WO2017211135A1 - 一种发光陶瓷 - Google Patents

一种发光陶瓷 Download PDF

Info

Publication number
WO2017211135A1
WO2017211135A1 PCT/CN2017/081386 CN2017081386W WO2017211135A1 WO 2017211135 A1 WO2017211135 A1 WO 2017211135A1 CN 2017081386 W CN2017081386 W CN 2017081386W WO 2017211135 A1 WO2017211135 A1 WO 2017211135A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
light
phosphor
luminescent
substrate
Prior art date
Application number
PCT/CN2017/081386
Other languages
English (en)
French (fr)
Inventor
郑鹏
田梓峰
许颜正
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2017211135A1 publication Critical patent/WO2017211135A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/22Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in calcium oxide, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3

Definitions

  • the invention relates to the field of fluorescent light, and in particular to a light-emitting ceramic.
  • the packaging method of the phosphor is mainly composed of an organic silicone package and an inorganic glass package, and the thermal conductivity of the two packages is low, and the heat damage resistance temperature is not high.
  • the tolerant temperature of silica gel is generally below 200 ° C, and the glass withstand temperature is generally below 600 ° C, which cannot meet the application of some extreme laser irradiation.
  • Pure phase fluorescent ceramics have good thermal conductivity and high temperature resistance.
  • existing fluorescent ceramics generally pay attention to the permeability of ceramics, and have high light transmittance and low luminous efficiency. Under the illumination of high power laser, more light is not emitted. Excited by the fluorescent ceramic, rather than excited to produce stimulated fluorescence.
  • the present invention provides a luminescent ceramic having excellent thermal conductivity and high luminous efficiency, including a matrix, an illuminating center and pores, and the matrix is a garnet-structured cubic system.
  • the center of the luminescence is distributed in the matrix
  • the luminescent center is a garnet-structured phosphor
  • the pores are distributed in the matrix
  • the pore size is 0.8-2 ⁇ m
  • the pore volume accounts for 1 to 10% of the luminescent ceramic.
  • the matrix comprises a garnet structural material of a silicate, aluminate or aluminosilicate.
  • the substrate is Ca 3 (Al n Sc 1-n ) 2 Si 3 O 12 , Y 3 Mg 2 AlSi 2 O 12 or (Gd x Tb y Y z Lu 1-xyz ) 3 (Al m Ga 1-m 5 O 12 , where 0 ⁇ n ⁇ 0.1, 0 ⁇ x ⁇ 0.1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ m ⁇ 0.2.
  • the substrate is not doped with any lanthanide and transition metal elements.
  • the phosphor comprises an oxide garnet having a lanthanide as a center of luminescence.
  • the phosphor accounts for 5 to 70% by volume of the luminescent ceramic.
  • the transparent ceramic is the same material as the phosphor.
  • the transparent ceramic is Y 3 Al 5 O 12 and the phosphor is Y 3 Al 5 O 12 :Ce 3+ .
  • the transparent ceramic is Y 3 Al 5 O 12 and the phosphor is Lu 3 Al 5 O 12 :Ce 3+ .
  • the present invention includes the following beneficial effects:
  • the luminescent ceramic of the present invention comprises a transparent ceramic and a phosphor which are both garnet structure, and the hardness of the two is the same, and the process such as polishing coating is easy to be performed, so that the luminescent ceramic has good processability;
  • the transparent ceramic is an optically isotropic cubic system, so that the light has a high linear transmittance in the transparent ceramic, and the transparent ceramic and the phosphor belong to the garnet structure, The interface of the person is easy to scatter, so that the light can smoothly illuminate the phosphor through the transparent ceramic, thereby reducing the light loss during the process of light propagation inside the transparent ceramic and the process of entering the phosphor from the transparent ceramic;
  • FIG. 1 is a schematic structural view of a luminescent ceramic according to an embodiment of the present invention.
  • the invention concept of the luminescent ceramic of the invention mainly considers the synergistic effect of the material and structure of the matrix and the luminescent center which are the two main components of the luminescent ceramic from the material point of view, And give a solution to the new problems arising from the combination of the two.
  • the luminescent ceramic of the present invention is different from the fluorescent ceramic.
  • the fluorescent ceramic is mainly composed of a single crystal or a polycrystalline ceramic crystal, and the lanthanide element is substituted for the element of the ceramic crystal to form a luminescence. Center, thereby realizing the illuminating function of absorbing the excitation light to emit wavelength conversion by the laser; and the luminescent ceramic of the invention has the ceramic crystal as the main body and the phosphor particles as the illuminating center (of course, the phosphor luminescence is also the lanthanide inside the phosphor)
  • the element serves as the luminescent center of the phosphor.
  • the luminescent center has different illuminating centers.
  • the luminescent ceramic includes at least two parts of ceramic and phosphor, and the structure thereof is more complicated.
  • the luminescent ceramic of the present invention is different from the fluorescent glass.
  • the matrix is glass, which belongs to amorphous, and is different from the formation process of the ceramic as a crystal, and is formed by directly softening and re-solidifying the glass frit raw material. Ceramics are new crystalline materials formed by reaction crystallization of various oxide raw materials. The reaction requires more severe conditions such as temperature and pressure. Therefore, it is not a simple material replacement from fluorescent glass to fluorescent ceramics. There are essential differences. The difference in this process is that the combination of ceramic and phosphor is more closely combined with the phosphor and the phosphor, and the pores of the fluorescent glass appear more at the interface between the phosphor and the glass.
