增大,虽然发光效率仍然会有所降低,但是由于具有较多的大晶粒粒径的发光中心,发光效率随着功率的增加而降低的幅度较小;且没有杂相,晶界纯净,匀光性能好,能够满足激光等大功率光源的使用需求。
实施例三
本例直接采用小晶粒粒径的商用 YAG 荧光粉粉末和大晶粒粒径的商用 YAG 荧光粉颗粒制备发光陶瓷。具体如下:
选用小颗粒商用荧光粉 a ,粒径小于 10 µ m ,大颗粒商用荧光粉 b ,粒径大于 10 µ m ,一般为 15-20 µ m 。将商用荧光粉 a 与乙醇混合,在玛瑙球磨罐中球磨 10-48h ,本例具体为 48h ,将荧光粉颗粒磨细至 4 µ m 以下,优选的,磨细至 2 µ m 以下。
磨细后的荧光粉 a 干燥后,与大颗粒的荧光粉 b 混合, a:b 的质量百分比约为 10%-90% ,本例具体为 80% 。混合后的荧光粉混合粉装入软质球墨罐,如 pp ,尼龙等,使用软质磨球进行球磨混料,如玻璃、尼龙球,介质为乙醇,并加入占总粉体质量 0.1-3% 的 LiF 粉末,本例具体为 3% ,作为烧结助剂,助剂的种类还可以选择 TEOS , BaF2 , MgO , Y2O3 等,球磨时间 0.5-5h ,本例具体为 5h ,经干燥后得到原料粉体。
称取原料粉体,加入粘接助剂后通过模压成型制得生坯。生坯经过 450-650 ℃排胶后,本例的具体排胶温度为 550 ℃,在真空烧结炉中烧制,温度为 1500-1800 ℃,保温时间为 1h-10h ,本例具体为 1500 ℃保温 10h ,随炉冷却后得到本例的发光陶瓷。
采用本例的发光陶瓷制备激光光源的发光装置的工序与实施例一相同,在此不累述。
采用与实施例一相同的方法对本例制备的发光陶瓷进行发光效率检测,结果显示,本例的发光陶瓷的发光效率与实施例一和实施例二中大颗粒的 YAG 荧光粉颗粒含量 70% 的发光陶瓷的检测结果相当,发光效率都在 65% 左右,而随着功率升高,发光陶瓷的发光效率会有一些下降,但降幅相对较小,即便是 C 功率下,发光效率也有约 62% ,能够满足激光等大功率光源的使用需求。
以上内容是结合具体的实施方式对本申请所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本申请的保护范围 。

Claims (10)

1. 一种用于大功率光源的发光陶瓷,其特征在于:所述发光陶瓷包括 YAG 基质和均匀分散于 YAG 基质中的发光中心,所述发光中心为晶粒粒径 10~20 µ m 的 YAG 荧光粉颗粒。
2. 根据权利要求 1 所述的发光陶瓷,其特征在于,组成所述 YAG 基质的 YAG 的晶粒粒径为 0.5~5 µ m 。
3. 根据权利要求 1 或 2 所述的发光陶瓷,其特征在于,所述 YAG 基质为 Ce 掺杂的 YAG ,掺杂量为 0.5~5% ,优选地掺杂量为 1~3% 。
4. 根据权利要求 3 所述的发光陶瓷,其特征在于,所述 YAG 基质为以 Y2O3 、 Al2O3 和 CeO2 为原料,通过固相烧结法制备。
5. 根据权利要求 1 或 2 所述的发光陶瓷,其特征在于,所述 YAG 荧光粉颗粒占发光陶瓷总质量的 10%~90% ,优选的, YAG 荧光粉颗粒占发光陶瓷总质量的 70~90% 。
6. 根据权利要求 1 或 2 所述的发光陶瓷,其特征在于,所述 YAG 基质为以晶粒粒径 4 µ m 以下的 YAG 荧光粉粉末为原料,通过固相烧结法制备;优选的, YAG 基质为以晶粒粒径 2 µ m 以下的 YAG 荧光粉粉末为原料,通过固相烧结法制备。
7. 根据权利要求 1 所述的发光陶瓷,其特征在于,还包括附着于发光陶瓷的其一表面的镀银层;优选的,所述镀银层的表面还镀有过渡层,所述过渡层的表面镀有铜层或焊料层,所述过渡层为钛层或镍层。
8. 根据权利要求 7 所述的发光陶瓷,其特征在于,还包括散热铜板,所述散热铜板焊接于所述铜层或焊料层表面。
9. 根据权利要求 8 所述的发光陶瓷,其特征在于,还包括增透膜,所述镀银层附着于发光陶瓷的其一表面,所述增透膜附着于发光陶瓷的另一表面。
10. 一种发光装置,包括激发光源和权利要求 1-9 任一项所述的发光陶瓷,所述激发光源为激光光源。
PCT/CN2016/080645 2015-04-30 2016-04-29 一种用于大功率光源的发光陶瓷及发光装置 WO2016173528A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510219000.5 2015-04-30
CN201510219000.5A CN106206910B (zh) 2015-04-30 2015-04-30 一种用于大功率光源的发光陶瓷及发光装置

Publications (1)

Publication Number Publication Date
WO2016173528A1 true WO2016173528A1 (zh) 2016-11-03

Family

ID=57199164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080645 WO2016173528A1 (zh) 2015-04-30 2016-04-29 一种用于大功率光源的发光陶瓷及发光装置

Country Status (2)

Country Link
CN (1) CN106206910B (zh)
WO (1) WO2016173528A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108069710A (zh) * 2016-11-15 2018-05-25 深圳市光峰光电技术有限公司 一种发光陶瓷及发光装置
CN109896851A (zh) * 2017-12-07 2019-06-18 上海航空电器有限公司 具有浓度梯度的陶瓷复合体、制备方法及光源装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108930919B (zh) * 2017-05-19 2022-08-12 深圳光峰科技股份有限公司 一种波长转换装置及其制备方法、光源
CN109020509B (zh) * 2017-06-09 2021-07-06 深圳光峰科技股份有限公司 一种发光陶瓷及其制备方法
CN109095923A (zh) * 2017-06-20 2018-12-28 深圳市光峰光电技术有限公司 一种发光陶瓷复合材料的制备方法以及发光陶瓷复合材料
CN109282169B (zh) * 2017-07-21 2021-10-26 深圳光峰科技股份有限公司 波长转换装置、包含其的光源及投影装置
CN107978666B (zh) * 2017-11-30 2019-12-17 重庆文理学院 一种半透明yag发光薄陶瓷半自由成型的方法
JP6923804B2 (ja) * 2017-12-08 2021-08-25 日亜化学工業株式会社 波長変換部材及びその製造方法
CN110294627A (zh) * 2018-03-21 2019-10-01 深圳光峰科技股份有限公司 发光陶瓷及其制备方法
CN110294628A (zh) * 2018-03-21 2019-10-01 深圳光峰科技股份有限公司 发光陶瓷及其制备方法
CN111039660B (zh) * 2018-10-11 2021-10-26 深圳光峰科技股份有限公司 一种荧光陶瓷及其制备方法、光源装置和投影装置
CN112441817B (zh) * 2019-08-29 2023-12-29 深圳市绎立锐光科技开发有限公司 荧光陶瓷及其制备方法、光源装置
CN113024242A (zh) * 2019-12-09 2021-06-25 上海航空电器有限公司 获得高流明激光照明的超细陶瓷荧光体及其制备方法
CN113024252A (zh) * 2019-12-09 2021-06-25 上海航空电器有限公司 白光激光照明用多级孔结构陶瓷荧光体及其制备方法
CN111234801B (zh) * 2020-03-06 2023-07-04 英特美光电(苏州)有限公司 一种用LuAG细粉直接制备大颗粒LuAG荧光粉的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040145308A1 (en) * 2002-10-22 2004-07-29 Osram Opto Semiconductors Gmbh Light source having an LED and a luminescence conversion body and method for producing the luminescence conversion body
CN101569021A (zh) * 2006-12-22 2009-10-28 皇家飞利浦电子股份有限公司 用于发光器件的多颗粒发光陶瓷
CN102557593A (zh) * 2010-12-21 2012-07-11 兰州理工大学 YAG/Al2O3复相陶瓷材料及其制备方法
CN102718492A (zh) * 2012-05-21 2012-10-10 苏州晶品光电科技有限公司 一种led用透明陶瓷荧光基板的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7187396B2 (en) * 2003-11-07 2007-03-06 Engelhard Corporation Low visibility laser marking additive
CN101113011B (zh) * 2007-07-05 2010-11-10 清华大学 一种用于制备纳米级球形钇铝石榴石粉体的方法
CN101737646A (zh) * 2009-12-04 2010-06-16 深圳雷曼光电科技股份有限公司 一种led灯及其封装方法
CN102367383B (zh) * 2011-10-29 2013-06-05 南昌大学 一种白光led用钇铝石榴石型黄色荧光粉的制备方法
CN103508729A (zh) * 2012-06-19 2014-01-15 中国科学院上海硅酸盐研究所 水基流延成型制备钇铝石榴石基透明陶瓷的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040145308A1 (en) * 2002-10-22 2004-07-29 Osram Opto Semiconductors Gmbh Light source having an LED and a luminescence conversion body and method for producing the luminescence conversion body
CN101569021A (zh) * 2006-12-22 2009-10-28 皇家飞利浦电子股份有限公司 用于发光器件的多颗粒发光陶瓷
CN102557593A (zh) * 2010-12-21 2012-07-11 兰州理工大学 YAG/Al2O3复相陶瓷材料及其制备方法
CN102718492A (zh) * 2012-05-21 2012-10-10 苏州晶品光电科技有限公司 一种led用透明陶瓷荧光基板的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108069710A (zh) * 2016-11-15 2018-05-25 深圳市光峰光电技术有限公司 一种发光陶瓷及发光装置
EP3543221A4 (en) * 2016-11-15 2020-07-29 Appotronics Corporation Limited LIGHT-EMITTING CERAMICS AND LIGHT-EMITTING DEVICE
US11245243B2 (en) 2016-11-15 2022-02-08 Appotronics Corporation Limited Light-emitting ceramic and light-emitting device
CN109896851A (zh) * 2017-12-07 2019-06-18 上海航空电器有限公司 具有浓度梯度的陶瓷复合体、制备方法及光源装置
CN109896851B (zh) * 2017-12-07 2023-02-10 上海航空电器有限公司 具有浓度梯度的陶瓷复合体、制备方法及光源装置

