RU2510946C1 - Люминесцентный керамический преобразователь и способ его изготовления - Google Patents
Люминесцентный керамический преобразователь и способ его изготовления Download PDFInfo
- Publication number
- RU2510946C1 RU2510946C1 RU2012136618/04A RU2012136618A RU2510946C1 RU 2510946 C1 RU2510946 C1 RU 2510946C1 RU 2012136618/04 A RU2012136618/04 A RU 2012136618/04A RU 2012136618 A RU2012136618 A RU 2012136618A RU 2510946 C1 RU2510946 C1 RU 2510946C1
- Authority
- RU
- Russia
- Prior art keywords
- ceramic
- pores
- pore
- light
- temperature
- Prior art date
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title abstract description 4
- 239000011148 porous material Substances 0.000 claims abstract description 44
- 229910010293 ceramic material Inorganic materials 0.000 claims abstract description 25
- 238000005245 sintering Methods 0.000 claims abstract description 20
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims abstract description 12
- 239000002243 precursor Substances 0.000 claims abstract description 10
- 239000011368 organic material Substances 0.000 claims abstract description 9
- 238000000465 moulding Methods 0.000 claims abstract description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000012798 spherical particle Substances 0.000 claims abstract description 7
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 6
- 239000000654 additive Substances 0.000 claims description 32
- 230000000996 additive effect Effects 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 12
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 9
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 9
- 229910052684 Cerium Inorganic materials 0.000 claims description 8
- -1 polyethylene Polymers 0.000 claims description 8
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 5
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 claims description 4
- 229920001577 copolymer Polymers 0.000 claims description 4
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 claims description 4
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 239000011230 binding agent Substances 0.000 claims description 3
- 238000001746 injection moulding Methods 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- 238000007569 slipcasting Methods 0.000 claims description 3
- 238000005266 casting Methods 0.000 claims description 2
- 238000001125 extrusion Methods 0.000 claims description 2
- 238000003825 pressing Methods 0.000 claims description 2
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 claims 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 claims 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 claims 1
- 238000009826 distribution Methods 0.000 abstract description 8
- 229910052799 carbon Inorganic materials 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 230000010354 integration Effects 0.000 abstract 1
- 238000010327 methods by industry Methods 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 22
- 230000005855 radiation Effects 0.000 description 17
- 239000000843 powder Substances 0.000 description 16
- 239000011159 matrix material Substances 0.000 description 7
- 229910019655 synthetic inorganic crystalline material Inorganic materials 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- 230000001902 propagating effect Effects 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- OYJAVFDOALZIRF-UHFFFAOYSA-N 2-methylprop-2-enoic acid;2-(2-methylprop-2-enoyloxy)ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(O)=O.CC(=C)C(=O)OCCOC(=O)C(C)=C OYJAVFDOALZIRF-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241000227425 Pieris rapae crucivora Species 0.000 description 1
- 229920005822 acrylic binder Polymers 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000013530 defoamer Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/7774—Aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/44—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/6263—Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/638—Removal thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/80—Optical properties, e.g. transparency or reflexibility
- C04B2111/807—Luminescent or fluorescent materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3229—Cerium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6025—Tape casting, e.g. with a doctor blade
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6582—Hydrogen containing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6588—Water vapor containing atmospheres
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/762—Cubic symmetry, e.g. beta-SiC
- C04B2235/764—Garnet structure A3B2(CO4)3
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0041—Processes relating to semiconductor body packages relating to wavelength conversion elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Luminescent Compositions (AREA)
- Led Device Packages (AREA)
Abstract
Изобретение относится к способу формирования люминесцентного керамического преобразователя и к люминесцентному керамическому преобразователю, полученному таким способом. Способ содержит этапы: а) объединение материала предшественника с порообразующей добавкой, чтобы образовать сырую смесь, причем порообразующая добавка содержит по существу сферические частицы углеродистого материала или органического материала; (b) формование сырой смеси, чтобы образовать сырую заготовку керамического преобразователя; (c) нагревание сырой заготовки, чтобы удалить порообразующую добавку и сформировать предварительно обожженный керамический материал, имеющий по существу сферически сформированные поры; и (d) спекание предварительно обожженного керамического материала, чтобы сформировать люминесцентный керамический преобразователь. Полученный люминесцентный керамический преобразователь содержит спеченный, монолитный керамический материал, который преобразует свет с первой длиной волны в свет со второй длиной волны. Керамический материал имеет по существу сферически сформированные поры со средним размером от 0,5 до 10 мкм. Технический результат - получение люминесцентного керамического преобразователя с регулируемым желательным распределением и размером пор. 2 н. и 15 з.п. ф-лы, 1 табл., 2 ил.
Description
ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ
Эта заявка притязает на приоритет по предварительной заявке на патент США № 61/298940, поданной 28 января 2010 года.
ОБЛАСТЬ ТЕХНИКИ
Это изобретение относится к керамическим преобразователям для преобразования светового излучения, эмитируемого источником света, в световое излучение с другой длиной волны. В частности, это изобретение относится к светоизлучающим диодам с преобразованием люминофором (pc-СИД (pc-LED)) и входящим в их структуру люминесцентным керамическим преобразователям.
