WO2019179118A1 - 发光陶瓷及其制备方法 - Google Patents

发光陶瓷及其制备方法 Download PDF

Info

Publication number
WO2019179118A1
WO2019179118A1 PCT/CN2018/113868 CN2018113868W WO2019179118A1 WO 2019179118 A1 WO2019179118 A1 WO 2019179118A1 CN 2018113868 W CN2018113868 W CN 2018113868W WO 2019179118 A1 WO2019179118 A1 WO 2019179118A1
Authority
WO
WIPO (PCT)
Prior art keywords
mgo
powder
yag
nal
ceramic
Prior art date
Application number
PCT/CN2018/113868
Other languages
English (en)
French (fr)
Inventor
李乾
简帅
王艳刚
许颜正
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2019179118A1 publication Critical patent/WO2019179118A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Definitions

  • the invention relates to a luminescent ceramic and a preparation method thereof, and belongs to the technical field of solid luminescent materials manufacturing.
  • the infrared camera in the active infrared camera technology is a camera with an infrared filter and an infrared light source.
  • the infrared light sources There are three main types of infrared light sources that are important components of infrared cameras. One is to obtain infrared light by installing a visible light filter on a halogen lamp or a xenon lamp. This infrared light source excited by thermal radiation has great disadvantages, such as easy inclusion.
  • Visible light has red violent phenomenon, short service life, severe heat production, etc., has been replaced by other infrared light sources;
  • second, infrared light or infrared LED-Array is used to generate infrared light, infrared LED as an injection type electroluminescence
  • the device has the advantages of small size, long life, low power consumption, high reliability, etc., which makes it widely used, but has shortcomings such as short illumination distance, low illumination brightness and serious light decay;
  • Infrared laser diode (LD) is used as the infrared light source.
  • the infrared LD light source has the characteristics of high brightness, it has the problems of high cost, small beam angle, speckle and energy concentration.
  • the technical problem to be solved by the present invention is to provide a luminescent ceramic and a preparation method thereof according to the deficiencies of the prior art, and prepare a Nd:YAG precursor powder by a urea coprecipitation method, and prepare a MgO ⁇ nAl 2 O 3 by a solid phase reaction method.
  • the precursor powder is finally prepared into Nd:YAG-MgO ⁇ nAl 2 O 3 luminescent ceramic by hot press sintering; Nd:YAG is used as the infrared illuminating center, which has extremely high quantum efficiency; and MgO ⁇ nAl 2 O 3
  • the prepared transparent ceramic has higher transmittance in the infrared band and has better thermal conductivity; when it is combined with Nd:YAG to form a composite ceramic, the infrared light generated by Nd:YAG can be well scattered, and at the same time The heat generated by the excitation of the 808 nm laser is conducted and transmitted, and has the advantages of high brightness and weak light decay.
  • the present invention provides a luminescent ceramic, a luminescent ceramic comprises MgO ⁇ nAl 2 O 3, and Nd uniformly distributed in the matrix MgO ⁇ nAl 2 O 3 matrix: YAG luminescent center, wherein, MgO ⁇ nAl 2 O 3 matrix is a single
  • the phase ceramic has a molar ratio of Al 2 O 3 to MgO of 1:n and n of 0.7-2.
  • the n is from 0.9 to 1.3.
  • the MgO ⁇ nAl 2 O 3 has a crystal grain size of 0.5 ⁇ m to 10 ⁇ m
  • the Nd:YAG has a crystal grain size of 1 ⁇ m to 20 ⁇ m.
  • the grain size of the MgO ⁇ nAl 2 O 3 is from 1 ⁇ m to 5 ⁇ m
  • the grain size of the Nd:YAG is from 5 ⁇ m to 10 ⁇ m.
  • the Nd:YAG luminescent center accounts for 30% by weight to 80% by weight of the total mass of the luminescent ceramic.
  • the invention also provides a preparation method of a luminescent ceramic, the preparation method comprising:
  • Y(NO 3 ) 3 ⁇ 6H 2 O and Nd(NO 3 ) 3 ⁇ 6H 2 O are weighed in a stoichiometric ratio: Al 3+ is 3:5, and added to the aluminum nitrate solution, After stirring and filtering, the pH of the solution was adjusted to 2-3. After stirring uniformly, the solution was heated to precipitate metal ions, and the obtained precipitate was dried and calcined to obtain a Nd:YAG precursor powder. Wherein said Nd 0.2at% -2at% Nd 3+ added and the total amount of Y 3+ 3+ added amount.
  • the Al 2 O 3 powder and the MgO powder are mixed in proportion and calcined, the calcined powder and the ball milling medium are ball-milled, and finally dried to obtain a MgO ⁇ nAl 2 O 3 precursor powder.
  • the Al 2 O 3 powder and the MgO powder have an average particle diameter of 0.05 ⁇ m to 1 ⁇ m, the molar ratio of the Al 2 O 3 powder to the MgO powder is 1:n, n is 0.7-2, and the MgO
  • the nAl 2 O 3 precursor powder has an average particle diameter of 0.1 ⁇ m to 10 ⁇ m.
  • the Nd:YAG precursor powder, the MgO ⁇ nAl 2 O 3 precursor powder and the sintering aid are mixed and dried, and then ground and sieved to obtain a luminescent ceramic powder.
  • the sintering aid is one or more of lithium fluoride, calcium fluoride and tetraethyl orthosilicate, and the average particle diameter thereof is 0.05 ⁇ m-1 ⁇ m, which accounts for 0.01 of the total mass of the luminescent ceramic powder. Wt%-1wt%.
  • an adhesive may also be added for mixing in S3, which is an ethanol solution of polyvinyl butyral.
  • the mass of the Nd:YAG precursor powder is from 30% by weight to 80% by weight based on the total mass of the luminescent ceramic powder.
  • the invention prepares Nd:YAG precursor powder by urea coprecipitation method, prepares MgO ⁇ nAl 2 O 3 precursor powder by solid phase reaction method, and finally prepares Nd:YAG-MgO by hot pressing sintering method.