  • the matrix 102 is a cubic ceramic transparent ceramic having a garnet structure, and the luminescent center 101 is a garnet-structured phosphor.
  • the pores 103 have a size of 0.8 to 2 ⁇ m, and the pores occupy a volume fraction of the luminescent ceramic of 1 to 10%. When the pore size is within this range, the scattering effect on visible light is better.
  • the volume ratio of the pores considers both the problem of light transmittance of the luminescent ceramic when the pores are excessive, and the problem that the light transmittance of the luminescent ceramic is too large when the pores are too small.
  • the illuminating center 101 and the substrate 102 are both garnet structure (the garnet according to the present invention refers to an oxide garnet, and the chemical formula is A 3 B 2 (XO 4 ) 3 , wherein A, B, and X refer to The cation, O refers to the oxyanion, which optimizes the luminescent and mechanical properties of the luminescent ceramic.
  • the two structures are the same, so that the interface in which the illuminating center 101 is in direct contact with the substrate 102 is clean, and the generation of voids is avoided, thereby preventing light from being reflected during the process of entering the illuminating center 101 from the substrate 102, where the presence of the pores makes the substrate
  • the refractive index difference between 102 and the pores is large, and the light is easily totally reflected by the matrix 102 entering the pores, and the same structure of the matrix 102 and the luminescent center 101 will result in similar refractive indices of the two, so that the light is not easily reflected back when entering the luminescent center.
  • Substrate 102 is the same, so that the light is not easily reflected back when entering the luminescent center.
  • the illuminating center 101 and the substrate 102 belong to the garnet structure, and the hardness of the two is the same or similar.
  • the luminescent ceramic is prepared, it is easier to polish the surface of the luminescent ceramic; on the contrary, if the hardness difference between the two is large, then At the time of polishing, it may happen that the phosphor particles are entirely pulverized from the surface of the luminescent ceramic, resulting in pits on the surface of the luminescent ceramic.
  • the transparent ceramic of the garnet structure of the substrate 102 comprises a garnet structural material of silicate, aluminate or aluminosilicate.
  • the phosphor grain size is 5 to 30 ⁇ m
  • the transparent ceramic grain size is 1 to 3 ⁇ m, where the grain size refers to the D50 of the crystal grain.
  • the phosphor grain size is less than 5 ⁇ m, the luminous efficiency is low, which is not conducive to the improvement of the luminescence performance of the whole luminescent ceramic.
  • the phosphor grain size exceeds 30 ⁇ m, the excitation depth of the excitation light is not further increased, and the phosphor volume per unit volume is emitted. Efficiency will drop.
  • the grain size of the transparent ceramic is much smaller than the grain size of the phosphor, so that the luminescent ceramic can minimize the structure of the phosphor during the preparation process and avoid the decrease of the luminous efficiency of the phosphor.
  • the preparation of the luminescent ceramic of the invention comprises the following steps:
  • Step S1 obtaining a matrix material of a cubic ceramic transparent ceramic for preparing a garnet structure, and mixing the same;
  • Step S2 mixing the garnet-structured phosphor with the matrix material uniformly;
  • Step S3 sintering the phosphor with the matrix raw material, controlling the sintering atmosphere and pressure, and obtaining a luminescent ceramic including a matrix, an illuminating center and a pore, wherein the luminescent center is a garnet-connected phosphor, and the matrix is a garnet-structured cube. Crystalline transparent ceramics.
  • the steel mold is used for uniaxial pressing, the pressure is 5Mpa-50Mpa, the holding time is 30s to 5min, and the preform is subjected to cold isostatic pressing at a pressure of 100Mpa-300Mpa.
  • the obtained preform is subjected to high temperature sintering and debinding to remove organic substances (mainly binders, etc.) in the green body.
  • the degreased green body is sintered at a high temperature in a tube furnace to obtain a luminescent ceramic of a desired structure.
  • a high-purity nitrogen atmosphere (5N) is passed, and the sintering temperature is 1550 ° C - 1800 ° C for 2-12 h.
  • the obtained powder is ground and sieved, and then uniaxially pressed using a steel mold at a pressure of 5 MPa to 50 MPa, and the pressure holding time is 30 s to 5 minutes.
  • the molded part is subjected to cold isostatic pressing at a pressure of 100 MPa to 300 MPa.
  • the obtained preform is subjected to high temperature sintering and debinding to remove organic substances (mainly binders, etc.) in the green body.
  • the degreased green body is sintered at a high temperature in a tube furnace to obtain a luminescent ceramic of a desired structure.
  • a high-purity nitrogen hydrogen atmosphere (95% N 2 5% H 2 ) is passed, and the sintering temperature is 1550 ° C - 1800 ° C for 2-12 h.
  • the luminescent ceramic matrix transparent ceramic is Y 3 Al 5 O 12 and the luminescent center phosphor is Lu 3 Al 5 O 12 :Ce 3+ .
  • the luminescent ceramic of the invention can be applied to the field of illumination and display, for example, as a illuminating component of a car headlight, or as a illuminating component of a projector (especially laser excitation fluorescing) The color wheel part of the light source).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种发光陶瓷,包括基质、发光中心和气孔,基质为石榴石结构的立方晶系的透明陶瓷,发光中心为分布于所述基质内的石榴石结构的荧光粉,气孔分布于所述基质内,其尺寸为0.8~2μm,且气孔占发光陶瓷的体积分数为1~10%。相同晶体结构的陶瓷基质和荧光粉具有相近的硬度,提高了发光陶瓷的可加工性,且减少了光在陶瓷内部传播的损耗,此外,该发光陶瓷的气孔弥补了因陶瓷透光性好而散射不足的缺陷,使得光能够充分激发荧光粉发光,提高了发光陶瓷的发光效率。