УРОВЕНЬ ТЕХНИКИ, ПРЕДШЕСТВУЮЩИЙ ДАННОМУ ИЗОБРЕТЕНИЮ
Люминесцентные керамические преобразователи обычно используются в pc-СИД, эмитирующих белый свет, чтобы преобразовать часть синего светового излучения, эмитируемого полупроводниковым кристаллом (или чипом) СИД на базе InGaN в желтое световое излучение. Оставшееся непреобразованным синее световое излучение, которое проходит через преобразователь, и желтое световое излучение, эмитируемое преобразователем, объединяются с образованием общего белого светового излучения, эмитируемого pc-СИД. Люминесцентный керамический преобразователь в pc-СИД обычно представляет собой тонкую плоскую пластину из плотной люминесцентной керамики, которая прикреплена к поверхности кристалла СИД, так что пластина находится в непосредственной близости от поверхности, эмитирующей световое излучение. Для генерации белого светового излучения материал преобразователя обычно основан на алюмоиттриевом гранате, активированном церием (Y3Al5O12), на который также делается ссылка как на YAG:Ce. В структуру алюмоиттриевого граната (АИГ) может быть также включен гадолиний, чтобы несколько изменить цвет светового излучения (Gd-YAG:Ce). Добавление цериевого активатора к керамике предоставляет средство преобразования светового излучения. Церий частично поглощает синее световое излучение (длина волны примерно 420-490 нм), эмитируемое СИД, и повторно эмитирует желтое световое излучение с широким пиком при примерно 570 нм. Смесь синего и желтого светового излучения образует желательный белый свет.
Однородность цвета является важным аспектом для выпуска белого светового излучения pc-СИД. Например, при применении в автомобильных фарах важна однородность цвета света, испускаемого на дорогу, так что фара соответствует требованиям SAE (Общества автомобильных инженеров) и ECE (Экономической комиссии ООН для стран Европы). Одним из ключевых показателей в испускании луча однородного цвета является то, что светодиодная сборка выпускает световое излучение, которое проявляет минимальное изменение цвета, когда угол обзора изменяется по отношению к СИД. Это, однако, не является тривиальной проблемой, которая может быть легко преодолена.
Цвет светового излучения, эмитируемого pc-СИД, зависит от соотношения количеств непоглощенного синего светового излучения и преобразованного желтого светового излучения, на которое длина пути светового излучения, распространяющегося внутри преобразователя. В частности, когда световое излучение, эмитированное из нижележащего синего СИД, распространяется через керамический преобразователь, световые лучи, распространяющиеся перпендикулярно к поверхности кристалла, имеют более короткий путь к поверхности преобразователя, эмитирующей световое излучение, чем световые лучи, распространяющиеся через керамический преобразователь при углах, отстоящих от перпендикуляра. Степень поглощения (и последующей повторной эмиссии при большей длине волны) следует закону Бугера-Ламберта-Бера, который показывает экспоненциальную зависимость как от концентрации, так и от толщины:
I/Io = 10-ε c t ,(1)
где Io и I представляют собой интенсивности падающего и прошедшего светового излучения, ε представляет собой молярную поглощающую способность абсорбера c представляет собой концентрацию абсорбера, и t представляет собой оптическую длину пути через материал.
Следовательно, синее световое излучение, распространяющееся через керамический преобразователь при углах, отстоящих от перпендикуляра, будет поглощаться в большей степени вследствие большей оптической длины пути в материале. Результатом этого является то, что меньше синего светового излучения и больше желтого светового излучения выпускается из преобразователя при увеличенных углах, вследствие чего производится общая эмиссия, которая имеет более высокую долю желтого светового излучения по сравнению со световым излучением, эмитируемым нормально к поверхности преобразователя.
Одно из решений для уменьшения разницы в угловом смещении цвета заключается в создании более длинного оптического пути для всех световых лучей внутри преобразователя посредством введения рассеивающих центров в виде пор в керамическом материале. Большинство керамик изготавливаются посредством спекания прессовки, сформованной из порошков, которая содержит определенное количество и распределение пустого пространства, называемого «порами», между частицами порошка. Эти поры, образованные промежутками между частицами в керамическом теле, обычно называются матричными порами. Процесс спекания существенным образом сближает центры частиц порошка друг с другом, удаляет пористость до некоторой степени и увеличивает размер зерна кристаллов в керамическом материале. Если не стараться устранить все поры, температура спекания или время спекания могут быть уменьшены таким образом, что матричные поры не все устраняются во время уплотнения керамики.
Одним из недостатков использования порового рассеивания для уменьшения углового смещения цвета является снижение эффективности, связанное с чрезмерным рассеиванием порами. Эффективность рассеивания будет определяться как концентрацией, так и размером пор в керамике. Если концентрация пор слишком высокая, то световое излучение будет в основном поглощаться посредством внутреннего рассеивания и общий выход СИД будет уменьшен.