Also Published As

Publication number Publication date
CN106206910B (zh) 2019-07-16
CN106206910A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2016173528A1 (zh) 一种用于大功率光源的发光陶瓷及发光装置
CN109467453B (zh) 一种具有特征微观结构的荧光陶瓷及其制备方法和应用
WO2018010233A1 (zh) 一种led芯片发光灯条基板材料及led球泡灯
US11245243B2 (en) Light-emitting ceramic and light-emitting device
CN108895314B (zh) 激光照明用氮化物荧光粉/玻璃复合光转换组件及其制备
CN104291796A (zh) 一种led用透明荧光陶瓷的制备方法
CN108863317B (zh) 一种荧光复合陶瓷及其制备方法和应用
CN109592978B (zh) 高功率led/ld照明用暖白光高显指荧光陶瓷及其制备方法与应用
CN208507721U (zh) 波长转换部件和波长转换元件以及使用它们的发光装置
CN112159209A (zh) 高显指高热导荧光陶瓷、制备方法及在激光显示中的应用
CN110240468A (zh) 荧光陶瓷及其制备方法
CN112624752A (zh) 一种复合荧光陶瓷及高亮度led照明光源
CN104119071B (zh) 一种采用新型透明陶瓷的led灯具
CN108954039B (zh) 波长转换装置及其制备方法
CN109703120B (zh) 一种反射式蓝光激光照明组件
CN104291823B (zh) 一种yag透明陶瓷及其制备方法
CN116813327A (zh) 一种复合荧光陶瓷制备方法
WO2020015428A1 (zh) 半导体发光二极管装置和灯具
CN112645592B (zh) 一种高效可调复合荧光玻璃材料的制备和应用
CN114497326A (zh) 一种荧光转换复合层及制备方法和白光发光器件
WO2014166083A1 (zh) 包含新型固态透明荧光材料的白光led及其制备方法
CN114477989A (zh) 一种石墨烯改性的绿光透明陶瓷材料及其制备方法和应用
CN106242539A (zh) 一种led用氮化物荧光透明陶瓷制备方法
CN116768605B (zh) 一种硅酸盐橙色复相荧光陶瓷及其制备方法
CN216818372U (zh) 一种荧光转换复合层及白光发光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16785956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16785956

Country of ref document: EP

Kind code of ref document: A1