CN110294628A - 发光陶瓷及其制备方法 - Google Patents

发光陶瓷及其制备方法 Download PDF

Info

Publication number
CN110294628A
CN110294628A CN201810235810.3A CN201810235810A CN110294628A CN 110294628 A CN110294628 A CN 110294628A CN 201810235810 A CN201810235810 A CN 201810235810A CN 110294628 A CN110294628 A CN 110294628A
Authority
CN
China
Prior art keywords
powder
yag
luminescent ceramic
preparation
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810235810.3A
Other languages
English (en)
Inventor
李乾
胡飞
许颜正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Appotronics Corp Ltd
Shenzhen Appotronics Technology Co Ltd
Original Assignee
Shenzhen Appotronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Appotronics Technology Co Ltd filed Critical Shenzhen Appotronics Technology Co Ltd
Priority to CN201810235810.3A priority Critical patent/CN110294628A/zh
Priority to PCT/CN2018/113869 priority patent/WO2019179119A1/zh
Publication of CN110294628A publication Critical patent/CN110294628A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7706Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种发光陶瓷及其制备方法,所述发光陶瓷包括Al2O3基质(210)以及均匀分布在Al2O3基质中的Nd:YAG发光中心(220)。本发明通过预先制备Nd:YAG前驱粉体,之后采用真空烧结法、热压/SPS烧结法等工艺将加有助熔剂的Nd:YAG前驱粉体、Al2O3粉末烧结成发光陶瓷,这种发光陶瓷可以与808nm的红色激光半导体搭配,制备出体积小巧、光通量高的红外光源,用于安全监控、军事探测等红外成像领域。