О влиянии размера пор на эффективность сообщается как об оптимальном при диаметре пор примерно 800 нм в международной заявке на патент № WO 2007/107917. Эффективность быстро падает при размерах пор менее 500 нм и монотонно уменьшается при размерах пор более 1000 нм. Однако трудно контролировать размер или распределение по размеру пор с помощью регулирования цикла спекания, поскольку слишком много факторов, например размер зерен, укладка частиц, рост зерен и температура спекания, влияют на конечную пористость в спеченном керамическом преобразователе. Таким образом, вследствие термодинамических и кинетических аспектов технологии керамики трудно получить керамику с желательным размером пор и распределением.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Целью данного изобретения является устранение недостатков предшествующего уровня техники.
Другой целью данного изобретения является предоставление надежного средства регулирования и достижения желательного распределения и размера пор в люминесцентном керамическом преобразователе.
В соответствии с целью данного изобретения предоставляется люминесцентный керамический преобразователь, который содержит спеченный, монолитный керамический материал, который преобразует световое излучение с первой длиной волны в световое излучение со второй длиной волны и имеет по существу сферически сформированные поры для рассеивания светового излучения. Предпочтительно, поры могут иметь средний размер от 0,5 до 10 мкм и более, предпочтительно средний размер от 0,5 до 2 мкм. Световое излучение с первой длиной волны является предпочтительно синим световым излучением, эмитируемым светоизлучающим диодом, и керамический материал предпочтительно состоит из алюмоиттриевого граната, активированного церием. Более предпочтительно, керамический материал может также содержать гадолиний.
В соответствии с другой целью данного изобретения также предоставляется способ формирования люминесцентного керамического преобразователя, включающий следующие стадии: (a) объединение материала предшественника с порообразующей добавкой, чтобы образовать сырую смесь, порообразующая добавка содержит по существу сферические частицы углеродистого материала или органического материала; (b) формование сырой смеси, чтобы образовать сырую заготовку керамического преобразователя; (c) нагревание сырой заготовки, чтобы удалить порообразующую добавку и сформировать предварительно обожженный керамический материал, имеющий по существу сферические поры; и (d) спекание предварительно обожженного керамического материала, чтобы сформировать люминесцентные керамические преобразователи. Предпочтительно, материал предшественника может содержать алюмоиттриевый гранат, активированный церием. Сырая смесь может также включать органическое связующее, чтобы способствовать формированию сырой заготовки. Способы формирования сырой заготовки включают инжекционное формование, литье в виде ленты, полусухое прессование, шликерное литье или экструзию. Предпочтительно, органический материал может являться полимером, и более предпочтительно органический материал может содержать сополимер метакрилата с этиленгликольдиметакрилатом (PMMA), полиэтилен или политетрафторэтилен. Углеродистый материал может предпочтительно содержать порошки углерода со стекловидными сферическими частицами.
В другом аспекте изобретения, сырая смесь может включать более чем один материал предшественника и нагревание сырой заготовки вызывает реакционное взаимодействие материалов предшественника, чтобы сформировать люминесцентный керамический преобразователь. В другом аспекте, нагревание на стадии (c) может быть выполнено при температуре вплоть до 1150°C. В еще одном аспекте, нагревание на стадии (c) может быть выполнено в цикле время-температура: увеличение температуры от 25°C до 400°C в течение 4 часов, увеличение температуры от 400°C до 1150°C в течение 4 часов, поддержание температуры при 1150°C в течение периода времени в интервале от 0,5 до 2 часов и уменьшение температуры до 25°C в течение 3 часов.
Предпочтительно, предварительно обожженный керамический материал спекается при 1700 - 1825°C, и более предпочтительно предварительно обожженный керамический материал спекается в атмосфере влажного водорода при 1700 - 1825°C в течение периода времени в интервале от 1 минуты до 2 часов.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг.1 представляет собой график координат цветности Cx и Cy светового излучения, эмитируемого керамическими преобразователями на базе Gd-YAG:Ce, приготовленными при разном процентном содержании порошка PMMA и при разных температурах спекания.
Фиг.2 представляет собой график угловых смещений цветов керамических преобразователей на базе Gd-YAG:Ce, приготовленных при разном процентном содержании порошка PMMA и при разных температурах спекания, при этом ΔCx представляет собой разность между координатой цветности Cx, измеренной при угле наблюдения 60 градусов от перпендикуляра, и координатой цветности Cx, измеренной при угле наблюдения 0 градусов от перпендикуляра.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Для лучшего понимания данного изобретения, вместе с его другими и дополнительными целями, преимуществами и возможностями, представлены на рассмотрение приведенное ниже описание и прилагаемая формула изобретения совместно с вышеописанными чертежами.
Применение порообразующей добавки предоставляет возможность образования пор при контролируемом количестве и распределении по размеру, которое зависит от выбора порообразующей добавки. Если органические или углеродистые частицы контролируемого размера и формы добавляются к сырому предшественнику керамического материала в качестве порообразующей добавки, они затем удаляются или выжигаются в процессе нагревания, оставляя после себя пустые пространства, сходные по размеру и форме с исходной добавкой. Эти пустоты затем образуют поры контролируемых размеров, которые обычно больше, чем размеры матричных пор. В отличие от матричных пор поры, образованные удалением добавок, являются термодинамически стабильными во время высокотемпературной обработки. Например, известно, что отношение размера пор к размеру зерен регулирует характер удаления пор во время спекания. Если размер пор больше чем в 1,47 раза размера зерен, то поры являются термодинамически стабильными во время спекания. Также посредством применения добавок имеет место более высокая степень регулирования пористости во время изготовления керамического преобразователя. Это предоставляет средство регулирования пор в керамическом преобразователе, которое способствует уменьшению углового смещения цвета для керамических преобразователей на СИД, эмитирующих синее световое излучение.
Предпочтительно, частицы порообразующей добавки являются по существу сферическими и имеют средний размер частиц от примерно 0,5 мкм до примерно 10 мкм, и более предпочтительно от 0,5 до 2 мкм. Измерения размера частиц могут быть выполнены с помощью обычных методов определения размера частиц, таких как анализ микрофотографий, полученных на сканирующем электронном микроскопе, седиментационный анализ с применением рассеивания света или рентгеновского излучения или методы с применением дифракции лазерного излучения. Размер частиц обычно относится к диаметру эквивалентной сферы, который пренебрегает морфологическими различиями между частицами. По существу сферическая форма является предпочтительной для частиц порообразующей добавки. Частицы добавки других форм, например в виде пластин, склонны к выстраиванию во время формования и приводят к взаимно ориентированным порам, не обладающим преимуществом в регулировании углового смещения цвета.
Частицы предпочтительно состоят из органического или углеродистого материала, который в основном удаляется из керамического преобразователя посредством термообработки. Предпочтительно, органическим материалом является PMMA (сополимер метакрилата с этиленгликольдиметакрилатом), тонкоизмельченный полиэтиленовый воск (например, MPP-635XF, доступный от Micro Powders Inc.) и политетрафторэтилен (например, Zonyl MP-1100, доступный от DuPont). Могут быть использованы частицы другого полностью сгорающего полимера или углеродистые частицы, включая, однако не ограничиваясь ими, стирол (Polysciences) и порошки углерода со стекловидными сферическими частицами (Sigma-Aldrich).
В одном из вариантов осуществления порообразующая добавка, изготовленная из сополимера метакрилата с этиленгликольдиметакрилатом (PMMA), добавляется во время нахождения в сыром состоянии. Термины «сырое состояние» и «сырой» означают, что керамический материал, керамическая деталь, керамическая микроструктура или формовка керамического преобразователя еще не была подвергнута какой-либо высокотемпературной обработке. Добавка PMMA содержит геометрически правильные, по существу сферические частицы со средним распределением по размеру 8 мкм. Добавка удаляется посредством обработки сырого керамического материала при высокой температуре вплоть до 1150°C, чтобы сформировать поры в керамическом материале. Предварительно обожженная керамика затем спекается при температуре выше 1700°C. Во время спекания поры, образованные промежутками между частицами, т.е. матричными порами, существенно уменьшаются. Напротив, поры, образованные удалением порообразующей добавки, проявляют небольшое уменьшение, когда температура спекания увеличивается от 1700°C до 1775°C.
Влияние уровня содержания порообразующей добавки исследовалось посредством сравнения образцов керамики, не содержащей порообразующей добавки, и керамики с содержанием 9, 16 и 23 об.% (в расчете на объем в спеченном состоянии) добавленного PMMA в качестве порообразующей добавки. Результирующие цвета светового излучения, преобразованного керамическими преобразователями на базе Gd-YAG:Ce, приготовленными при разном процентном содержании порошка PMMA и при разных температурах спекания, представлены на Фиг.1. Когда количество порообразующей добавки увеличивается и когда температура спекания уменьшается, цвет светового излучения смещается к желтой области (верхний правый угол диаграммы цветности) вследствие увеличенного рассеивания светового излучения порами, что увеличивает оптическую длину пути, вызывающую увеличение поглощения синего света и эмиссии желтого света. Фиг.2 показывает, до какой степени порообразующая добавка уменьшает угловое смещение цвета, охарактеризованное посредством величины ΔCx, которая представляет собой разность между координатой цветности Cx, измеренной при угле падения 60 градусов, и координатой цветности Cx, измеренной при угле падения 0 градусов. Когда количество порообразующей добавки возрастает от 0% до 23%, угловое смещение цвета значительно уменьшается, как показано на Фиг.2.
В предпочтительном способе используется типичный состав замеса для литья в виде ленты при изготовлении пластин спеченного керамического преобразователя на базе АИГ, как представлено в Таблице 1. Значительные вариации в уровнях содержания церия и гадолиния могут быть использованы, чтобы реализовать разнообразие цветов и степени преобразования при данной толщине керамического преобразователя. Пластины спеченного керамического преобразователя на базе АИГ могут быть изготовлены из смеси отдельных оксидов или посредством приготовления замеса порошков Gd-YAG:Ce, подвергнутых предварительному реакционному взаимодействию.
Таблица 1 | ||||||||
Водный замес для литья в виде ленты** для (Y0,796Gd0,2Ce0,004)3Al5O12 | ||||||||
Компонент | Мас. % твердотельных частиц | Плотность | Объемный процент | Объем (см3) | Массовый процент | Масса (г) | ||
Вода | 0% | 1,00 | 66,68% | 48,61 | 40,90% | 48,49 | ||
WB4101 | 35% | 1,03 | 12,84% | 9,36 | 8,13% | 9,64 | ||
DF002 | 100% | 1,20 | 0,31% | 0,23 | 0,23% | 0,27 | ||
DS001 | 100% | 1,03 | 1,84% | 1,34 | 1,16% | 1,38 | ||
PL005 | 100% | 1,03 | 0,92% | 0,67 | 0,58% | 0,69 | ||
NH4OH | 100% | 1,00 | 0,95% | 0,69 | 0,58% | 0,69 | ||
Y2O3 | 100% | 5,01 | 6,67% | 4,86 | 20,54% | 24,35 | ||
Al2O3 | 100% | 3,97 | 7,95% | 5,80 | 19,42% | 23,02 | ||
Gd2O3 | 100% | 7,41 | 1,82% | 1,33 | 8,29% | 9,82 | ||
CeO2 | 100% | 7,65 | 0,0334% | 0,02 | 0,16% | 0,1865 | ||
**WB4101 представляет собой раствор акрилового связующего с добавками. DF002 представляет собой некремнийорганический пеногаситель. DS001 представляет собой полимерный диспергатор. PL005 представляет собой пластификатор с высоким pH. Эти органические химикаты специально разработаны для водного замеса для литья керамической ленты компанией Polymer Innovations, Inc, Виста, Калифорния. |
Замес, содержащий лишь порошок YAG:Ce или смесь оксида иттрия, оксида алюминия и оксида церия, с Gd или без него, обрабатывается с образованием керамических пластин. После измельчения в течение промежутка времени достаточно продолжительного, чтобы промотировать хорошую микроструктуру в сыром состоянии (хорошо перемешанные, хорошо уплотненные небольшие частицы порошка с малыми и имеющими узкое распределение по размерам пустыми пространствами между частицами), к замесу добавляются порообразующие добавки, которые дополнительно перемешиваются в течение периода времени, достаточного лишь для распределения добавки. После этого замес подвергают литью, сушат и нарезают или перфорируют с получением деталей желательного размера и формы. Желательной формой для пластины спеченного керамического преобразователя является обычно квадрат примерно 1 мм × 1 мм толщиной от 70 до 150 микрон. Один угол пластины обычно вырезают, чтобы предоставить пространство для проволочного соединения с верхней поверхностью кристалла СИД. Размер может быть таким малым, как квадрат со стороной 0,5 мм для кристаллов СИД меньшего размера.
Сырые детали размещают на поддерживающей пластине из оксида алюминия, которую затем помещают в печь с воздушной атмосферой и нагревают при использовании следующего типичного цикла время-температура:
От 25°C до 400°C в течение 4 часов.
От 400°C до 1150°C в течение 4 часов.
Поддержание при 1150°C в течение периода времени от 0,5 до 2 часов.
Охлаждение до 25°C в течение 3 часов.
Эта термообработка удаляет все органические и углеродистые компоненты, включая органические связующие, используемые для скрепления порошков, а также порообразующие добавки. Поддерживаемая температура при 1150°C является также достаточно высокой, чтобы обеспечить возможность взаимного сцепления частиц порошков с предоставлением деталей, обладающих прочностью, достаточной для обращения с ними и обработки. Порообразующие добавки выжигаются, оставляя пустоты, которые соответствуют их размерам и формам.
Предварительно обожженные керамические пластины перемещаются на молибденовые пластины и спекаются в атмосфере влажного водорода при 1700-1825°C в течение периода времени от 1 минуты до 2 часов при максимальной температуре. Во время спекания в атмосфере водорода пластины усаживаются, поскольку керамические порошки спекаются, и матричная пористость устраняется. Если первоначальные размеры частиц порошков и условия смешивания/измельчения подобраны и выполняются надлежащим образом и порообразующие добавки не добавляются в замес, то матричная пористость будет уменьшаться при повышенных температурах спекания до уровня, при котором деталь проявляет высокую степень прозрачности или светопроницаемости.
Наряду с тем, что здесь были представлены и описаны варианты осуществления данного изобретения, рассматриваемые как предпочтительные в настоящее время, очевидно, что специалистами в данной области техники могут быть сделаны различные изменения и модификации без отклонения от объема изобретения, который определяется прилагаемой формулой изобретения. В частности, несмотря на то что предпочтительный вариант осуществления, описанный в данном документе, относится к литой керамике в виде ленты, изготовленной с Ce в базовом АИГ, данное изобретение может быть распространено на другие люминесцентные керамические материалы и методы формования керамик, такие как инжекционное формование, шликерное литье, вырубное прессование и т.д. Добавление порообразующей добавки может быть использовано во всех различных методах формования керамики.
Claims (17)
1. Способ формирования люминесцентного керамического преобразователя, содержащий следующие этапы:
а) объединение материала предшественника с порообразующей добавкой, чтобы образовать сырую смесь, причем порообразующая добавка содержит по существу сферические частицы углеродистого материала или органического материала;
(b) формование сырой смеси, чтобы образовать сырую заготовку керамического преобразователя;
(c) нагревание сырой заготовки, чтобы удалить порообразующую добавку и сформировать предварительно обожженный керамический материал, имеющий по существу сферически сформированные поры; и
(d) спекание предварительно обожженного керамического материала, чтобы сформировать люминесцентный керамический преобразователь.
а) объединение материала предшественника с порообразующей добавкой, чтобы образовать сырую смесь, причем порообразующая добавка содержит по существу сферические частицы углеродистого материала или органического материала;
(b) формование сырой смеси, чтобы образовать сырую заготовку керамического преобразователя;
(c) нагревание сырой заготовки, чтобы удалить порообразующую добавку и сформировать предварительно обожженный керамический материал, имеющий по существу сферически сформированные поры; и
(d) спекание предварительно обожженного керамического материала, чтобы сформировать люминесцентный керамический преобразователь.
2. Способ по п.1, в котором материал предшественника содержит алюмоиттриевый гранат, активированный церием.
3. Способ по п.1, в котором сырая смесь также содержит органическое связующее.
4. Способ по п.1, в котором сырая заготовка формуется инжекционным формованием, литьем в виде ленты, полусухим прессованием, шликерным литьем или экструзией.
5. Способ по п.1, в котором органическим материалом является полимер.
6. Способ по п.1, в котором органический материал содержит сополимер метакрилата с этиленгликольдиметакрилатом (РММА), полиэтилен или политетрафторэтилен.
7. Способ по п.1, в котором углеродистый материал содержит порошок углерода со стекловидными сферическими частицами.
8. Способ по п.1, в котором сырая смесь содержит более чем один материал предшественника, и нагревание сырой заготовки вызывает реакционное взаимодействие материалов предшественника, чтобы сформировать люминесцентный керамический преобразователь.
9. Способ по п.1, в котором нагревание на стадии (с) выполняется при температуре вплоть до 1150°C.
10. Способ по п.9, в котором нагревание на стадии (с) выполняется в цикле время-температура: увеличение температуры от 25°C до 400°C в течение 4 часов, увеличение температуры от 400°C до 1150°C в течение 4 часов, поддержание температуры при 1150°C в течение периода времени в интервале от 0,5 до 2 часов и уменьшение температуры до 25°C в течение 3 часов.
11. Способ по п.1, в котором спекание выполняется при температуре в интервале 1700 - 1825°C.
12. Способ по п.1, в котором предварительно обожженный керамический материал спекается в атмосфере влажного водорода при 1700 - 1825°C в течение периода времени в интервале от 1 минуты до 2 часов, после стадии (с).
13. Люминесцентный керамический преобразователь, сформированный способом по любому пп.1-12, содержащий: спеченный, монолитный керамический материал, который преобразует свет с первой длиной волны в свет со второй длиной волны, упомянутый керамический материал имеет по существу сферически сформированные поры,
причем поры имеют средний размер от 0,5 до 10 мкм.
причем поры имеют средний размер от 0,5 до 10 мкм.
14. Керамический преобразователь по п.13, в котором поры имеют средний размер от 0,5 до 2 мкм.
15. Керамический преобразователь по п.13, в котором свет с первой длиной волны эмитируется светоизлучающим диодом.
16. Керамический преобразователь по п.13, в котором керамическим материалом является алюмоиттриевый гранат, активированный церием.
17. Керамический преобразователь по п.16, в котором керамический материал также содержит гадолиний.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US29894010P | 2010-01-28 | 2010-01-28 | |
US61/298,940 | 2010-01-28 | ||
PCT/US2011/022715 WO2011094404A1 (en) | 2010-01-28 | 2011-01-27 | Luminescent ceramic converter and method of making same |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2012136618A RU2012136618A (ru) | 2014-03-10 |
RU2510946C1 true RU2510946C1 (ru) | 2014-04-10 |
Family
ID=43919911
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012136618/04A RU2510946C1 (ru) | 2010-01-28 | 2011-01-27 | Люминесцентный керамический преобразователь и способ его изготовления |
Country Status (8)
Country | Link |
---|---|
US (1) | US8883055B2 (ru) |
EP (1) | EP2528992B2 (ru) |
JP (1) | JP2013518172A (ru) |
KR (1) | KR20120123114A (ru) |
CN (1) | CN102782088B (ru) |
CA (1) | CA2787389C (ru) |
RU (1) | RU2510946C1 (ru) |
WO (1) | WO2011094404A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2789398C1 (ru) * | 2021-10-19 | 2023-02-02 | Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ) | Способ получения бифазных керамических люминофоров для белых светодиодов |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201345869A (zh) * | 2012-04-18 | 2013-11-16 | Nitto Denko Corp | 用於燒結平面陶瓷之方法及裝置 |
US9205571B2 (en) * | 2012-04-18 | 2015-12-08 | Nitto Denko Corporation | Method and apparatus for sintering flat ceramics |
US9284485B2 (en) | 2012-11-07 | 2016-03-15 | Rolex Sa | Persistent phosphorescent composite material |
DE102013100832A1 (de) * | 2013-01-28 | 2014-07-31 | Schott Ag | Stark streuender keramischer Konverter sowie ein Verfahren zu dessen Herstellung |
DE102013100821B4 (de) * | 2013-01-28 | 2017-05-04 | Schott Ag | Polykristalline Keramiken, deren Herstellung und Verwendungen |
DE102013218451A1 (de) | 2013-09-14 | 2015-03-19 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Konversionselement für ein optisches oder optoelektronisches Bauelement und Verfahren zu seiner Herstellung |
US10591137B2 (en) | 2013-09-26 | 2020-03-17 | Osram Sylvania Inc. | Wavelength converter and light-emitting device having same |
DE102014105470A1 (de) | 2014-04-16 | 2015-10-22 | Schott Ag | Schichtverbund, Verfahren zu dessen Herstellung, sowie dessen Verwendungen |
JP5989268B2 (ja) * | 2015-02-18 | 2016-09-07 | 日東電工株式会社 | 蛍光体セラミックス、封止光半導体素子、回路基板、光半導体装置および発光装置 |
CN106393671A (zh) * | 2015-07-28 | 2017-02-15 | 优克材料科技股份有限公司 | 光固化材料及三维打印方法 |
US10125314B2 (en) | 2015-09-29 | 2018-11-13 | Philips Lighting Holding B.V. | Lighting device with ceramic garnet |
CN106896632A (zh) | 2015-12-03 | 2017-06-27 | 精工爱普生株式会社 | 荧光体、波长转换元件、光源装置和投影仪 |
CN107474839A (zh) * | 2016-06-07 | 2017-12-15 | 深圳市光峰光电技术有限公司 | 一种发光陶瓷 |
CN107797312B (zh) * | 2016-09-07 | 2024-04-16 | 深圳光峰科技股份有限公司 | 陶瓷复合材料及其制备方法、波长转换器 |
US10442987B2 (en) * | 2017-08-31 | 2019-10-15 | Nichia Corporation | Fluorescent member, optical component, and light emitting device |
CN109467453B (zh) * | 2017-09-07 | 2021-12-07 | 中国科学院上海硅酸盐研究所 | 一种具有特征微观结构的荧光陶瓷及其制备方法和应用 |
EP3505503B1 (en) * | 2017-12-27 | 2020-04-08 | Schott Ag | Optical converter |
US20200161506A1 (en) * | 2018-11-21 | 2020-05-21 | Osram Opto Semiconductors Gmbh | Method for Producing a Ceramic Converter Element, Ceramic Converter Element, and Optoelectronic Component |
JP7157898B2 (ja) * | 2019-08-09 | 2022-10-21 | 株式会社タムラ製作所 | 波長変換部材 |
CN113024252A (zh) * | 2019-12-09 | 2021-06-25 | 上海航空电器有限公司 | 白光激光照明用多级孔结构陶瓷荧光体及其制备方法 |
CN117185832A (zh) * | 2022-06-01 | 2023-12-08 | 深圳市绎立锐光科技开发有限公司 | 复相荧光陶瓷、复相荧光陶瓷的制备方法以及发光装置 |
CN116239381B (zh) * | 2023-03-16 | 2024-04-12 | 海南钇坤智能科技有限公司 | 一种增强抑制离子转变能力的激光陶瓷材料及其制备方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62176970A (ja) * | 1985-06-27 | 1987-08-03 | トヨタ自動車株式会社 | メカニカルシ−ル用焼結セラミツク製スラストワツシヤ |
JP2796632B2 (ja) † | 1989-04-25 | 1998-09-10 | 科学技術庁無機材質研究所長 | 透明多結晶イットリウムアルミニウムガーネット及びその製造方法 |
JPH03218963A (ja) † | 1989-11-11 | 1991-09-26 | Kurosaki Refract Co Ltd | 透明イットリウム―アルミニウム―ガーネット―セラミックスの製造方法 |
JPH07291759A (ja) * | 1994-04-27 | 1995-11-07 | Ngk Spark Plug Co Ltd | 多孔質セラミックスの製造方法 |
JP2003131001A (ja) * | 2001-05-25 | 2003-05-08 | Shipley Co Llc | 多孔性光学物質 |
US7554258B2 (en) * | 2002-10-22 | 2009-06-30 | Osram Opto Semiconductors Gmbh | Light source having an LED and a luminescence conversion body and method for producing the luminescence conversion body |
JP4967111B2 (ja) * | 2003-03-20 | 2012-07-04 | 独立行政法人産業技術総合研究所 | アルミナ基多孔質セラミックス及びその製造方法 |
US7732349B2 (en) * | 2004-11-30 | 2010-06-08 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of insulating film and semiconductor device |
EP1862035B1 (en) * | 2005-03-14 | 2013-05-15 | Koninklijke Philips Electronics N.V. | Phosphor in polycrystalline ceramic structure and a light-emitting element comprising same |
JP2007217254A (ja) * | 2006-02-20 | 2007-08-30 | Hiroshima Industrial Promotion Organization | 多孔質リン酸カルシウム系セラミックス及びその製造方法 |
DE102006008879A1 (de) * | 2006-02-27 | 2007-08-30 | Merck Patent Gmbh | Verfahren zum Einbau von Nanophosphoren in mikrooptische Strukturen |
JP5049336B2 (ja) * | 2006-03-21 | 2012-10-17 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | エレクトロルミネセントデバイス |
US8113675B2 (en) * | 2006-11-07 | 2012-02-14 | Koninklijke Philips Electronics N.V. | Arrangement for emitting mixed light |
WO2008153749A1 (en) | 2007-05-25 | 2008-12-18 | Massachusetts Institute Of Technology | Batteries and electrodes for use thereof |
US8728835B2 (en) | 2008-01-15 | 2014-05-20 | Koninklijke Philips N.V. | Light scattering by controlled porosity in optical ceramics for LEDs |
-
2011
- 2011-01-27 WO PCT/US2011/022715 patent/WO2011094404A1/en active Application Filing
- 2011-01-27 US US13/522,049 patent/US8883055B2/en not_active Expired - Fee Related
- 2011-01-27 EP EP11703967.7A patent/EP2528992B2/en not_active Not-in-force
- 2011-01-27 CA CA2787389A patent/CA2787389C/en not_active Expired - Fee Related
- 2011-01-27 KR KR1020127022555A patent/KR20120123114A/ko active Search and Examination
- 2011-01-27 RU RU2012136618/04A patent/RU2510946C1/ru active
- 2011-01-27 CN CN201180007665.XA patent/CN102782088B/zh not_active Expired - Fee Related
- 2011-01-27 JP JP2012551284A patent/JP2013518172A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2789398C1 (ru) * | 2021-10-19 | 2023-02-02 | Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ) | Способ получения бифазных керамических люминофоров для белых светодиодов |
Also Published As
Publication number | Publication date |
---|---|
EP2528992A1 (en) | 2012-12-05 |
US20120326344A1 (en) | 2012-12-27 |
EP2528992B1 (en) | 2014-01-15 |
CN102782088A (zh) | 2012-11-14 |
CN102782088B (zh) | 2015-08-26 |
RU2012136618A (ru) | 2014-03-10 |
JP2013518172A (ja) | 2013-05-20 |
WO2011094404A1 (en) | 2011-08-04 |
US8883055B2 (en) | 2014-11-11 |
KR20120123114A (ko) | 2012-11-07 |
EP2528992B2 (en) | 2017-05-24 |
CA2787389A1 (en) | 2011-08-04 |
CA2787389C (en) | 2018-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2510946C1 (ru) | Люминесцентный керамический преобразователь и способ его изготовления | |
KR101500976B1 (ko) | Led용 광학 세라믹 내의 제어된 다공성에 의한 광 산란 | |
KR101799109B1 (ko) | 파장 변환 부재, 발광 장치 및 파장 변환 부재의 제조 방법 | |
TWI486254B (zh) | 發光陶瓷層板及其製造方法 | |
TW200904245A (en) | Illumination system comprising composite monolithic ceramic luminescence converter | |
TW200840404A (en) | Illumination system comprising monolithic ceramic luminescence converter | |
TWI453277B (zh) | 具有多相矽鋁氮氧化物為基的陶瓷材料之發光裝置 | |
JP6233978B2 (ja) | 波長変換焼成体 | |
JP2016204563A (ja) | 蛍光部材、その製造方法および発光装置 | |
JP5862841B1 (ja) | 光変換用セラミックス複合材料、その製造方法、およびそれを備えた発光装置 | |
CN112939578B (zh) | 荧光陶瓷及其制备方法、发光装置以及投影装置 | |
CN1526683A (zh) | 氧化锆烧结体及其制造方法 | |
CN109896851B (zh) | 具有浓度梯度的陶瓷复合体、制备方法及光源装置 | |
KR20130110076A (ko) | 희토류 원소가 확산된 산화물 세라믹 형광 재료 | |
JP2009215495A (ja) | 蛍光体 | |
JP6927509B2 (ja) | 蛍光部材およびその製造方法、並びに発光装置 | |
CN113024252A (zh) | 白光激光照明用多级孔结构陶瓷荧光体及其制备方法 | |
RU2818556C1 (ru) | Способ получения люминесцирующей оксидной композиции для преобразователя излучения в источниках белого света | |
CN110078510B (zh) | 一种自透镜激光照明用荧光陶瓷平片及其制造方法 | |
JP2022104527A (ja) | 蛍光体プレート | |
JP2023026191A (ja) | 蛍光部材およびその製造方法、並びに発光装置 |