  • nAl 2 O 3 luminescent ceramics; using Nd:YAG as the infrared illuminating center, which has extremely high quantum efficiency; and the transparent ceramic prepared by MgO ⁇ nAl 2 O 3 has high transmittance in the infrared band and has excellent performance.
  • Thermal conductivity when combined with Nd:YAG to form a composite ceramic, it can well scatter the infrared light generated by Nd:YAG, and at the same time conduct the heat generated by the 808nm laser excitation, which has high brightness and weak Light fade and other advantages.
  • FIG. 1 is a schematic structural view of a luminescent ceramic of the present invention
  • 2 is an emission spectrum of a luminescent ceramic of the present invention excited by a laser at 808 nm.
  • FIG. 1 is a schematic view showing the structure of a luminescent ceramic of the present invention.
  • the present invention provides a luminescent ceramic comprising a MgO.nAl 2 O 3 matrix 210 and Nd:YAG (Neodymium-doped Yttrium Aluminium) uniformly distributed in the MgO ⁇ nAl 2 O 3 matrix 210.
  • Garnet Light Center 220.
  • the molar ratio of Al 2 O 3 to MgO in the MgO ⁇ nAl 2 O 3 matrix 210 is 1:n, and n is 0.7-2, preferably 0.9-1.3.
  • the grain size of the MgO ⁇ nAl 2 O 3 is from 0.5 ⁇ m to 10 ⁇ m, and the grain size of the Nd:YAG is from 1 ⁇ m to 20 ⁇ m.
  • the MgO ⁇ nAl 2 O 3 has a grain size of from 1 ⁇ m to 5 ⁇ m, and the Nd:YAG has a grain size of from 5 ⁇ m to 10 ⁇ m.
  • the white continuous phase in Figure 1 is the MgO.nAl 2 O 3 matrix 210 and the black particles are the Nd:YAG luminescent center 220.
  • 2 is an emission spectrum of a luminescent ceramic of the present invention excited by a laser at 808 nm. As shown in FIG. 2, the luminescent ceramic can excite infrared light having a wavelength of 850 nm to 1350 nm when a laser diode having a wavelength of 808 nm is used as an excitation light source, wherein the excitation peak at the wavelength of 1050 nm to 1080 nm is the strongest.
  • Nd:YAG ceramics whether single crystal ceramics or polycrystalline ceramics, are excited by light at 808 nm wavelength, and only some crystal grains on the surface of the ceramic are excited due to various factors such as material and crystal structure properties. Therefore, for pure phase ceramic Nd:YAG, the excitation light passes through the grain boundary and directly transmits less reflection, so that the excitation light is less likely to be reflected in the ceramic and the optical path is short, thereby exciting the light of Nd:YAG. When the amount is small, the light effect of the excitation light is not high, and at the same time, less laser light is generated.
  • the thermal conductivity of Nd:YAG is not high, and the pure phase Nd:YAG ceramic is excited and the heat generated by the luminescence can not be transmitted in time, which will cause the temperature of the ceramic to rise, which will easily cause the thermal decay of Nd:YAG ceramics to decrease. Light conversion efficiency.
  • the invention adopts Nd:YAG ceramic particles as the luminescent center of the luminescent ceramic, and uniformly distributes it in the MgO ⁇ nAl 2 O 3 transparent ceramic, and utilizes the excellent optical properties of the MgO ⁇ nAl 2 O 3 transparent ceramic (the transmittance is 80% or more). And thermal conductivity (17W/m ⁇ k-20W/m ⁇ k), the excitation light can be conducted inside the luminescent ceramic to excite more Nd:YAG ceramic particles without affecting light propagation.
  • the refractive index of MgO ⁇ nAl 2 O 3 transparent ceramic is close to that of Nd:YAG ceramic (about 1.7-1.8), and does not affect the light-emitting efficiency of Nd:YAG ceramic particles;
  • the thermal expansion coefficients of MgO ⁇ nAl 2 O 3 transparent ceramics and Nd:YAG ceramics are similar, all in the range of (6.7-8) ⁇ 10 -6 /°C, and the luminescent ceramics are not easy to cause ceramic cracking due to temperature difference.
  • the present invention is by MgO ⁇ nAl 2 O 3 substrate 210 and Nd uniformly distributed MgO ⁇ nAl 2 O 3 substrate 210: luminescent ceramic YAG luminescent center 220 consisting of, Nd: YAG uniformly dispersed MgO ⁇ nAl 2 O 3 in
  • the phase interface is increased, and the excitation light can be reflected and/or refracted between the interfaces; at the same time, the lattice structure of MgO ⁇ nAl 2 O 3 and its material properties are also made on the grain boundary of MgO ⁇ nAl 2 O 3 More reflection and/or refraction will also occur, causing the incident light to be directed multiple times to different Nd:YAG excitations. Therefore, the incident light has a longer optical path in the luminescent ceramic than the pure phase ceramic, and the absorption of the incident excitation light is more sufficient.
  • the above luminescent ceramic provided by the invention can form a novel infrared light source with the 808 nm laser semiconductor.
  • the MgO ⁇ nAl 2 O 3 transparent ceramic as the substrate in the present invention is two kinds of ceramics with the existing Al 2 O 3 ceramic, and is not formed by dispersing MgO particles in the Al 2 O 3 ceramic, Al 2 O. 3 Ceramics belong to the trigonal system, while the ceramic crystal form of MgO ⁇ nAl 2 O 3 transparent ceramics is the same as MgAl 2 O 4 , both of which are cubic crystal systems, and there is only one phase in both ceramics.
  • MgO ⁇ nAl 2 O 3 as a matrix, relative to Al 2 O 3 as a matrix, due to the introduction of MgO, in the process of sintering, it is advantageous to suppress the growth of Al 2 O 3 grains too much, and control Al.
  • the size of the 2 O 3 crystal grain can provide more excitation light in the luminescent ceramic, thereby improving the luminous efficiency.
  • the Nd:YAG luminescent center 220 accounts for 30% by weight to 80% by weight of the total mass of the luminescent ceramic.