Description

发光陶瓷及其制备方法
技术领域
本发明涉及一种发光陶瓷及其制备方法,属于固体发光材料制造技术领域。
背景技术
为了满足全天候监控的需要,主动红外摄像技术获得了极大关注,经过20多年的发展,产品种类层出不穷,应用领域横跨军民两用,已经形成了一个巨大的市场。红外摄像技术的核心是红外光源,最早的红外光源使用卤素灯+滤光片的技术,卤素灯的最大缺点是体积大、散热不充分且寿命极短,红暴现象严重,因此这种技术已经被淘汰。取代卤素灯的是LED,如同照明市场LED的发展,红外用LED也经历了单颗LED、LED阵列、LED点阵(类似COB)三个阶段。单颗LED的缺点是功率太小且光照不均匀;LED阵列易产生偏心现象,且照不远;LED点阵改善了前述两种方式的缺点,但是在远距离、高功率的要求下表现还是不足。除LED外还有激光红外光源,但当前的激光红外光源还有能量太集中、散斑现象、角度太小、成本高、近距离时的安全性等问题没有得到很好解决。
使用激光激发红外光的光致发光技术,可以使高能量密度的激光集中照射于发光体之上,激发出单点发光的朗伯红外光,这种光的光学扩展量小,易调制,无散斑,强度可远大于LED红外光,安全性高,是未来大功率红外光源的最理想解决方案技术。因此,亟需一种高亮度、高均匀性、长寿命、弱光衰的红外光源。
发明内容
本发明所要解决的技术问题在于针对现有技术的不足,提供一种发光陶瓷及其制备方法,通过预先制备Nd:YAG前驱粉体,之后采用真空烧结法、热压/SPS烧结法等工艺将加有助熔剂的Nd:YAG前驱粉体、Al2O3粉末烧结成发光陶瓷,这种发光陶瓷可以与808nm的红色激光半导体搭配,制备出体积小巧、光通量高的红外光源,用于安全监控、军事探测等红外成像领域。
本发明所要解决的技术问题是通过如下技术方案实现的:
本发明提供一种发光陶瓷,所述发光陶瓷包括Al2O3基质以及均匀分布在Al2O3基质中的Nd:YAG发光中心。
优选地,所述Al2O3的晶粒粒径为0.5μm-20μm,Nd:YAG的晶粒粒径为1μm-30μm。
优选地,所述Al2O3的晶粒粒径为1μm-5μm,所述Nd:YAG的晶粒粒径为5μm-17μm。
优选地,所述Nd:YAG发光中心的组分为Y3Al5O12:Nd。
优选地,所述Nd:YAG发光中心(220)占发光陶瓷总质量的15%-90%。
优选地,所述发光陶瓷还包括BaF2和/或MgO,所述BaF2、MgO的质量分别占所述Al2O3基质的0.01%~3.5%、0.01%~3.0%。
本发明还提供一种发光陶瓷的制备方法,所述制备方法包括:
S1:制备Nd:YAG前驱粉体;
S2:制备含Al2O3粉末的水溶液;
S3:将Nd:YAG前驱粉体与含Al2O3粉末的水溶液混合后干燥造粒获得干粉,所述干粉煅烧后造粒,然后烧结得到发光陶瓷。
优选地,在S1中,按Y3Al5O12:Nd的化学计量比称量Y2O3、Al(OH)3、Nd2O3粉末,并加入BaF2粉末作为助熔剂,以水或乙醇作为载体进行球磨,球磨后的粉料进行煅烧,煅烧产物粉碎后在还原气氛下烧结,烧结产物粉碎后得到Nd:YAG前驱粉体。
优选地,在S2中,配置1wt%-3wt%的聚乙二醇水溶液,将Al2O3粉末与聚乙二醇水溶液混合,并在制得的含Al2O3粉末的聚乙二醇水溶液中加入MgO粉末和BaF2粉末后球磨,其中,MgO粉末、BaF2粉末分别占Al2O3粉末的0.01wt%-3wt%。
优选地,在S2中,按照MgO与Al2O3的质量比为(0.01-3):100的比例,称取Mg(NO3)2·6H2O,配置成浓度为0.01(mol/L)-1(mol/L)的硝酸盐乙醇溶液,加入Al2O3粉末后球磨。
优选地,在S3中,Nd:YAG前驱粉体占总粉体质量的15wt%-90wt%。
综上所述,本发明通过预先制备Nd:YAG前驱粉体,之后采用真空烧结法、热压/SPS烧结法等工艺将Nd:YAG前驱粉体、Al2O3粉末烧结成发光陶瓷,这种发光陶瓷可以与808nm的红色激光半导体搭配,制备出体积小巧、光通量高的红外光源,用于安全监控、军事探测等红外成像领域。
下面结合附图和具体实施例,对本发明的技术方案进行详细地说明。
附图说明
图1为本发明发光陶瓷的SEM图一;
图2为本发明发光陶瓷的SEM图二;