Description

一种发光陶瓷 技术领域
本发明涉及荧光发光领域,特别是涉及一种发光陶瓷。
背景技术
目前荧光粉的封装方式主要为有机硅胶封装和无机玻璃封装两种,这两种封装方式的热导率均较低,且抗热破坏温度不高。硅胶的耐受温度一般在200℃以下,玻璃的耐受温度一般在600℃以下,不能满足一些极端激光照射下的应用。
纯相的荧光陶瓷虽然导热性好、耐高温,然而现存的荧光陶瓷普遍关注陶瓷的通透性,其光透过率高、发光效率低,在大功率激光的照射下,更多的光未被激发的透过了荧光陶瓷,而非激发产生受激荧光。
因此,一种导热性能优良、能够发射大功率受激荧光的波长转换结构亟待开发。
发明内容
针对上述现有技术的导热性能差、发光效率低的缺陷,本发明提供一种导热性能优异、发光效率高的发光陶瓷,包括基质、发光中心和气孔,基质为石榴石结构的立方晶系的透明陶瓷,发光中心分布于基质内,发光中心为石榴石结构的荧光粉,气孔分布于基质内,气孔的尺寸为0.8~2μm,气孔占发光陶瓷的体积分数为1~10%。
优选地,基质包括硅酸盐、铝酸盐或硅铝酸盐的石榴石结构材料。
优选地,基质为Ca3(AlnSc1-n)2Si3O12、Y3Mg2AlSi2O12或(GdxTbyYzLu1-x-y-z)3(AlmGa1-m)5O12,其中0≤n≤0.1,0≤x≤0.1,0≤y≤1,0≤z≤1,0≤m≤0.2。
优选地,基质不掺杂任何镧系元素和过渡金属元素。
优选地,荧光粉包括以镧系元素为发光中心的氧化物石榴石。
优选地,荧光粉包括Ca3(AlnSc1-n)2Si3O12:Ce3+、Y3Mg2AlSi2O12:Ce3+或(GdxTbyYzLu1-x-y-z)3(AlmGa1-m)5O12:Ce3+,其中0≤n≤0.1,0≤x≤0.1,0≤y≤1,0≤z≤1,0≤m≤0.2。
优选地,荧光粉的晶粒尺寸为5~30μm,透明陶瓷的晶粒尺寸为1~3μm。
优选地,荧光粉占发光陶瓷的体积分数为5~70%。
优选地,透明陶瓷与荧光粉为相同材料。
优选地,透明陶瓷为Y3Al5O12,荧光粉为Y3Al5O12:Ce3+
优选地,透明陶瓷为Y3Al5O12,荧光粉为Lu3Al5O12:Ce3+
与现有技术相比,本发明包括如下有益效果:
1、本发明的发光陶瓷包括同为石榴石结构的透明陶瓷和荧光粉,两者的硬度相同,易于进行抛光镀膜等工序,使得发光陶瓷具有良好的可加工性;
2、本发明的发光陶瓷中,透明陶瓷为光学上各向同性的立方晶系,使得光在透明陶瓷中具有很高的直线透过率,同时透明陶瓷和荧光粉同属于石榴石结构,两者的界面易发生散射,使得光能够顺利的透过透明陶瓷照射荧光粉,减少了光在透明陶瓷内部传播过程中及光由透明陶瓷进入荧光粉过程中的光损失;
3、本发明的发光陶瓷中包含尺寸为0.8~2μm的气孔,且气孔占发光陶瓷的体积分数为1~10%,保证了上述发光陶瓷内部的光损失较小、透过性好的情况下,能够加强光的散射,减少入射光直接透射的比例,使得光能够充分激发荧光粉发光,从而提高了发光陶瓷的发光效率。
附图说明
图1为本发明实施例的发光陶瓷的结构示意图。
具体实施方式
本发明发光陶瓷的发明构思主要从材料角度出发,充分考虑作为发光陶瓷两个主要组成部分的基质和发光中心的材料、结构的协同作用, 并对两者结合而产生的新问题给出解决方案。
首先要说明的是,本发明的发光陶瓷有别于荧光陶瓷,荧光陶瓷是以单晶或多晶的陶瓷晶体作为主体,通过掺杂镧系元素,使得镧系元素替换陶瓷晶体的元素形成发光中心,从而实现吸收激发光发出受激光的波长转换的发光功能;而本发明的发光陶瓷以陶瓷晶体作为主体,以荧光粉颗粒作为发光中心(当然,荧光粉发光也是以荧光粉内部的镧系元素作为荧光粉的发光中心),与荧光陶瓷相比,发光陶瓷的发光中心不同,发光陶瓷至少包括陶瓷和荧光粉两个部分,其结构更为复杂。
其次,本发明的发光陶瓷不同于荧光玻璃,在荧光玻璃中,基质为玻璃,属于非晶体,其与作为晶体的陶瓷的形成过程不同,是直接以玻璃粉原料软化再固化形成的。而陶瓷是以各种氧化物原料经过反应结晶形成的新的晶体物质,该反应需要更为苛刻的温度、压力等条件,因此从荧光玻璃到荧光陶瓷不是简单的材料替换,两者的形成过程有本质的区别。该过程的区别使得陶瓷与荧光粉的结合相较于玻璃与荧光粉的结合更为紧密,而荧光玻璃的孔隙更多的出现在荧光粉与玻璃之间的界面。
本发明的发明点,特意指出了在本发明的发光陶瓷中,气孔存在的必要性及气孔在尺寸和体积分数上的特殊性。这是基于本发明的发光陶瓷的“透明陶瓷”和“荧光粉”在结构上存在相似关系,这种性质导致如果没有气孔将产生问题——过多的光经发光陶瓷直接透射,荧光粉不能够被充分利用。如果没有透明陶瓷与荧光粉的结构相似作为先决条件,将不能产生该问题,也不能产生为解决该问题而设计的技术方案。
下面结合附图和实施方式对本发明实施例进行详细说明。
请参见图1,图1是本发明实施例的发光陶瓷的结构示意图,发光陶瓷100包括发光中心101、基质102和气孔103。
其中,基质102为石榴石结构的立方晶系的透明陶瓷,发光中心101为石榴石结构的荧光粉,气孔103的尺寸为0.8~2μm,气孔占发光陶瓷的体积分数为1~10%。气孔尺寸在该范围内时,对可见光的散射效果较佳。气孔的体积比既考虑了气孔过多时的发光陶瓷透光性问题,又考虑到了气孔过少时的发光陶瓷透光率过大的问题。
本发明所述的气孔尺寸,在气孔为球形时,指气孔的直径;当气孔为非球形时,气孔尺寸为该气孔的最小外接球的直径。
本实施例中,发光中心101和基质102同为石榴石结构(本发明所述的石榴石指代氧化物石榴石,化学式为A3B2(XO4)3,其中A、B、X指代阳离子,O指代氧阴离子),优化了发光陶瓷的发光性能和机械性能。首先,两者结构相同,使得发光中心101与基质102直接接触的界面洁净,避免了孔隙的产生,从而避免了光在由基质102进入发光中心101的过程中被反射,这里孔隙的存在使得基质102与孔隙的折射率差较大,光由基质102进入孔隙时容易全反射,而且基质102与发光中心101的结构相同将导致两者的折射率相近,使得光进入发光中心时不易被反射回基质102。其次,发光中心101和基质102同属于石榴石结构,两者的硬度相同或相仿,当发光陶瓷制备完毕,对发光陶瓷表面进行抛光时更为容易;相反,假若两者硬度差别较大,那么在抛光时,将可能发生荧光粉颗粒被整个从发光陶瓷表面磨出的情况,导致发光陶瓷表面坑坑洼洼。
本实施例中的透明陶瓷属于立方晶系,光学上为各向同性,有利于光在其内部直线传播,减少了光在传播过程中的不必要的损耗。该结构的透明陶瓷的可见光波段直线透过率可以达到80%以上。
在本实施例中,基质102的石榴石结构的透明陶瓷包括硅酸盐、铝酸盐或硅铝酸盐的石榴石结构材料。
在本实施例中,具体的,基质102可以选自Ca3(AlnSc1-n)2Si3O12,(GdxTbyYzLu1-x-y-z)3(AlmGa1-m)5O12或Y3Mg2AlSi2O12,其中0≤n≤0.1,0≤x≤0.1,0≤y≤1,0≤z≤1,0≤m≤0.2。
在本实施例中,基质102不掺杂任何镧系元素和过渡金属元素作为发光中心,也即,基质102本身不具备波长转换功能,在光的照射下,基质102不会产生不同波长的受激光。基质102只承担传递光和热的作用。
在本实施例中,荧光粉包括以镧系元素为发光中心的氧化物石榴石,用于将入射的光至少部分的转换为不同波长的受激光。具体的,荧光粉可以选自Ca3(AlnSc1-n)2Si3O12:Ce3+、 (GdxTbyYzLu1-x-y-z)3(AlmGa1-m)5O12:Ce3+或Y3Mg2AlSi2O12:Ce3+,其中0≤n≤0.1,0≤x≤0.1,0≤y≤1,0≤z≤1,0≤m≤0.2。在该类荧光粉中,Ce元素作为发光中心。
在本实施例中更优的实施方案中,透明陶瓷与荧光粉为相同的材料,也即,若透明陶瓷为Ca3(AlnSc1-n)2Si3O12,则荧光粉为Ca3(AlnSc1-n)2Si3O12:Ce3+,其中0≤n≤0.1。这样可以最大可能的使得基质与荧光粉的折射率、硬度相近,从而提高发光陶瓷的透光性能和可加工性。当然,两个化学式中的n可以为相同的数值,也可以为不同的数值,为避免混淆,荧光粉的化学式也可以写作Ca3(Aln’Sc1-n’)2Si3O12:Ce3+,其中0≤n’≤0.1。
同理,上述荧光粉也可以写作(Gdx’Tby’Yz’Lu1-x’-y’-z’)3(Alm’Ga1-m’)5O12:Ce3+,其中0≤x’≤0.1,0≤y’≤1,0≤z’≤1,0≤m’≤0.2。
在本实施例中,荧光粉晶粒尺寸为5~30μm,透明陶瓷的晶粒尺寸为1~3μm,这里的晶粒尺寸指晶粒的D50。荧光粉晶粒尺寸小于5μm时,发光效率低,不利于整个发光陶瓷发光性能的提高;而当荧光粉晶粒尺寸超过30μm时,激发光的激发深度不会进一步增加,荧光粉的单位体积发光效率会下降。透明陶瓷的晶粒尺寸远小于荧光粉的晶粒尺寸,使得发光陶瓷在制备过程中能够尽量不破坏荧光粉的结构,避免荧光粉的发光效率的下降。
下面对本发明的发光陶瓷的制备过程进行描述。
本发明发光陶瓷的制备包括如下步骤:
步骤S1:获取制备石榴石结构的立方晶系的透明陶瓷的基质原料,将其混合均匀;
步骤S2:将石榴石结构的荧光粉与基质原料混合均匀;
步骤S3:将荧光粉与基质原料烧结,控制烧结的气氛和压力,得到包括基质、发光中心和气孔的发光陶瓷,其中发光中心为石榴石接哦股的荧光粉,基质为石榴石结构的立方晶系的透明陶瓷。
实施例一
称取5.7059g Y2O3(纯度99.99%)、4.2941g Al2O3(纯度99.99%), 在乙醇中混合球磨,同时加入陶瓷粘结剂,使用氧化铝磨球球磨4-12h后,再加入5g Y3Al5O12:Ce3+荧光粉进行进一步球磨混合,球磨时间0.5h-2h,两次球磨结束后将球磨浆料进行干燥,干燥结束后将得到的粉末进行研磨过筛,先使用钢模进行单轴压制,压力为5Mpa-50Mpa,保压时间30s至5min,再将预成型件进行冷等静压,压力为100Mpa-300Mpa。
将得到的预成型件进行高温烧结排胶,以去除生坯中的有机物(主要为粘结剂等)。
将排胶后的生坯在管式炉中进行高温烧结,以得到所需结构的发光陶瓷。烧结时通有高纯氮气气氛(5N),烧结温度为1550℃-1800℃,时间为2-12h。
最后得到半透明的亮黄色的发光陶瓷,该发光陶瓷的基质透明陶瓷为Y3Al5O12,发光中心荧光粉为Y3Al5O12:Ce3+
实施例二
称取5.7059g Y2O3(纯度99.99%)、4.2941g Al2O3(纯度99.99%)、0.01g MgO(纯度99.9%)、硅酸四乙酯(TEOS,纯度99.99%)在乙醇中混合球磨,同时加入陶瓷粘结剂,使用氧化铝磨球球磨4-12h后,再加入5g Lu3Al5O12:Ce3+荧光粉进行进一步球磨混合,球磨时间0.5h-2h,两次球磨结束后将球磨浆料于70℃进行干燥,干燥结束后将得到的粉末进行研磨过筛,先使用钢模进行单轴压制,压力为5Mpa-50Mpa,保压时间30s至5min,再将预成型件进行冷等静压,压力为100Mpa-300Mpa。
将得到的预成型件进行高温烧结排胶,以去除生坯中的有机物(主要为粘结剂等)。
将排胶后的生坯在管式炉中进行高温烧结,以得到所需结构的发光陶瓷。烧结时通有高纯氮氢气气氛(95%N2 5%H2),烧结温度为1550℃-1800℃,时间为2-12h。
最后得到半透明的深绿色的发光陶瓷,该发光陶瓷的基质透明陶瓷为Y3Al5O12,发光中心荧光粉为Lu3Al5O12:Ce3+
本发明的发光陶瓷,可以应用到照明和显示领域,例如可以作为汽车大灯的发光组件,也可以用于投影机的发光组件(特别是激光激发荧 光光源的色轮部分)。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (11)

  1. 一种发光陶瓷,其特征在于,包括基质、发光中心和气孔,所述基质为石榴石结构的立方晶系的透明陶瓷,所述发光中心分布于所述基质内,所述发光中心为石榴石结构的荧光粉,所述气孔分布于所述基质内,所述气孔的尺寸为0.8~2μm,所述气孔占发光陶瓷的体积分数为1~10%。
  2. 根据权利要求1所述的发光陶瓷,其特征在于,所述基质包括硅酸盐、铝酸盐或硅铝酸盐的石榴石结构材料。
  3. 根据权利要求1所述的发光陶瓷,其特征在于,所述基质为Ca3(AlnSc1-n)2Si3O12,(GdxTbyYzLu1-x-y-z)3(AlmGa1-m)5O12或Y3Mg2AlSi2O12,其中0≤n≤0.1,0≤x≤0.1,0≤y≤1,0≤z≤1,0≤m≤0.2。
  4. 根据权利要求2所述的发光陶瓷,其特征在于,所述基质不掺杂任何镧系元素和过渡金属元素。
  5. 根据权利要求1所述的发光陶瓷,其特征在于,所述荧光粉包括以镧系元素为发光中心的氧化物石榴石。
  6. 根据权利要求5所述的发光陶瓷,其特征在于,所述荧光粉包括Ca3(AlnSc1-n)2Si3O12:Ce3+、(GdxTbyYzLu1-x-y-z)3(AlmGa1-m)5O12:Ce3+或Y3Mg2AlSi2O12:Ce3+,其中0≤n≤0.1,0≤x≤0.1,0≤y≤1,0≤z≤1,0≤m≤0.2。
  7. 根据权利要求1所述的发光陶瓷,其特征在于,所述荧光粉的晶粒尺寸为5~30μm,所述透明陶瓷的晶粒尺寸为1~3μm。
  8. 根据权利要求1所述的发光陶瓷,其特征在于,所述荧光粉占发光陶瓷的体积分数为5~70%。
  9. 根据权利要求1所述的发光陶瓷,其特征在于,所述透明陶瓷与所述荧光粉为相同材料。
  10. 根据权利要求1所述的发光陶瓷,其特征在于,所述透明陶瓷为Y3Al5O12,所述荧光粉为Y3Al5O12:Ce3+
  11. 根据权利要求1所述的发光陶瓷,其特征在于,所述透明陶瓷为Y3Al5O12,所述荧光粉为Lu3Al5O12:Ce3+
PCT/CN2017/081386 2016-06-07 2017-04-21 一种发光陶瓷 WO2017211135A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610397160.3A CN107474839A (zh) 2016-06-07 2016-06-07 一种发光陶瓷
CN201610397160.3 2016-06-07

Publications (1)

Publication Number Publication Date
WO2017211135A1 true WO2017211135A1 (zh) 2017-12-14

Family

ID=60578335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081386 WO2017211135A1 (zh) 2016-06-07 2017-04-21 一种发光陶瓷

Country Status (2)

Country Link
CN (1) CN107474839A (zh)
WO (1) WO2017211135A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894028A (zh) * 2022-12-30 2023-04-04 江苏师范大学 一种用于交变电场指示的发光陶瓷及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110294628A (zh) * 2018-03-21 2019-10-01 深圳光峰科技股份有限公司 发光陶瓷及其制备方法
EP3549923A1 (en) * 2018-04-05 2019-10-09 Nichia Corporation Ceramic complex, light source for projector, and method for producing ceramic complex
CN110386820B (zh) * 2018-04-19 2021-02-26 深圳光峰科技股份有限公司 一种氮氧化铝基体的荧光陶瓷及其制备方法
JP7089175B2 (ja) * 2018-06-20 2022-06-22 日亜化学工業株式会社 セラミックス複合体、それを用いた発光装置及びセラミックス複合体の製造方法
CN110903088B (zh) * 2018-09-14 2022-02-22 深圳光峰科技股份有限公司 一种多孔荧光陶瓷及其制备方法、发光装置和投影装置
CN111072374B (zh) * 2018-10-18 2022-05-06 深圳光峰科技股份有限公司 荧光陶瓷及其制备方法
CN112441817B (zh) * 2019-08-29 2023-12-29 深圳市绎立锐光科技开发有限公司 荧光陶瓷及其制备方法、光源装置
CN116730711A (zh) * 2019-11-26 2023-09-12 深圳市中光工业技术研究院 荧光陶瓷及其制备方法、发光装置以及投影装置
CN117185832A (zh) * 2022-06-01 2023-12-08 深圳市绎立锐光科技开发有限公司 复相荧光陶瓷、复相荧光陶瓷的制备方法以及发光装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340240A (ja) * 2004-05-24 2005-12-08 Cimeo Precision Co Ltd 透光色変換部材及びその製造方法
CN101697367A (zh) * 2009-09-30 2010-04-21 烁光特晶科技有限公司 一种利用透明陶瓷制备led的方法
CN102173825A (zh) * 2011-01-28 2011-09-07 中国科学院上海光学精密机械研究所 用于钇铝石榴石基荧光透明陶瓷的烧结助剂及其使用方法
CN102718492A (zh) * 2012-05-21 2012-10-10 苏州晶品光电科技有限公司 一种led用透明陶瓷荧光基板的制备方法
US20150069299A1 (en) * 2013-09-11 2015-03-12 Nitto Denko Corporation Phosphor Ceramics and Methods of Making the Same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007107917A2 (en) * 2006-03-21 2007-09-27 Philips Intellectual Property & Standards Gmbh Electroluminescent device
CN101410479A (zh) * 2006-03-23 2009-04-15 皇家飞利浦电子股份有限公司 具有陶瓷石榴石材料的发光器件
RU2510946C1 (ru) * 2010-01-28 2014-04-10 Осрам Сильвания Инк. Люминесцентный керамический преобразователь и способ его изготовления

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340240A (ja) * 2004-05-24 2005-12-08 Cimeo Precision Co Ltd 透光色変換部材及びその製造方法
CN101697367A (zh) * 2009-09-30 2010-04-21 烁光特晶科技有限公司 一种利用透明陶瓷制备led的方法
CN102173825A (zh) * 2011-01-28 2011-09-07 中国科学院上海光学精密机械研究所 用于钇铝石榴石基荧光透明陶瓷的烧结助剂及其使用方法
CN102718492A (zh) * 2012-05-21 2012-10-10 苏州晶品光电科技有限公司 一种led用透明陶瓷荧光基板的制备方法
US20150069299A1 (en) * 2013-09-11 2015-03-12 Nitto Denko Corporation Phosphor Ceramics and Methods of Making the Same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894028A (zh) * 2022-12-30 2023-04-04 江苏师范大学 一种用于交变电场指示的发光陶瓷及其制备方法
CN115894028B (zh) * 2022-12-30 2023-07-14 江苏师范大学 一种用于交变电场指示的发光陶瓷及其制备方法

Also Published As

Publication number Publication date
CN107474839A (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
WO2017211135A1 (zh) 一种发光陶瓷
Zhang et al. Pore-existing Lu3Al5O12: Ce ceramic phosphor: An efficient green color converter for laser light source
JP5575488B2 (ja) 合成モノリシックセラミック発光変換体を含む照明システム
KR101769175B1 (ko) 발광성 물질
CN101723586B (zh) 一种应用于半导体照明的荧光粉/玻璃复合体及其制备方法
TWI453277B (zh) 具有多相矽鋁氮氧化物為基的陶瓷材料之發光裝置
CN104271705B (zh) 硅酸盐无机发光材料
WO2019047822A1 (zh) 一种具有特征微观结构的荧光陶瓷及其制备方法和应用
TW201140891A (en) Warelength converting member, optical elemant and manufacturing method for wavelength converting member
WO2021037226A1 (zh) 荧光陶瓷及其制备方法、光源装置
CN107602109B (zh) 一种Cr3+掺杂富铝镁铝尖晶石荧光透明陶瓷及其制备方法
WO2018090614A1 (zh) 一种发光陶瓷及发光装置
JP2015514144A (ja) 変換蛍光体および負の熱膨張係数を有する材料を含有する複合セラミック
WO2019169868A1 (zh) 荧光陶瓷及其制备方法
WO2018028265A1 (zh) 一种波长转换装置及其制备方法、发光装置和投影装置
WO2021135883A1 (zh) 荧光陶瓷的制备方法及荧光陶瓷
CN110642624A (zh) 一种蓝绿光发射的荧光透明陶瓷及其制备方法
WO2009083867A1 (en) Color filter for a light emitting device
CN101250407A (zh) 硼硅酸盐荧光粉及其制备方法
CN104710982B (zh) 一种稀土离子共掺杂的铝硅酸盐新型绿光荧光粉及其制备方法
Dai et al. Fabrication and properties of transparent Tb: YAG fluorescent ceramics with different doping concentrations
JP6852463B2 (ja) 蛍光体レンズ及び発光装置
WO2009101578A1 (en) Light emitting device comprising a ceramic material with line emitter activators and an interference filter
CN104909741A (zh) 一种石榴石型铝酸盐荧光陶瓷的制备方法及所制成的荧光陶瓷
CN104291823A (zh) 一种yag透明陶瓷及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17809575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17809575

Country of ref document: EP

Kind code of ref document: A1