  • the content of Nd:YAG luminescent center is too low, the luminescent center is too small and the efficiency is not high; when the content of Nd:YAG luminescent center is too high, the content of matrix bonding phase MgO ⁇ nAl 2 O 3 is too small, sintering is difficult, and it is difficult to form. Dense ceramics.
  • the mass ratio of the Nd:YAG luminescent center 220 is 40% to 60%, and the number of luminescent centers is moderate, the matrix phase is also easy to be sintered, and the relative density of the luminescent ceramics is easily maximized, so the luminous efficiency is high.
  • the thermal conductivity and mechanical properties are optimized.
  • the invention also provides a preparation method of the above luminescent ceramic, the preparation method comprising:
  • Y(NO 3 ) 3 ⁇ 6H 2 O and Nd(NO 3 ) 3 ⁇ 6H are weighed in a stoichiometric ratio (Nd 3+ +Y 3+ ): Al 3+ is 3:5. 2 O, added to the aluminum nitrate solution, stirred and filtered, the pH of the solution is adjusted to 2-3, after stirring uniformly, the solution is heated to precipitate metal ions, and the obtained precipitate is dried and calcined to obtain Nd:YAG precursor powder.
  • the aluminum nitrate solution can be obtained by weighing a certain amount of Al(NO 3 ) 3 ⁇ 9H 2 O and deionized water, stirring and filtering.
  • the pH of the solution can be adjusted by weighing a certain amount (urea to metal ion molar ratio of 10:1-20:1) of urea in the mixed salt solution, while adding a certain amount of ammonium sulfate as a dispersing agent, and using ammonia water to adjust the pH of the solution. Adjust to 2-3. Stir well until the solution is clarified, then immediately heat the solution to 90 ° C for 4 h-8 h to precipitate metal ions. The resulting precipitate was subjected to multiple water washings and alcohol washings, followed by drying and sieving.
  • the sieved powder is calcined to obtain a Nd:YAG precursor powder.
  • the calcination temperature is from 900 ° C to 1300 ° C
  • the holding time is from 1 h to 4 h. It should be noted that the present invention does not limit the specific process parameters of the above production process, and those skilled in the art can adjust according to actual conditions.
  • the preparation of the Nd:YAG precursor powder may be carried out by using a solid phase method in addition to the above coprecipitation method.
  • the Al 2 O 3 powder and the MgO powder are mixed in proportion and calcined, and the calcined powder and the ball milling medium are ball-milled, and finally dried to obtain a MgO ⁇ nAl 2 O 3 precursor powder.
  • a certain amount of commercial high-purity Al 2 O 3 powder and MgO powder are ball-milled and mixed with a grinding medium (anhydrous ethanol) for a certain period of time; wherein, the average particle diameter of the Al 2 O 3 powder and the MgO powder is 0.05 ⁇ m- 1 ⁇ m, the molar ratio of Al 2 O 3 powder to MgO powder is 1:n, the difference of n value has great influence on the optical properties of ceramics, different n values, ceramic transmittance is also different, if too much magnesium oxide or alumina In the ceramic, two phases are present, that is, the second phase is magnesia or alumina, and these second phases become the scattering phase in the transparent ceramic to reduce the transparency and even opacity of the transparent ceramic. Therefore, after repeated experiments, the inventors have found that when n is 0.7-2, and further preferably 0.9-1.3, a highly transparent MgO ⁇ nAl 2 O 3 ceramic can be obtained.
  • the ball-milled powder is dried, ground, and sieved.
  • the sieved powder is then calcined in a muffle furnace, and the calcined powder is subjected to high-energy ball milling with the ball mill medium anhydrous ethanol, and finally dried and sieved to obtain MgO ⁇ nAl 2 O 3 precursor powder.
  • the calcination temperature is from 1000 ° C to 1300 ° C
  • the holding time is from 1 h to 8 h
  • the average particle diameter of the MgO ⁇ nAl 2 O 3 precursor powder after ball milling is from 0.1 ⁇ m to 10 ⁇ m.
  • the prepared Nd:YAG precursor powder, the MgO ⁇ nAl 2 O 3 precursor powder and the sintering aid are mixed and dried, and then ground and sieved to obtain a luminescent ceramic powder.
  • the sintering aid is one or more of lithium fluoride, calcium fluoride, and tetraethyl orthosilicate, and the average particle diameter thereof is 0.05 ⁇ m-1 ⁇ m, which is 0.01 wt% of the total mass of the luminescent ceramic powder. %-1wt%.
  • the mixing is preferably ball milling mixing, and the ball milling time is preferably from 6 h to 8 h.
  • the drying temperature is from 50 ° C to 80 ° C, preferably under vacuum.
  • the mass of the Nd:YAG precursor powder accounts for 30% by weight to 80% by weight of the total mass of the luminescent ceramic powder.
  • a binder may also be added for mixing in S3, which is a solution of polyvinyl butyral (PVB) in ethanol.
  • the present invention firstly sinters the Al 2 O 3 powder and the MgO powder to obtain a MgO ⁇ nAl 2 O 3 precursor powder, and then sinters it with the Nd:YAG precursor powder, that is, a two-step sintering method is adopted.
  • a two-step sintering method is adopted.
  • the MgO powder, and the Nd:YAG precursor powder directly in one step this is because the MgO ⁇ nAl 2 O 3 ceramics are synthesized when MgO and Al 2 O 3 are synthesized.
  • a certain amount of luminescent ceramic powder is weighed to form a shaped blank, preferably, the molding pressure is 50 MPa to 100 MPa.
  • the formed green body is degreased, preferably, the debinding process is maintained at 400 ° C - 600 ° C for 1 h - 4 h, and then at 800 ° C - 1300 ° C for 1-6 h.
  • the degummed green body is subjected to cold isostatic pressing at 150 MPa to 300 MPa to further increase its relative bulk density.
  • the cold isostatically pressed green body is subjected to hot press sintering.
  • the hot press sintering temperature is 1400 ° C to 1700 ° C
  • the holding time is 1 h to 4 h
  • the pressure is 20 MPa to 150 MPa.
  • high temperature annealing is performed to remove residual carbon during hot pressing sintering.
  • the annealing temperature is 1200 ° C - 1400 ° C
  • the annealing holding time is 5 h - 20 h.
  • a certain amount of Al(NO 3 ) 3 ⁇ 9H 2 O and deionized water were weighed, stirred and filtered to obtain an aluminum nitrate solution, and the Al 3+ ion concentration was calibrated.
  • a certain amount of commercial high-purity Al 2 O 3 powder and MgO powder are ball-milled and mixed with grinding medium anhydrous ethanol for a certain period of time; wherein, the average particle diameter of the Al 2 O 3 powder and the MgO powder is 0.05 ⁇ m - 1 ⁇ m, Al 2 O 3
  • the molar ratio of the powder to the MgO powder is 1:1, and the ball-milled powder is dried, ground and sieved, and then the sieved powder is calcined in a muffle furnace at 1200 ° C for 4 h, and finally calcined.
  • the powder and the ball mill medium anhydrous ethanol are subjected to high-energy ball milling, drying and sieving treatment to obtain MgO ⁇ Al 2 O 3 precursor powder.
  • the prepared Nd:YAG precursor powder, the MgO ⁇ Al 2 O 3 precursor powder, the sintering aid lithium fluoride and the binder are ball-milled, wherein the sintering aid has an average particle diameter of 0.05 ⁇ m to 1 ⁇ m.
  • the total mass of the luminescent ceramic powder is 0.05 wt%
  • the binder is a polyvinyl butyral (PVB) ethanol solution
  • the ball milled slurry is vacuum dried at 50 ° C - 80 ° C, and ground and sieved.
  • the luminescent ceramic powder is obtained by treatment.
  • a certain amount of luminescent ceramic powder is weighed into a certain shape of the green body, and the formed green body is degreased at 500 ° C for 2 h, and kept at 1000 ° C for 3 h.
  • the degummed green body was subjected to cold isostatic pressing at 200 MPa to further increase its relative bulk density.
  • the cold isostatically pressed green body was hot pressed at 1700 ° C and 60 MPa for 2 h. After sintering, it is annealed at 1300 ° C for 8 h to remove residual carbon during hot pressing sintering. Finally, the ceramic is subjected to coarse grinding, fine grinding and polishing to obtain Nd:YAG-MgO ⁇ Al 2 O 3 luminescent ceramic.
  • the luminescence ceramics prepared in the present embodiment were tested for light efficiency.
  • the luminous efficacy in the present invention specifically refers to infrared light of 1000 nm to 1100 nm excited by a 808 nm laser, and the luminous efficacy thereof is 60 lm/W.
  • Al(NO 3 ) 3 ⁇ 9H 2 O and deionized water were weighed, stirred and filtered to obtain an aluminum nitrate solution, and the Al 3+ ion concentration was calibrated.
  • a certain amount of commercial high-purity Al 2 O 3 powder and MgO powder are ball-milled and mixed with grinding medium anhydrous ethanol for a certain period of time; wherein, the average particle diameter of the Al 2 O 3 powder and the MgO powder is 0.05 ⁇ m - 1 ⁇ m, Al 2 O 3
  • the molar ratio of the powder to the MgO powder is 1:1.3, and the ball-milled powder is dried, ground, and sieved, and then the sieved powder is calcined in a muffle furnace at 1100 ° C for 6 h, and finally calcined.
  • the prepared Nd:YAG precursor powder, the MgO ⁇ 1.3Al 2 O 3 precursor powder and the sintering aid tetraethyl orthosilicate and the binder are ball-milled, wherein the average particle size of the sintering aid is 0.05 ⁇ m. -1 ⁇ m, accounting for 0.5 wt% of the total mass of the luminescent ceramic powder, the binder is a polyvinyl butyral (PVB) ethanol solution, and finally the ball milled slurry is vacuum dried at 50 ° C - 80 ° C, and Polishing and sieving treatment is carried out to obtain a luminescent ceramic powder.
  • PVB polyvinyl butyral
  • a certain amount of luminescent ceramic powder is weighed into a shaped blank, and the formed green body is degreased at 450 ° C for 4 h and incubated at 900 ° C for 5 h.
  • the degummed green body was subjected to cold isostatic pressing at 250 MPa to further increase its relative bulk density.
  • the cold isostatically pressed green body was hot pressed at 1600 ° C and 80 MPa for 3 h. After sintering, it is annealed at 1250 ° C for 10 h to remove residual carbon during hot pressing sintering. Finally, it is coarsely ground, finely ground and polished to obtain Nd:YAG-MgO ⁇ 1.3Al 2 O 3 luminescent ceramic.
  • the luminescent ceramic prepared in this example was tested for light efficiency, and its luminous efficacy was 65 lm/W.
  • the invention prepares Nd:YAG precursor powder by urea coprecipitation method, prepares MgO ⁇ nAl 2 O 3 precursor powder by solid phase reaction method, and finally prepares Nd:YAG-MgO by hot pressing sintering method.
  • nAl 2 O 3 luminescent ceramics; using Nd:YAG as the infrared illuminating center, which has extremely high quantum efficiency; and the transparent ceramic prepared by MgO ⁇ nAl 2 O 3 has high transmittance in the infrared band and has excellent performance.
  • Thermal conductivity when combined with Nd:YAG to form a composite ceramic, it can well scatter the infrared light generated by Nd:YAG, and at the same time conduct the heat generated by the 808nm laser excitation, which has high brightness and weak Light fade and other advantages.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Luminescent Compositions (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种发光陶瓷,包括MgO•nAl2O3基质(210)以及均匀分布在MgO•nAl2O3基质中的Nd:YAG发光中心(220),其中,MgO•nAl2O3基质为单相陶瓷,Al2O3和MgO的摩尔比为1:n,n为0.7-2。该发光陶瓷的制备方法包括过尿素共沉淀法制备Nd:YAG前驱粉体,通过固相反应法制备MgO•nAl2O3前驱粉体,最后通过热压烧结法制备成Nd:YAG-MgO•nAl2O3发光陶瓷。