图3为本发明发光陶瓷的结构示意图;
图4为本发明发光陶瓷在激光激发下的发射光谱图。
具体实施方式
图1为本发明发光陶瓷的SEM图一;图2为本发明发光陶瓷的SEM图二;图3为本发明发光陶瓷的结构示意图。如图1至图3所示,本发明提供一种发光陶瓷,所述发光陶瓷包括Al2O3基质210以及均匀分布在Al2O3基质210中的Nd:YAG(Neodymium-doped YttriumAluminium Garnet)发光中心220。图1和图2中的黑色连续相为Al2O3基质210,灰白色的颗粒为Nd:YAG发光中心220。
其中,Al2O3的晶粒粒径为0.5μm-20μm,Nd:YAG的晶粒粒径为1μm-30μm,优选地,所述Al2O3的晶粒粒径为1μm-5μm,所述Nd:YAG的晶粒粒径为5μm-17μm。
所述发光陶瓷可以被500nm-820nm波长的红光激发,特别的,适用于808nm波长的红激光激发,可以发出860-1100nm波长的红外光,特别地,被激发光中1064nm波长的光强度最为显著。图4为本发明发光陶瓷在激光激发下的发射光谱图。如图4所示,得益于4F3/24I9/2的能级跃迁,Nd:YAG晶体在808nm时有最大吸收峰,可发出最大发射峰为1064nm波长的红外光,同时散发热量。
目前现有的Nd:YAG陶瓷无论是单晶陶瓷还是多晶陶瓷,其在808nm波长的光激发时,仅陶瓷表面部分晶粒进行了激发,因为其材料和晶体结构属性等多个因素的影响,使得对于纯相陶瓷的Nd:YAG,激发光经过晶界会直接透过而较少发生反射,使得激发光在陶瓷中被反射的机会较少从而光程短,进而激发Nd:YAG的光量少,激发光的光效不高,同时产生的受激光也少。同时,Nd:YAG的热导率不高,纯相的Nd:YAG陶瓷被激发而发光所产生的大量热量,若热量未及时传导散发出去,会导致陶瓷温度上升,容易引起Nd:YAG陶瓷的热衰而降低光转换效率。
而本发明中,作为基质的Al2O3透明陶瓷在800nm-1600nm的近红外区都有非常良好的透光性能,在不会影响光传播的情况下,可将激发光传导至发光陶瓷内部以激发更多的作为发光中心的Nd:YAG陶瓷颗粒,且其热导率可以达到20W/(k·m)-30W/(k·m),能有效将波长转换过程中产生的热量传导出去,是理想的基质材料。本发明中由Al2O3基质210以及均匀分布在Al2O3基质210中的Nd:YAG发光中心220组成的发光陶瓷,Nd:YAG均匀分散在Al2O3中,增加了相界面,激发光可以在向界面之间发生反射和/或折射;同时,Al2O3的晶格结构及其材料特性也使得在Al2O3的晶界上也会发生较多的反射和/或折射,从而使得入射光被多次导向不同的Nd:YAG进行激发。因此相比纯相陶瓷,入射光在这种发光陶瓷中的光程更长,对入射激发光的吸收也更充分。
其中,所有Nd:YAG发光中心220的质量和占发光陶瓷总质量的15%-90%。当Nd:YAG发光中心含量过低时,发光中心太少,效率不高;当Nd:YAG发光中心含量过高时,基质粘接相氧化铝含量太少,烧结困难,难以形成致密的陶瓷。优选地,在本发明中,Nd:YAG发光中心220的质量占比为40%~60%,此时发光中心数量适中,基质相也易于烧结,发光陶瓷的相对密度易于达到最高,因此发光效率、导热性能、力学性能均达到最优。
优选地,发光陶瓷还包括BaF2和/或MgO,所述BaF2、MgO的质量分别占所述Al2O3基质的0.01%~3.5%、0.01%~3.0%。例如BaF2占Al2O3基质的0.5%,MgO占Al2O3基质的0.4%。
BaF2作为助熔剂,能有效降低发光陶瓷在烧结成型工艺中的温度,从而使Nd:YAG不易进入烧结,避免Nd:YAG颗粒的形貌受到破坏,影响发光效果;MgO的加入,则是为了净化基质氧化铝的晶界,并抑制氧化铝晶粒的异常长大,能使基质相的烧结性能更好,透光性能更强。
本发明还提供一种上述发光陶瓷的制备方法,所述制备方法包括:
S1:制备Nd:YAG前驱粉体;
S2:制备含Al2O3粉末的水溶液;
S3:将Nd:YAG前驱粉体与含Al2O3粉末的水溶液混合后干燥造粒获得干粉,所述干粉煅烧后造粒,然后烧结得到发光陶瓷。
下面结合具体实施例对制备方法进行详细说明。
实施例一