Description

发光陶瓷及其制备方法 技术领域
本发明涉及一种发光陶瓷及其制备方法,属于固体发光材料制造技术领域。
背景技术
近年来,对夜间监控的需求越来越大,从低照度摄像机到现今的主动红外摄像技术,均是为了解决这一需求。其中主动红外摄像技术可以很好的实现全天候、无时间限制的监控。主动红外摄像技术中的红外摄像机是加装了红外滤镜和红外光源的摄像机。作为红外摄像机重要组成部分的红外光源主要有三种:一是通过在卤素灯或者氙灯上安装可见光滤镜而得到红外光,这种以热辐射方式激发的红外光源存在很大的不足,如容易包含可见光即有红暴现象,使用寿命短,产热严重等,目前已被其他红外光源所取代;二是通过红外LED或者红外LED-Array来产生红外光,红外LED作为一种注入式电致发光器件,相比卤素灯或氙灯而言,有着体积小、寿命长、功耗低、可靠性高等优点,使其得到广泛应用,但存在照明距离短、照明亮度低以及光衰严重等不足;三是采用红外激光二极管(LD)作为红外光源,红外LD光源尽管有着高亮度等特点,但存在着成本高、光束角度小、散斑、能量集中等问题。
由上述可知,市面上对于高亮度、高均匀性、长寿命、弱光衰的红外光源的需求十分迫切。
发明内容
本发明所要解决的技术问题在于针对现有技术的不足,提供一种发光陶瓷及其制备方法,通过尿素共沉淀法制备Nd:YAG前驱粉体,通过固相反应法制备MgO·nAl 2O 3前驱粉体,最后通过热压烧结法制备 成Nd:YAG-MgO·nAl 2O 3发光陶瓷;利用Nd:YAG作为红外发光中心,其具有极高的量子效率;而MgO·nAl 2O 3所制备的透明陶瓷在红外波段透过率较高,且具有较优良的导热率;其同Nd:YAG共同组成复合陶瓷时,能很好的将Nd:YAG所产生的红外光散射出来,并同时将808nm激光激发时所产生的热量进行传导散发,具有高亮度、弱光衰等优点。
本发明所要解决的技术问题是通过如下技术方案实现的:
本发明提供一种发光陶瓷,所述发光陶瓷包括MgO·nAl 2O 3基质以及均匀分布在MgO·nAl 2O 3基质中的Nd:YAG发光中心,其中,MgO·nAl 2O 3基质为单相陶瓷,Al 2O 3和MgO的摩尔比为1:n,n为0.7-2。
优选地,所述n为0.9-1.3。
优选地,所述MgO·nAl 2O 3的晶粒粒径为0.5μm-10μm,所述Nd:YAG的晶粒粒径为1μm-20μm。进一步地,所述MgO·nAl 2O 3的晶粒粒径为1μm-5μm,所述Nd:YAG的晶粒粒径为5μm-10μm。
优选地,所述Nd:YAG发光中心占所述发光陶瓷总质量的30wt%~80wt%。
本发明还提供一种发光陶瓷的制备方法,所述制备方法包括:
S1:制备Nd:YAG前驱粉体;
S2:制备MgO·nAl 2O 3前驱粉体;
S3:混合Nd:YAG前驱粉体和MgO·nAl 2O 3前驱粉体,得到发光陶瓷粉体;
S4:将发光陶瓷粉体压制为成型的素坯;
S5:烧结并退火处理所述素坯,得到发光陶瓷。
优选地,在S1中,按化学计量比:Al 3+为3:5称取Y(NO 3) 3·6H 2O以及Nd(NO 3) 3·6H 2O,添加至硝酸铝溶液中,搅拌并过滤后将溶液pH调至2-3,搅拌均匀后对溶液进行加热,使金属离子沉淀,将所得沉淀干燥后煅烧,得到Nd:YAG前驱粉体。其中,所述Nd 3+的添加量占Nd 3+和Y 3+添加总量的0.2at%-2at%。
优选地,在S2中,将Al 2O 3粉末、MgO粉末按比例混合后煅烧,将煅烧后的粉体与球磨介质进行球磨,最后经过烘干得到MgO·nAl 2O 3前驱粉体。
优选地,所述Al 2O 3粉末和MgO粉末的平均粒径为0.05μm-1μm,所述Al 2O 3粉末和MgO粉末的摩尔比为1:n,n为0.7-2,所述MgO·nAl 2O 3前驱粉体平均粒径为0.1μm-10μm。
优选地,在S3中,将Nd:YAG前驱粉体、MgO·nAl 2O 3前驱粉体与烧结助剂混合后干燥,之后研磨过筛处理得到发光陶瓷粉体。
优选地,所述烧结助剂为氟化锂、氟化钙、正硅酸四乙酯中的一种或多种,其平均粒径为0.05μm-1μm,占发光陶瓷粉体总质量的0.01wt%-1wt%。
优选地,在S3中还可添加粘接剂进行混合,所述粘结剂为聚乙烯醇缩丁醛的乙醇溶液。
优选地,所述Nd:YAG前驱粉体的质量占发光陶瓷粉体总质量的30wt%-80wt%。
综上所述,本发明通过尿素共沉淀法制备Nd:YAG前驱粉体,通过固相反应法制备MgO·nAl 2O 3前驱粉体,最后通过热压烧结法制备成Nd:YAG-MgO·nAl 2O 3发光陶瓷;利用Nd:YAG作为红外发光中心,其具有极高的量子效率;而MgO·nAl 2O 3所制备的透明陶瓷在红外波段透过率较高,且具有较优良的导热率;其同Nd:YAG共同组成复合陶瓷时,能很好的将Nd:YAG所产生的红外光散射出来,并同时将808nm激光激发时所产生的热量进行传导散发,具有高亮度、弱光衰等优点。
下面结合附图和具体实施例,对本发明的技术方案进行详细地说明。
附图说明
图1为本发明发光陶瓷的结构示意图;
图2为本发明发光陶瓷在808nm激光激发下的发射光谱图。
具体实施方式
图1为本发明发光陶瓷的结构示意图。如图1所示,本发明提供一种发光陶瓷,所述发光陶瓷包括MgO·nAl 2O 3基质210以及均匀分布在MgO·nAl 2O 3基质210中的Nd:YAG(Neodymium-doped Yttrium  Aluminium Garnet)发光中心220。其中,MgO·nAl 2O 3基质210中Al 2O 3和MgO的摩尔比为1:n,n为0.7-2,优选为0.9-1.3。
其中,所述MgO·nAl 2O 3的晶粒粒径为0.5μm-10μm,所述Nd:YAG的晶粒粒径为1μm-20μm。优选地,所述MgO·nAl 2O 3的晶粒粒径为1μm-5μm,所述Nd:YAG的晶粒粒径为5μm-10μm。
图1中的白色连续相为MgO·nAl 2O 3基质210,黑色颗粒为Nd:YAG发光中心220。图2为本发明发光陶瓷在808nm激光激发下的发射光谱图。如图2所示,所述发光陶瓷在波长808nm激光二极管作激发光源时,可激发出850nm-1350nm波长的红外光,其中以1050nm-1080nm波长激发峰最强。
目前现有的Nd:YAG陶瓷无论是单晶陶瓷还是多晶陶瓷,其在808nm波长的光激发时,仅陶瓷表面部分晶粒进行了激发,因为其材料和晶体结构属性等多个因素的影响,使得对于纯相陶瓷的Nd:YAG,激发光经过晶界会直接透过而较少发生反射,使得激发光在陶瓷中被反射的机会较少从而光程短,进而激发Nd:YAG的光量少,激发光的光效不高,同时产生的受激光也少。同时,Nd:YAG的热导率不高,纯相的Nd:YAG陶瓷被激发而发光所产生的热量不能及时传导散发出去,会导致陶瓷温度上升,容易引起Nd:YAG陶瓷的热衰而降低光转换效率。
本发明采用Nd:YAG陶瓷颗粒作为发光陶瓷的发光中心,使其均匀分布在MgO·nAl 2O 3透明陶瓷中,利用MgO·nAl 2O 3透明陶瓷优良的光学性能(透过率80%以上)和导热性能(17W/m·k-20W/m·k),在不会影响光传播的情况下,可将激发光传导至发光陶瓷内部以激发更多的Nd:YAG陶瓷颗粒,同时还能很好的将热量传递出去;另一方面,MgO·nAl 2O 3透明陶瓷的折射率同Nd:YAG陶瓷接近(大约为1.7-1.8),不会影响Nd:YAG陶瓷颗粒的出光效率;同时MgO·nAl 2O 3透明陶瓷和Nd:YAG陶瓷的热膨胀系数相近,均在(6.7-8)×10 -6/℃的范围内,发光陶瓷不容易因温度差而引起陶瓷开裂。本发明中由MgO·nAl 2O 3基质210以及均匀分布在MgO·nAl 2O 3基质210中的Nd:YAG发光中心220组成的发光陶瓷,Nd:YAG均匀分散在MgO·nAl 2O 3中,增加了相 界面,激发光可以在向界面之间发生反射和/或折射;同时,MgO·nAl 2O 3的晶格结构及其材料特性也使得在MgO·nAl 2O 3的晶界上也会发生较多的反射和/或折射,从而使得入射光被多次导向不同的Nd:YAG进行激发。因此相比纯相陶瓷,入射光在这种发光陶瓷中的光程更长,对入射激发光的吸收也更充分。
本发明提供的上述发光陶瓷,可同808nm激光半导体组成一种全新红外光源。
需要补充的是,本发明中作为基质的MgO·nAl 2O 3透明陶瓷与现有的Al 2O 3陶瓷是两种陶瓷,并非是在Al 2O 3陶瓷中分散MgO颗粒形成,Al 2O 3陶瓷属于三方晶系,而MgO·nAl 2O 3透明陶瓷的陶瓷晶型和MgAl 2O 4相同,均为立方晶系,两种陶瓷中均只有一种物相。并且,采用MgO·nAl 2O 3作为基质,相对于Al 2O 3作为基质,由于MgO的引入,在烧结成型的过程中,有利于抑制Al 2O 3晶粒生长得过大,而控制Al 2O 3晶粒的尺寸,能提供更多的激发光在本发光陶瓷中的折射,从而提高发光效率。
其中Nd:YAG发光中心220占发光陶瓷总质量的30wt%~80wt%。当Nd:YAG发光中心含量过低时,发光中心太少,效率不高;当Nd:YAG发光中心含量过高时,基质粘接相MgO·nAl 2O 3含量太少,烧结困难,难以形成致密的陶瓷。优选地,在本发明中,Nd:YAG发光中心220的质量占比为40%~60%,此时发光中心数量适中,基质相也易于烧结,发光陶瓷的相对密度易于达到最高,因此发光效率、导热性能、力学性能均达到最优。
本发明还提供一种上述发光陶瓷的制备方法,所述制备方法包括:
S1:制备Nd:YAG前驱粉体;
S2:制备MgO·nAl 2O 3前驱粉体;
S3:混合Nd:YAG前驱粉体和MgO·nAl 2O 3前驱粉体,得到发光陶瓷粉体;
S4:将发光陶瓷粉体压制为成型的素坯;
S5:烧结并退火处理所述素坯,得到发光陶瓷。
具体来说,在S1中,按化学计量比(Nd 3++Y 3+):Al 3+为3:5称取 Y(NO 3) 3·6H 2O以及Nd(NO 3) 3·6H 2O,添加至硝酸铝溶液中,搅拌并过滤后将溶液pH调至2-3,搅拌均匀后对溶液进行加热,使金属离子沉淀,将所得沉淀干燥后煅烧,得到Nd:YAG前驱粉体。其中,所述硝酸铝溶液可以通过称取一定量的Al(NO 3) 3·9H 2O与去离子水,搅拌并过滤后得到。Nd 3+的添加量占Nd 3+和Y 3+添加总量的0.2at%-2at%。溶液pH的调节可以通过称取一定量(尿素同金属离子摩尔比为10:1-20:1)的尿素于混合盐溶液中,同时添加一定量的硫酸铵为分散剂,并用氨水将溶液pH调至2-3。充分搅拌均匀直至溶液澄清后,随即对溶液进行水浴加热至90℃保温4h-8h,以便金属离子沉淀。将所得沉淀进行多次水洗和醇洗,随后将其进行干燥过筛处理。最后将过筛后粉体煅烧得到Nd:YAG前驱粉体。优选地,煅烧温度为900℃-1300℃,保温时间为1h-4h,需要说明的是,本发明并不对上述生产流程的具体工艺参数进行限定,本领域技术人员可以根据实际情况进行调整。
需要说明的是,制备Nd:YAG前驱粉体除了可以采用上述共沉淀法外还可以采用固相法。
在S2中,将Al 2O 3粉末、MgO粉末按比例混合后煅烧,将煅烧后的粉体与球磨介质进行球磨,最后经过烘干得到MgO·nAl 2O 3前驱粉体。
具体来说,将一定量商业高纯Al 2O 3粉末、MgO粉末同研磨介质(无水乙醇)进行球磨混合一定时间;其中,Al 2O 3粉末和MgO粉末的平均粒径为0.05μm-1μm,Al 2O 3粉末和MgO粉末的摩尔比为1:n,n值的不同对陶瓷光学性能影响较大,不同的n值,陶瓷透过率也不同,若氧化镁或氧化铝过多,在陶瓷中会呈现两种物相,即第二种物相为氧化镁或氧化铝,这些第二相会成为透明陶瓷中的散射相而降低了透明陶瓷的透明度,甚至不透明。因此,经过反复实验,发明人得出当n为0.7-2,进一步优选为0.9-1.3时,能获得透明度较高的MgO·nAl 2O 3陶瓷。
将球磨后的粉体进行干燥、研磨、过筛处理。随即将过筛后的粉体在马弗炉中进行煅烧,将煅烧后的粉体与球磨介质无水乙醇进行高能球磨,最后经过烘干、过筛处理得到MgO·nAl 2O 3前驱粉体,优选地,煅烧温度为1000℃-1300℃,保温时间为1h-8h,球磨后的MgO·nAl 2O 3 前驱粉体平均粒径为0.1μm-10μm。
在S3中,将已制备的Nd:YAG前驱粉体、MgO·nAl 2O 3前驱粉体与烧结助剂混合后干燥,之后研磨过筛处理得到发光陶瓷粉体。具体来说,烧结助剂为氟化锂、氟化钙、正硅酸四乙酯中的一种或多种,其平均粒径为0.05μm-1μm,占发光陶瓷粉体总质量的0.01wt%-1wt%。混合优选为球磨混合,球磨时间优选为6h-8h。干燥的温度为50℃-80℃,优选在真空气氛下进行干燥。其中,所述Nd:YAG前驱粉体的质量占发光陶瓷粉体总质量的30wt%-80wt%。优选地,在S3中还可添加粘接剂进行混合,所述粘结剂为聚乙烯醇缩丁醛(PVB)的乙醇溶液。
在步骤S2、S3中,本发明是先烧结Al 2O 3粉末和MgO粉末烧结得到MgO·nAl 2O 3前驱粉体后再与Nd:YAG前驱粉体烧结,即采用了两步烧结的方式,而非直接用Al 2O 3粉末、MgO粉末、Nd:YAG前驱粉体三者共同一步烧结的方式,这是因为在MgO和Al 2O 3合成MgO·nAl 2O 3陶瓷时会存在5-8%的体积膨胀,如果三者直接烧结,则Nd:YAG陶瓷颗粒和合成的MgO·nAl2O3陶瓷间会易于形成气孔/间隙,不利于陶瓷的热传导。而采用两步烧结的方式,MgO·nAl 2O 3陶瓷已经先成型完毕,即体积膨胀也已完成,再与Nd:YAG烧结时就避免了因体积变化而导致的气孔或间隙。
在S4中,称取一定量的发光陶瓷粉体压制成一定形状的素坯,优选地,成型压力为50MPa-100MPa。将成型后的素坯排胶处理,优选地,排胶工艺为400℃-600℃下保温1h-4h,之后800℃-1300℃保温1-6h。将排胶后的素坯在150MPa-300MPa下进行冷等静压,以进一步提高其相对体积密度。
在S5中,将冷等静压后的素坯进行热压烧结,优选地,热压烧结温度为1400℃-1700℃,保温时间为1h-4h,压力为20MPa-150MPa。烧结后进行高温退火,以去除热压烧结过程中的残余碳,优选地,退火温度为1200℃-1400℃,退火保温时间为5h-20h。
需要补充的是,本发明并不限制上述工艺参数(温度、压力、时间等),本领域技术人员可以根据实际需要对上述工艺参数进行调整。
实施例一
称取一定量的Al(NO 3) 3·9H 2O与去离子水,搅拌并过滤后得到硝酸铝溶液,同时对Al 3+离子浓度进行标定。按化学计量比(Nd 3++Y 3+):Al 3+为3:5称取一定量的Y(NO 3) 3·6H 2O以及Nd(NO 3) 3·6H 2O,添加至上述硝酸铝溶液中,搅拌并过滤后得到混合盐溶液,其中,Nd 3+的添加量占Nd 3+和Y 3+添加总量的1at%。称取一定量的尿素于混合盐溶液中,同时添加一定量的硫酸铵为分散剂,并用氨水将溶液pH调至2-3,充分搅拌均匀直至溶液澄清。随即对溶液进行水浴加热至90℃保温4h-8h,以便金属离子沉淀。将所得沉淀进行多次水洗和醇洗,随后将其进行干燥过筛处理。最后将过筛后粉体在1100℃下煅烧2h得到Nd:YAG前驱粉体。
将一定量商业高纯Al 2O 3粉末、MgO粉末同研磨介质无水乙醇进行球磨混合一定时间;其中,Al 2O 3粉末和MgO粉末的平均粒径为0.05μm-1μm,Al 2O 3粉末和MgO粉末的摩尔比为1:1,将球磨后的粉体进行干燥、研磨、过筛处理,随即将过筛后的粉体在马弗炉中1200℃下煅烧4h,最后将煅烧后的粉体与球磨介质无水乙醇进行高能球磨、烘干、过筛处理后得到MgO·Al 2O 3前驱粉体。
将已制备的Nd:YAG前驱粉体、MgO·Al 2O 3前驱粉体与烧结助剂氟化锂以及粘结剂进行球磨混合,其中烧结助剂的平均粒径为0.05μm-1μm,占发光陶瓷粉体总质量的0.05wt%,粘结剂为聚乙烯醇缩丁醛(PVB)的乙醇溶液,最后将球磨后浆料在50℃-80℃下进行真空干燥,并进行研磨过筛处理得到发光陶瓷粉体。
称取一定量的发光陶瓷粉体压制成一定形状的素坯,将成型后的素坯在500℃下排胶处理2h,并于1000℃保温3h。将排胶后的素坯在200MPa下进行冷等静压,以进一步提高其相对体积密度。
将冷等静压后的素坯在1700℃、60MPa下热压烧结2h。烧结后在1300℃下退火8h,以去除热压烧结过程中的残余碳,最后对陶瓷进行粗磨、细磨以及抛光处理得到Nd:YAG-MgO·Al 2O 3发光陶瓷。
对本实施例中所制备的发光陶瓷进行光效测试,本发明中的光效特指每瓦808nm激光所激发的1000nm-1100nm红外光,其光效达 60lm/W。
实施例二
称取一定量的Al(NO 3) 3·9H 2O与去离子水,搅拌并过滤后得到硝酸铝溶液,同时对Al 3+离子浓度进行标定。按化学计量比(Nd 3++Y 3+):Al 3+为3:5称取一定量的Y(NO 3) 3·6H 2O以及Nd(NO 3) 3·6H 2O,添加至上述硝酸铝溶液中,搅拌并过滤后得到混合盐溶液,其中,Nd 3+的添加量占Nd 3+和Y 3+添加总量的0.5at%。称取一定量的尿素于混合盐溶液中,同时添加一定量的硫酸铵为分散剂,并用氨水将溶液pH调至2-3,充分搅拌均匀直至溶液澄清。随即对溶液进行水浴加热至90℃保温4h-8h,以便金属离子沉淀。将所得沉淀进行多次水洗和醇洗,随后将其进行干燥过筛处理。最后将过筛后粉体在1000℃下煅烧3h得到Nd:YAG前驱粉体。
将一定量商业高纯Al 2O 3粉末、MgO粉末同研磨介质无水乙醇进行球磨混合一定时间;其中,Al 2O 3粉末和MgO粉末的平均粒径为0.05μm-1μm,Al 2O 3粉末和MgO粉末的摩尔比为1:1.3,将球磨后的粉体进行干燥、研磨、过筛处理,随即将过筛后的粉体在马弗炉中1100℃下煅烧6h,最后将煅烧后的粉体与球磨介质无水乙醇进行高能球磨、
烘干、过筛处理后得到MgO·1.3Al 2O 3前驱粉体。
将已制备的Nd:YAG前驱粉体、MgO·1.3Al 2O 3前驱粉体与烧结助剂正硅酸四乙酯以及粘结剂进行球磨混合,其中烧结助剂的平均粒径为0.05μm-1μm,占发光陶瓷粉体总质量的0.5wt%,粘结剂为聚乙烯醇缩丁醛(PVB)的乙醇溶液,最后将球磨后浆料在50℃-80℃下进行真空干燥,并进行研磨过筛处理得到发光陶瓷粉体。
称取一定量的发光陶瓷粉体压制成一定形状的素坯,将成型后的素坯在450℃下排胶处理4h,并于900℃保温5h。将排胶后的素坯在250MPa下进行冷等静压,以进一步提高其相对体积密度。
将冷等静压后的素坯在1600℃、80MPa下热压烧结3h。烧结后在1250℃下退火10h,以去除热压烧结过程中的残余碳,最后对其进行粗磨、细磨以及抛光处理得到Nd:YAG-MgO·1.3Al 2O 3发光陶瓷。
对本实施例中所制备的发光陶瓷进行光效测试,其光效达65lm/W。
综上所述,本发明通过尿素共沉淀法制备Nd:YAG前驱粉体,通过固相反应法制备MgO·nAl 2O 3前驱粉体,最后通过热压烧结法制备成Nd:YAG-MgO·nAl 2O 3发光陶瓷;利用Nd:YAG作为红外发光中心,其具有极高的量子效率;而MgO·nAl 2O 3所制备的透明陶瓷在红外波段透过率较高,且具有较优良的导热率;其同Nd:YAG共同组成复合陶瓷时,能很好的将Nd:YAG所产生的红外光散射出来,并同时将808nm激光激发时所产生的热量进行传导散发,具有高亮度、弱光衰等优点。

Claims (13)

  1. 一种发光陶瓷,其特征在于,所述发光陶瓷包括MgO·nAl 2O 3基质(210)以及均匀分布在MgO·nAl 2O 3基质中的Nd:YAG发光中心(220),其中,MgO·nAl 2O 3基质为单相陶瓷,Al 2O 3和MgO的摩尔比为1:n,n为0.7-2。
  2. 如权利要求1所述的发光陶瓷,其特征在于,所述n为0.9-1.3。
  3. 如权利要求1所述的发光陶瓷,其特征在于,所述MgO·nAl 2O 3的晶粒粒径为0.5μm-10μm,所述Nd:YAG的晶粒粒径为1μm-20μm;优选地,所述MgO·nAl 2O 3的晶粒粒径为1μm-5μm,所述Nd:YAG的晶粒粒径为5μm-10μm。
  4. 如权利要求1所述的发光陶瓷,其特征在于,所述Nd:YAG发光中心(220)占所述发光陶瓷总质量的30wt%~80wt%。
  5. 一种发光陶瓷的制备方法,其特征在于,所述制备方法包括:
    S1:制备Nd:YAG前驱粉体;
    S2:制备MgO·nAl 2O 3前驱粉体;
    S3:混合Nd:YAG前驱粉体和MgO·nAl 2O 3前驱粉体,得到发光陶瓷粉体;
    S4:将发光陶瓷粉体压制为成型的素坯;
    S5:烧结并退火处理所述素坯,得到发光陶瓷。
  6. 如权利要求5所述的制备方法,其特征在于,在S1中,按化学计量比(Nd 3++Y 3+):Al 3+为3:5称取Y(NO 3) 3·6H 2O以及Nd(NO 3) 3·6H 2O,添加至硝酸铝溶液中,搅拌并过滤后将溶液pH调至2-3,搅拌均匀后对溶液进行加热,使金属离子沉淀,将所得沉淀干燥后煅烧,得到Nd:YAG前驱粉体。
  7. 如权利要求6所述的制备方法,其特征在于,所述Nd 3+的添加量占Nd 3+和Y 3+添加总量的0.2at%-2at%。
  8. 如权利要求5所述的制备方法,其特征在于,在S2中,将Al 2O 3粉末、MgO粉末按比例混合后煅烧,将煅烧后的粉体与球磨介质进行球磨,最后经过烘干得到MgO·nAl 2O 3前驱粉体。
  9. 如权利要求8所述的制备方法,其特征在于,所述Al 2O 3粉末和MgO粉末的平均粒径为0.05μm-1μm,所述Al 2O 3粉末和MgO粉末的摩尔比为1:n,n为0.7-2,所述MgO·nAl 2O 3前驱粉体平均粒径为0.1μm-10μm。
  10. 如权利要求5所述的制备方法,其特征在于,在S3中,将Nd:YAG前驱粉体、MgO·nAl 2O 3前驱粉体与烧结助剂混合后干燥,之后研磨过筛处理得到发光陶瓷粉体。
  11. 如权利要求10所述的制备方法,其特征在于,所述烧结助剂为氟化锂、氟化钙、正硅酸四乙酯中的一种或多种,其平均粒径为0.05μm-1μm,占发光陶瓷粉体总质量的0.01wt%-1wt%。
  12. 如权利要求10所述的制备方法,其特征在于,在S3中还可添加粘接剂进行混合,所述粘结剂为聚乙烯醇缩丁醛的乙醇溶液。
  13. 如权利要求10所述的制备方法,其特征在于,所述Nd:YAG前驱粉体的质量占发光陶瓷粉体总质量的30wt%-80wt%。
PCT/CN2018/113868 2018-03-21 2018-11-05 发光陶瓷及其制备方法 WO2019179118A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810235684.1A CN110294627A (zh) 2018-03-21 2018-03-21 发光陶瓷及其制备方法
CN201810235684.1 2018-03-21

Publications (1)

Publication Number Publication Date
WO2019179118A1 true WO2019179118A1 (zh) 2019-09-26

Family

ID=67986775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113868 WO2019179118A1 (zh) 2018-03-21 2018-11-05 发光陶瓷及其制备方法

Country Status (2)

Country Link
CN (1) CN110294627A (zh)
WO (1) WO2019179118A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112500161A (zh) * 2020-11-30 2021-03-16 华南理工大学 一种激光显示用钼酸盐发光陶瓷材料及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0233146A1 (de) * 1986-01-31 1987-08-19 Ciba-Geigy Ag Laserbeschriftung von keramischen Materialien, Glasuren, keramischen Gläsern und Gläsern
CN1738781A (zh) * 2003-01-20 2006-02-22 宇部兴产株式会社 用于光转化的陶瓷复合材料及其应用
CN102910899A (zh) * 2012-11-16 2013-02-06 北京雷生强式科技有限责任公司 一种掺杂钇铝石榴石透明激光陶瓷的制备方法
CN102947417A (zh) * 2010-03-31 2013-02-27 宇部兴产株式会社 光转换用陶瓷合体、其制造方法、及具备其的发光装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206910B (zh) * 2015-04-30 2019-07-16 深圳光峰科技股份有限公司 一种用于大功率光源的发光陶瓷及发光装置
CN107200587B (zh) * 2016-03-18 2020-10-20 深圳光峰科技股份有限公司 一种氮化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷
CN107285745B (zh) * 2016-04-12 2020-11-17 深圳光峰科技股份有限公司 一种氧化铝基质的荧光陶瓷的制备方法及相关荧光陶瓷

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0233146A1 (de) * 1986-01-31 1987-08-19 Ciba-Geigy Ag Laserbeschriftung von keramischen Materialien, Glasuren, keramischen Gläsern und Gläsern
CN1738781A (zh) * 2003-01-20 2006-02-22 宇部兴产株式会社 用于光转化的陶瓷复合材料及其应用
CN102947417A (zh) * 2010-03-31 2013-02-27 宇部兴产株式会社 光转换用陶瓷合体、其制造方法、及具备其的发光装置
CN102910899A (zh) * 2012-11-16 2013-02-06 北京雷生强式科技有限责任公司 一种掺杂钇铝石榴石透明激光陶瓷的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, RUI: "LED MgA12O4/YAG:Ce (Study on New MgA1204/YAG:Ce Transparent Ceramic Luminescence and Application for LED", PROCEEDINGS OF THE 2015 (8TH) MILITARY AND CIVIL NEW MATERIALS FORUM, 17 October 2015 (2015-10-17), pages 1 *
TAO, ZHENLIN: "Nd:YAG (The Synthesis and Analysis of YAG and Nd:YAG Ceram Powders", MASTER'S DISSERTATION OF BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY, 2 June 2008 (2008-06-02) *

Also Published As

Publication number Publication date
CN110294627A (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
US20190031956A1 (en) Phosphor, light emitting device, illumination apparatus, and image display apparatus
CN101696085B (zh) 钇铝石榴石荧光玻璃及其制造方法和用途
JP6834491B2 (ja) 焼結蛍光体、発光装置、照明装置、車両前照灯、及び焼結蛍光体の製造方法
CN107540368B (zh) 复相半透明荧光陶瓷的制备方法和led模组
US11245243B2 (en) Light-emitting ceramic and light-emitting device
CN109642156B (zh) 烧结荧光体、发光装置、照明装置和车辆用显示灯
JP6897387B2 (ja) 焼結蛍光体、発光装置、照明装置、画像表示装置および車両用表示灯
CN109467453A (zh) 一种具有特征微观结构的荧光陶瓷及其制备方法和应用
CN111205081B (zh) 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用
WO2017211135A1 (zh) 一种发光陶瓷
CN106145922A (zh) 一种led用yag透明荧光陶瓷的制备方法
WO2019169868A1 (zh) 荧光陶瓷及其制备方法
CN109429533A (zh) 荧光构件及发光模块
WO2019200934A1 (zh) 一种复相荧光陶瓷及其制备方法
CN109987932B (zh) 用于白光照明的复相荧光陶瓷、制备方法及光源装置
CN113121208A (zh) 荧光陶瓷的制备方法及荧光陶瓷
WO2019179118A1 (zh) 发光陶瓷及其制备方法
CN107502354B (zh) 一种暖白光led用荧光粉及其制备方法
CN104119071B (zh) 一种采用新型透明陶瓷的led灯具
Nishiura et al. Transparent Ce3+: GdYAG ceramic phosphors for white LED
CN104235621A (zh) 发光器件
CN111116207A (zh) 一种具有长波段发射、高显指的氧氮化物荧光陶瓷材料及其制备方法
WO2019200935A1 (zh) 一种氮氧化铝基体的荧光陶瓷及其制备方法
CN104291823B (zh) 一种yag透明陶瓷及其制备方法
WO2019179119A1 (zh) 发光陶瓷及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18910516

Country of ref document: EP

Kind code of ref document: A1