在S1中,按Y3Al5O12:Nd的化学计量比准确称量Y2O3、Al(OH)3、Nd2O3粉末,之后加入粉末总质量0.5wt%的BaF2粉末作为助熔剂,以水或乙醇作为载体,用氧化铝球进行球磨混合24h。
将球磨好的粉料干燥后在研钵上进行研磨细化,在1400℃下煅烧2h,煅烧产物使用研钵粉碎。
将研钵粉碎的粉体放入气氛炉中,在还原气氛(如氮氢气气氛)下,1500℃烧结2h-12h,产物经粉碎、洗涤、烘干、筛分后获得组分为Y3Al5O12:Nd的Nd:YAG前驱粉体,Nd:YAG前驱粉体的颗粒D50(50%通过粒径)的范围为1μm-30μm,优选为5μm-17μm。
需要说明的是,制备Nd:YAG前驱粉体除了可以采用上述固相法外还可以采用共沉淀法。
在S2中,称取一定数量的高纯Al2O3粉末,粉末粒径为0.05μm-1μm,优选为0.06μm-0.2μm,配置1wt%-3wt%的PEG(聚乙二醇)水溶液,将Al2O3纳米粉末与PEG水溶液混合。优选地,为了破坏Al2O3粉末颗粒之间的二次团聚,让Al2O3粉末在溶液中尽可能地分散,将Al2O3溶液超声1h-3h后备用。
称取适量的高纯MgO、BaF2粉末作为助熔剂,将这两种粉末添加入含Al2O3粉末的PEG水溶液中。所述MgO、BaF2粉末分别占Al2O3粉末质量的0.01wt%-3wt%,优选地,MgO、BaF2粉末的质量一样,均占Al2O3粉末质量的0.05wt%-0.4wt%。之后将上述加入MgO、BaF2粉末的Al2O3溶液装入聚四氟乙烯球磨罐中,用超低磨失率的氧化锆球进行球磨,球磨时间为1h-72h,优选为24h-36h。
在S3中,将S1中制备的Nd:YAG前驱粉体,装入上述聚四氟乙烯球磨罐,与球磨后的含有MgO、BaF2的Al2O3溶液混合后,低速进行再次球磨,球磨时间为10min-120min,优选为40min。其中,Nd:YAG前驱粉体占总粉体质量的15wt%-90wt%。
球磨结束后,所得浆料使用喷雾干燥设备干燥造粒,获得干粉。
所述干粉在马弗炉中进行500℃-650℃的煅烧,除去粉末中的有机成分,时间为1h-10h。煅烧后的粉末过80目、150目、200目筛造粒,得到高流动性的原料粉。
称取适量原料粉末装入石墨模具中,在5MPa-15MPa压强下进行预压制,然后将石墨模具放入SPS放电等离子烧结炉内,在真空或氩气保护气氛下烧结,烧结温度1250℃-1650℃,保温0.5h-6h,烧结压力为30MPa-200MPa,优选为40MPa-100MPa。烧结完成后,卸除压力并随炉冷却。最后获得发光陶瓷。
需要补充的是,本发明并不限制上述工艺参数(温度、压力、时间等),本领域技术人员可以根据实际需要对上述工艺参数进行调整,另外,除SPS和热压烧结外,还可以使用真空烧结炉进行烧结。
对本实施例中所制备的发光陶瓷进行光效测试,本发明中的光效特指每瓦808nm激光所激发的1000nm-1100nm红外光,其光效达62lm/W。
实施例二
本实施例与实施例一相比,其S1和S2工序相同,不同处在于,在S2中,在称取一定数量的粉末粒径为0.05μm-1μm(优选为0.06μm-0.2μm)的高纯Al2O3粉末后,按照MgO与Al2O3的质量比为(0.01-3):100的比例,称取一定数量的Mg(NO3)2·6H2O,配置成浓度为0.01(mol/L)-1(mol/L)的硝酸盐乙醇溶液,加入Al2O3粉末后搅拌。
之后将上述加入Al2O3粉末的硝酸盐乙醇溶液装入聚四氟乙烯球磨罐中,用超低磨失率的氧化锆球进行球磨,球磨时间为1h-72h,优选为24h-36h。
本实施例与实施例一相比,用Mg(NO3)2·6H2O制备的硝酸盐乙醇溶液来代替PEG(聚乙二醇)水溶液以及MgO、BaF2粉末,制备方法较为简单,且在S3中干粉在煅烧时,Mg(NO3)2·6H2O能够分解为MgO,其同样具有助熔剂的作用。
对本实施例中所制备的发光陶瓷进行光效测试,其光效达66lm/W。
综上所述,本发明预先制备Nd:YAG前驱粉体,之后采用真空烧结法、热压/SPS烧结法等工艺将加有助熔剂的Nd:YAG前驱粉体、Al2O3粉末烧结成发光陶瓷,这种发光陶瓷可以与808nm的红色激光半导体搭配,制备出体积小巧、光通量高的红外光源,用于安全监控、军事探测等红外成像领域。

Claims (10)

1.一种发光陶瓷,其特征在于,所述发光陶瓷包括Al2O3基质(210)以及均匀分布在Al2O3基质中的Nd:YAG发光中心(220)。
2.如权利要求1所述的发光陶瓷,其特征在于,所述Al2O3的晶粒粒径为0.5μm-20μm,Nd:YAG的晶粒粒径为1μm-30μm;优选地,所述Al2O3的晶粒粒径为1μm-5μm,所述Nd:YAG的晶粒粒径为5μm-17μm。
3.如权利要求1所述的发光陶瓷,其特征在于,所述Nd:YAG发光中心(220)的组分为Y3Al5O12:Nd。
4.如权利要求1所述的发光陶瓷,其特征在于,所述Nd:YAG发光中心(220)占发光陶瓷总质量的15%-90%。
5.如权利要求1所述的发光陶瓷,其特征在于,所述发光陶瓷还包括BaF2和/或MgO,所述BaF2、MgO的质量分别占所述Al2O3基质的0.01%~3.5%、0.01%~3.0%。
6.一种发光陶瓷的制备方法,其特征在于,所述制备方法包括:
S1:制备Nd:YAG前驱粉体;
S2:制备含Al2O3粉末的水溶液;
S3:将Nd:YAG前驱粉体与含Al2O3粉末的水溶液混合后干燥造粒获得干粉,所述干粉煅烧后造粒,然后烧结得到发光陶瓷。
7.如权利要求6所述的制备方法,其特征在于,在S1中,按Y3Al5O12:Nd的化学计量比称量Y2O3、Al(OH)3、Nd2O3粉末,并加入BaF2粉末作为助熔剂,以水或乙醇作为载体进行球磨,球磨后的粉料进行煅烧,煅烧产物粉碎后在还原气氛下烧结,烧结产物粉碎后得到Nd:YAG前驱粉体。
8.如权利要求6所述的制备方法,其特征在于,在S2中,配置1wt%-3wt%的聚乙二醇水溶液,将Al2O3粉末与聚乙二醇水溶液混合,并在制得的含Al2O3粉末的聚乙二醇水溶液中加入MgO粉末和BaF2粉末后球磨,其中,MgO粉末、BaF2粉末分别占Al2O3粉末的0.01wt%-3wt%。
9.如权利要求6所述的制备方法,其特征在于,在S2中,按照MgO与Al2O3的质量比为(0.01-3):100的比例,称取Mg(NO3)2·6H2O,配置成浓度为0.01(mol/L)-1(mol/L)的硝酸盐乙醇溶液,加入Al2O3粉末后球磨。
10.如权利要求6至9任一项所述的制备方法,其特征在于,在S3中,Nd:YAG前驱粉体占总粉体质量的15wt%-90wt%。
CN201810235810.3A 2018-03-21 2018-03-21 发光陶瓷及其制备方法 Pending CN110294628A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810235810.3A CN110294628A (zh) 2018-03-21 2018-03-21 发光陶瓷及其制备方法
PCT/CN2018/113869 WO2019179119A1 (zh) 2018-03-21 2018-11-05 发光陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810235810.3A CN110294628A (zh) 2018-03-21 2018-03-21 发光陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN110294628A true CN110294628A (zh) 2019-10-01

Family

ID=67986776

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810235810.3A Pending CN110294628A (zh) 2018-03-21 2018-03-21 发光陶瓷及其制备方法

Country Status (2)

Country Link
CN (1) CN110294628A (zh)
WO (1) WO2019179119A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112110729A (zh) * 2020-09-15 2020-12-22 湖州市汉新科技有限公司 高热导荧光陶瓷、制备方法及在led或激光照明中应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1140155A (zh) * 1995-01-19 1997-01-15 宇部兴产株式会社 陶瓷复合材料
CN107285745A (zh) * 2016-04-12 2017-10-24 深圳市绎立锐光科技开发有限公司 一种氧化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN107285746A (zh) * 2016-04-12 2017-10-24 深圳市绎立锐光科技开发有限公司 一种氧化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN107805056A (zh) * 2016-09-09 2018-03-16 深圳市光峰光电技术有限公司 陶瓷复合材料的制备方法及陶瓷复合材料、光源装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206910B (zh) * 2015-04-30 2019-07-16 深圳光峰科技股份有限公司 一种用于大功率光源的发光陶瓷及发光装置
CN107474839A (zh) * 2016-06-07 2017-12-15 深圳市光峰光电技术有限公司 一种发光陶瓷
CN107540369B (zh) * 2017-02-28 2020-05-15 江苏罗化新材料有限公司 发光陶瓷、led封装结构及发光陶瓷的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1140155A (zh) * 1995-01-19 1997-01-15 宇部兴产株式会社 陶瓷复合材料
CN107285745A (zh) * 2016-04-12 2017-10-24 深圳市绎立锐光科技开发有限公司 一种氧化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN107285746A (zh) * 2016-04-12 2017-10-24 深圳市绎立锐光科技开发有限公司 一种氧化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN107805056A (zh) * 2016-09-09 2018-03-16 深圳市光峰光电技术有限公司 陶瓷复合材料的制备方法及陶瓷复合材料、光源装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张幼文: "《红外光学工程》", 30 November 1982, 上海科学技术出版社 *
洪广言: "《稀土发光材料》", 31 May 2016, 冶金工业出版社 *
陈卫标: "《空间应用激光器》", 30 November 2016, 国防工业出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112110729A (zh) * 2020-09-15 2020-12-22 湖州市汉新科技有限公司 高热导荧光陶瓷、制备方法及在led或激光照明中应用

Also Published As

Publication number Publication date
WO2019179119A1 (zh) 2019-09-26

Similar Documents

Publication Publication Date Title
CN107285746B (zh) 一种氧化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
He et al. Red-shifted emission in Y3MgSiAl3O12: Ce3+ garnet phosphor for blue light-pumped white light-emitting diodes
CN106206910B (zh) 一种用于大功率光源的发光陶瓷及发光装置
CN107285745B (zh) 一种氧化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
US20190031956A1 (en) Phosphor, light emitting device, illumination apparatus, and image display apparatus
CN109642156B (zh) 烧结荧光体、发光装置、照明装置和车辆用显示灯
JP2011021062A (ja) 蛍光体、発光モジュール及び車両用灯具
CN108069710A (zh) 一种发光陶瓷及发光装置
CN107200588B (zh) 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN104818023B (zh) 含有晶体缺陷修复工艺的稀土发光材料制备方法及其产物
CN112939578B (zh) 荧光陶瓷及其制备方法、发光装置以及投影装置
CN106978176B (zh) 一种黄色荧光粉及制备方法和其在发光器件中的应用
CN104449718A (zh) 用于白光LED封装的双层YAG:Ce/(Gd,Y)AG:Ce复合透明陶瓷荧光体及其制备方法
CN109896853A (zh) 具有较低膨胀系数的陶瓷复合体、制备方法及光源装置
CN110357424A (zh) 一种复相荧光玻璃及其低温高压烧结制备方法
CN109987932B (zh) 用于白光照明的复相荧光陶瓷、制备方法及光源装置
TW201736570A (zh) 波長轉換構件及發光裝置
Peng et al. Microstructure tailoring of red-emitting AlN-CaAlSiN3: Eu2+ composite phosphor ceramics with higher optical properties for laser lighting
CN107200587B (zh) 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN110294628A (zh) 发光陶瓷及其制备方法
CN104496474B (zh) 一种紫外转换白光led透明陶瓷材料及其制备方法
CN1962811A (zh) 一种白光led用荧光粉及其制备方法
Zhang et al. A novel banded structure ceramic phosphor for high-power white LEDs
WO2019179118A1 (zh) 发光陶瓷及其制备方法
CN101935528A (zh) 一种稀土掺杂黄色荧光粉的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination