CN109896853A - 具有较低膨胀系数的陶瓷复合体、制备方法及光源装置 - Google Patents

具有较低膨胀系数的陶瓷复合体、制备方法及光源装置 Download PDF

Info

Publication number
CN109896853A
CN109896853A CN201711313345.2A CN201711313345A CN109896853A CN 109896853 A CN109896853 A CN 109896853A CN 201711313345 A CN201711313345 A CN 201711313345A CN 109896853 A CN109896853 A CN 109896853A
Authority
CN
China
Prior art keywords
ceramic composite
low
thermal expansion
expansion coefficient
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711313345.2A
Other languages
English (en)
Other versions
CN109896853B (zh
Inventor
曾庆兵
朱宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Aviation Electric Co Ltd
Original Assignee
Shanghai Aviation Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Aviation Electric Co Ltd filed Critical Shanghai Aviation Electric Co Ltd
Priority to CN201711313345.2A priority Critical patent/CN109896853B/zh
Publication of CN109896853A publication Critical patent/CN109896853A/zh
Application granted granted Critical
Publication of CN109896853B publication Critical patent/CN109896853B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

本发明公开具有较低膨胀系数的陶瓷复合体、制备方法及光源装置。所述陶瓷复合体由石榴石结构荧光相及负膨胀系数荧光相组成,藉此,所述陶瓷复合体的热膨胀系数为‑3~3×10‑6K‑1;进一步地,所述陶瓷复合体的热膨胀系数为0~2×10‑6K‑1。本发明的有益效果在于:有效解决当前白光激光照明中荧光材料的抗热冲击性能弱,荧光材料的出白光显色指数偏低的问题。

Description

具有较低膨胀系数的陶瓷复合体、制备方法及光源装置
技术领域
本发明涉及激光照明领域,特别地是,具有较低膨胀系数的陶瓷复合体、制备方法及光源装置。
背景技术
激光二极管具有光电效率高、亮度高、准直性高、照射距离远、尺寸小等特点。相对于LED光源产品只适用于中低亮度领域,激光光源则可以适用于所有亮度的需求,尤其在高亮、高光效、方向性强等领域具有无可比拟的优势。
相对于白光LED光源的荧光材料工作时经受的蓝光光功率密度大部分在 1W/mm2以下,最大不超过5W/mm2,单颗激光二极管(如Nichia-4.5W裸露光斑尺寸约为1.5mm*0.5mm)的光功率密度约为1.5W/mm2,在实际应用中激光照明光源通常会采用多颗激光器共同汇聚到荧光材料表面,即激光照明用荧光材料所需要承受的蓝光辐照功率密度是白光LED照明的十倍甚至百倍以上。多束激光同时汇聚在荧光材料表面,会导致激光辐照处的材料表面急剧升温至200℃甚至500℃以上,从而引起急剧的热胀冷缩容易使荧光材料崩裂。这就使得激光照明用荧光材料需要具备超强的耐蓝光辐照能力,优异的高温荧光特性和优良抗热冲击性能。
为了适应白光激光照明对荧光材料的抗热冲击性能要求,一方面可以从基质材料选择包括引入第二相的角度来提升荧光相的综合导热系数,一方面可以从降低热膨胀系数的角度来提升抗热冲击性能,还可以从荧光相的制备工艺上来设计利于提升抗热冲击的微观结构,如晶粒尺寸、气孔率及气孔尺寸、结构缺陷等。
发明内容
本发明的第一目的在于,提供具有较高热导率的石榴石结构陶石榴石荧光相,同时引入具有负膨胀系数的钨酸盐、钼酸盐和钨钼酸盐,以实现降低该陶瓷复合体的综合热膨胀系数从而提高抗热冲击性能。该复合相三维相互包围均匀分布,使得该陶瓷复合体耐热性优良、适宜与蓝色发光元件组合构成高效率的白色发光装置的光转换用构件。
本发明的第二目的在于,在发光基质石榴石结构中引入Ce、Mn、Tb等稀土掺杂离子使石榴石荧光相的峰值波长调整到530~580nm,同时在具有负膨胀系数的钨酸盐、钼酸盐、钨钼酸盐中掺入Eu从而增加红光发射峰,使得含该陶瓷复合体的发光装置实现白光输出时获得更高的显色指数。
为了实现这一目的,本发明的技术方案如下:具有较低膨胀系数的陶瓷复合体,其特征在于,所述陶瓷复合体由石榴石结构荧光相及负膨胀系数荧光相组成,藉此,所述陶瓷复合体的热膨胀系数为3~3×10-6K-1(@20~200℃);进一步地,所述陶瓷复合体的热膨胀系数为0~2×10-6K-1(@20~200℃)。
作为具有较低膨胀系数的陶瓷复合体的优选方案,所述石榴石结构荧光相的热膨胀系数为7.8~8.2×10-6K-1(@20~200℃),所述负膨胀系数荧光相的热膨胀系数为-1~-12×10-6K-1(@20~200℃),其中,所述石榴石结构荧光相和所述负膨胀系数荧光相的相对体积含量比为1.0:(1.0±0.3);进一步地,所述石榴石结构荧光相和所述负膨胀系数荧光相的相对体积含量比为1.0:(0.8~1.0)。
作为具有较低膨胀系数的陶瓷复合体的优选方案,所述石榴石结构荧光相为(RE1-xCex)3(Al1-yMy)5O12,其中,RE为Y、Tb、Gd、Eu、Sm、Pr、Lu中一种或多种, M为Ga、Cr、Mn、Si、Sc、Ti、V中一种或多种,且,0.0001≤x≤0.1,0≤y≤ 0.5;进一步地,0.0005≤x≤0.05;更进一步地,0.001≤x≤0.03。
作为具有较低膨胀系数的陶瓷复合体的优选方案,所述负膨胀系数荧光相通式可表达为(RE1-x-yMyEux)2(W1-zMoz)3O12
(RE1-x-yMyEux)(W1-zMoz)2O8(RE1-x-yMyEux)(W1-zMoz)O4,其中,RE为Y、Gd、Sm、Pr、Lu、La中一种或多种,M为Ca、Ba、Sr、Al、Zr、Mn、Si、Ti、V中一种或多种,且0.0001≤x≤0.2,0≤y<1,0<x+y≤1,0≤z≤1;进一步地,0.0005≤x≤0.01;更进一步地,0.001≤x≤0.05。
本发明还提供具有较低膨胀系数的陶瓷复合体的制备方法,用以制备前述陶瓷复合体,包含有以下步骤,
步骤S1,称取原材料和烧结助剂;
步骤S2,球磨混料;
步骤S3,干燥过筛;
步骤S4,压片成型;
步骤S5,真空烧结;以及,
步骤S6,退火,得到所述陶瓷复合体。
作为具有较低膨胀系数的陶瓷复合体的制备方法的优选方案,步骤S1中,原材料分别为第一荧光粉和第二荧光粉或其前驱体;
所述第一荧光粉为(RE1-xCex)3(Al1-yMy)5O12,,其中,RE为Y、Tb、Gd、Eu、Sm、 Pr、Lu中一种或多种,M为Ga、Cr、Mn、Si、Sc、Ti、V中一种或多种,且,0.0001 ≤x≤0.1,0≤y≤0.5;进一步地,0.0005≤x≤0.05;更进一步地,0.001≤x ≤0.03;
所述第二荧光粉通式可表达为(RE1-x-yMyEux)2(W1-zMoz)3O12、 (RE1-x-yMyEux)(W1- zMoz)2O8、(RE1-x-yMyEux)(W1-zMoz)O4,其中,RE为Y、Gd、Sm、Pr、 Lu、La中一种或多种,M为Ca、Ba、Sr、Al、Zr、Mn、Si、Ti、V中一种或多种,且0.0001≤x≤0.2,0≤y<1,0<x+y≤1,0≤z≤1;进一步地,0.0005≤x≤ 0.01;更进一步地,0.001≤x≤0.05。
作为具有较低膨胀系数的陶瓷复合体的制备方法的优选方案,所述第一荧光粉及所述第二荧光粉或其前驱体的粒径D50为0.1~20um;更进一步地,所述第一荧光粉及所述第二荧光粉或其前驱体的粒径D50荧光粉粒径D50为0.5~5um。
作为具有较低膨胀系数的陶瓷复合体的制备方法的优选方案,步骤S1中,所述烧结助剂为Li+,Ca2+/Mg2+/Ba2+,La3+/Y3+,TEOS/SiO2或金属离子是以氧化物、碳酸盐、氟化物等形式的盐类;进一步地,所述烧结助剂的含量为0.01~5.0wt%;更进一步地,所述烧结助剂的含量为0.1~2.0wt%。
作为具有较低膨胀系数的陶瓷复合体的制备方法的优选方案,步骤S5中,先将真空炉温度升至1300~1600℃,保温时间为0.5~5小时,然后将温度降至 1200~1400℃,真空度10-2~10-4Pa,保温时间为1~20小时,进一步地,保温5~ 10小时。
本发明还提供光源装置,包含有,
蓝光激发器;以及,
前述陶瓷复合体。
与现有技术相比,本发明的有益效果至少在于:
1)在热膨胀系数为7.8~8.2x10-6K-1(@20~200℃)的石榴石结构的荧光相(RE1- xCex)3(Al1-yMy)5O12中引入具有负膨胀系数的第二相(RE1-x-yMyEux)2(W1-zMoz)3O12,其热膨胀系数为-1~-12x10-6K-1(@20~200℃),该陶瓷陶瓷复合体的具有较低的热膨胀系数从而提高抗热冲击性能;
2)在石榴石荧光相基质中引入Ce、Mn、Tb等稀土掺杂离子使石榴石荧光相的峰值波长为530~580nm,同时在具有负膨胀系数的钨酸盐、钼酸盐、钨钼酸盐中掺入Eu从而增加红光发射峰,使得含该陶瓷复合体的发光装置实现白光输出时获得更高的显色指数;
3)采取真空炉二步烧结的烧结方法,使得陶瓷晶体尺寸相对较小,能进一步提升陶瓷抗热冲击性能;
4)有效解决了当前白光激光照明中荧光材料的抗热冲击性能弱,荧光材料的出白光显色指数偏低的问题。
除了上面所描述的本发明解决的技术问题、构成技术方案的技术特征以及由这些技术方案的技术特征所带来的有益效果之外,本发明所能解决的其他技术问题、技术方案中包含的其他技术特征以及这些技术特征带来的有益效果,将结合附图作出进一步详细的说明。
附图说明
图1为本发明的陶瓷复合体的显微结构图。
图2为含有本发明的复相陶瓷的发光装置(透射式)。
图3为含有本发明的复相陶瓷的发光装置(反射式)。
具体实施方式
下面通过具体的实施方式结合附图对本发明作进一步详细说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
比较例1:
采用高纯氧化钇(Y2O3)、氧化铝(Al2O3)、氧化铈(CeO2)为原料,以氧化镁(MgO)和正硅酸乙酯(TEOS)作为烧结助剂。氧化镁(MgO)添加量为质量分数0.1%,正硅酸乙酯(TEOS)添加量为质量分数0.6%。按照(Y0.99Ce0.01)3Al5O12化学计量比配置好粉体原料,再以无水乙醇为球磨介质并放入氧化铝球磨罐进行湿法球磨制备陶瓷粉料,粉料经干燥、过筛、压片;再对其施以200MPa冷等静压形成坯体,陶瓷坯体经700℃保温4h预烧后,放入真空烧结炉中在1750℃真空度10-3Pa条件下烧结8小时,最后在马弗炉中经1450℃退火20h,获得(Y0.99Ce0.01)3Al5O12荧光陶瓷,将所得到的陶瓷材料进行切磨抛加工处理,得到1mm 厚度的白光照明用复相荧光陶瓷。
实施例1:
按照(Y0.99Ce0.01)3Al5O12与CaMoO4:Eu0.05相对体积含量为1:0.8称取相应荧光粉体,粒径为2um,以氧化镁(MgO)和正硅酸乙酯(TEOS)作为烧结助剂,氧化镁(MgO)添加量为复合相总质量的0.1%,正硅酸乙酯(TEOS)添加量为总质量的0.6%。按照比较例1中的球磨混料、成型得到陶瓷素坯,陶瓷坯体经700℃保温3h预烧后,放入真空烧结炉中在1550℃真空度10-3Pa条件下烧结8小时,最后在马弗炉中经1300℃退火20h,将所得到的陶瓷材料进行切磨抛加工处理,得到1mm厚度的白光照明用复相荧光陶瓷。
实施例2:
本实施例采用液相共沉淀法分别合成荧光相前躯体粉体(Y0.99Ce0.01)3Al5O12和CaMoO4:Eu0.05,然后取相对体积比为1:1.1称取相应粉体,并引入烧结助剂氧化镁(MgO)和正硅酸乙酯(TEOS),其中氧化镁(MgO)添加量为复合相总质量的 0.1%和正硅酸乙酯(TEOS)添加量为总质量的0.6%。按该组成配方配置好粉体原料,再以无水乙醇为球磨介质并放入氧化铝球磨罐进行湿法球磨制备陶瓷粉料,粉料经干燥、过筛、压片;再对其施以200MPa冷等静压形成坯体,陶瓷坯体经700℃保温3h预烧后,放入真空烧结炉中在1450℃真空度10- 3Pa条件下烧结2小时,降温至1350℃保温8小时,最后在马弗炉中经1300℃退火20h,将所得到的陶瓷材料进行切磨抛加工处理,得到1mm厚度的白光照明用复相荧光陶瓷。
实施例3:
本实施例采用液相共沉淀法分别合成荧光相前躯体粉体(Y0.99Ce0.01)3Al5O12和α-ZrW2O8:Eu0.05,然后取相对体积比为1:0.8称取相应粉体,并引入烧结助剂氧化镁(MgO)和正硅酸乙酯(TEOS),其中氧化镁(MgO)添加量为复合相总质量的0.1%和正硅酸乙酯(TEOS)添加量为总质量的0.6%。按该组成配方配置好粉体原料,再以无水乙醇为球磨介质并放入氧化铝球磨罐进行湿法球磨制备陶瓷粉料,粉料经干燥、过筛、压片;再对其施以200MPa冷等静压形成坯体,陶瓷坯体经700℃保温3h预烧后,放入真空烧结炉中在1500℃真空度10-3Pa条件下烧结2小时,降温至1400℃保温8小时,最后在马弗炉中经1300℃退火20h,将所得到的陶瓷材料进行切磨抛加工处理,得到1mm厚度的白光照明用复相荧光陶瓷。
实施例4:
本实施例采用液相共沉淀法分别合成荧光相前躯体粉体(Y0.99Ce0.01)3Al5O12和α-ZrW2O8:Eu0.05,然后取相对体积比为1:1.2称取相应粉体,并引入烧结助剂氧化镁(MgO)和正硅酸乙酯(TEOS),其中氧化镁(MgO)添加量为复合相总质量的0.1%和正硅酸乙酯(TEOS)添加量为总质量的0.6%。按该组成配方配置好粉体原料,再以无水乙醇为球磨介质并放入氧化铝球磨罐进行湿法球磨制备陶瓷粉料,粉料经干燥、过筛、压片;再对其施以200MPa冷等静压形成坯体,陶瓷坯体经700℃保温3h预烧后,放入真空烧结炉中在1400℃真空度10-3Pa条件下烧结2小时,降温至1300℃保温8小时,最后在马弗炉中经1300℃退火20h,将所得到的陶瓷材料进行切磨抛加工处理,得到1mm厚度的白光照明用复相荧光陶瓷。
表1为比较例及实施例1~4复相陶瓷组分、制备工艺参数及其抗热冲击性能。
这些实施例进行了热膨胀系数和抗热冲击性能测试。抗热冲击性能测试方法为将陶瓷片加热至一定温度,然后取出来放入零下20℃的冰箱中,发生炸裂的温度点即为热冲击测试失效温度。如表1所示掺入负膨胀系数物相的复相陶瓷热膨胀系数较低且热冲击失效温度大幅度提高,特别适合于大功率激光照明。由图 1电子扫描电镜照片(实施例2)可以看出石榴石相和负膨胀相是均匀分布的,且晶粒尺寸约2~3um。
含有该陶瓷复合体的光源装置示意图请参见图2和3,将上述陶瓷复合体的底面镀银并焊接在铜质散热基座5中,可以通过透射式或者反射式光路实现白光照明。利用单颗或多颗激光器1作为激发光源,经透镜2准直、聚束以及匀光装置3匀光后照射至该陶瓷复合体4表面,该陶瓷复合体将激发光源波长6转换为橙光,剩余蓝光与陶瓷片发射光混合获得亮度高且显色指数Ra>88的均匀白光 7。
以上仅表达了本发明的实施方式,其描述较为具体和详细,但且不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.具有较低膨胀系数的陶瓷复合体,其特征在于,所述陶瓷复合体由石榴石结构荧光相及负膨胀系数荧光相组成,藉此,所述陶瓷复合体的热膨胀系数为-3~3×10-6K-1;进一步地,所述陶瓷复合体的热膨胀系数为0~2×10-6K-1
2.根据权利要求1所述的具有较低膨胀系数的陶瓷复合体,其特征在于,所述石榴石结构荧光相的热膨胀系数为7.8~8.2×10-6K-1,所述负膨胀系数荧光相的热膨胀系数为-1~-12×10-6K-1,其中,所述石榴石结构荧光相和所述负膨胀系数荧光相的相对体积含量比为1.0:(1.0±0.3);进一步地,所述石榴石结构荧光相和所述负膨胀系数荧光相的相对体积含量比为1.0:(0.8~1.0)。
3.根据权利要求1或2所述的具有较低膨胀系数的陶瓷复合体,其特征在于,所述石榴石结构荧光相为(RE1-xCex)3(Al1-yMy)5O12,其中,RE为Y、Tb、Gd、Eu、Sm、Pr、Lu中一种或多种,M为Ga、Cr、Mn、Si、Sc、Ti、V中一种或多种,且,0.0001≤x≤0.1,0≤y≤0.5;进一步地,0.0005≤x≤0.05;更进一步地,0.001≤x≤0.03。
4.根据权利要求1或2所述的具有较低膨胀系数的陶瓷复合体,其特征在于,所述负膨胀系数荧光相通式可表达为(RE1-x-yMyEux)2(W1-zMoz)3O12、(RE1-x-yMyEux)(W1-zMoz)2O8或(RE1-x-yMyEux)(W1-zMoz)O4,其中,RE为Y、Gd、Sm、Pr、Lu、La中一种或多种,M为Ca、Ba、Sr、Al、Zr、Mn、Si、Ti、V中一种或多种,且0.0001≤x≤0.2,0≤y<1,0<x+y≤1,0≤z≤1;进一步地,0.0005≤x≤0.01;更进一步地,0.001≤x≤0.05。
5.具有较低膨胀系数的陶瓷复合体的制备方法,用以制备权利要求1至4中任意一项所述的陶瓷复合体,其特征在于,包含有以下步骤,
步骤S1,称取原材料和烧结助剂;
步骤S2,球磨混料;
步骤S3,干燥过筛;
步骤S4,压片成型;
步骤S5,真空烧结;以及,
步骤S6,退火,得到所述陶瓷复合体。
6.根据权利要求5所述的具有较低膨胀系数的陶瓷复合体的制备方法,其特征在于,步骤S1中,原材料分别为第一荧光粉和第二荧光粉或其前驱体。
7.根据权利要求6所述的具有较低膨胀系数的陶瓷复合体的制备方法,其特征在于,所述第一荧光粉及所述第二荧光粉或其前驱体的粒径D50为0.1~20um;更进一步地,所述第一荧光粉及所述第二荧光粉或其前驱体的粒径D50荧光粉粒径D50为0.5~5um。
8.根据权利要求5所述的具有较低膨胀系数的陶瓷复合体的制备方法,其特征在于,步骤S1中,所述烧结助剂为Li+,Ca2+/Mg2+/Ba2+,La3+/Y3+,TEOS/SiO2或金属离子是以氧化物、碳酸盐、氟化物等形式的盐类;进一步地,所述烧结助剂的含量为0.01~5.0wt%;更进一步地,所述烧结助剂的含量为0.1~2.0wt%。
9.根据权利要求5所述的具有较低膨胀系数的陶瓷复合体的制备方法,其特征在于,步骤S5中,先将真空炉温度升至1300~1600℃,保温时间为0.5~5小时,然后将温度降至1200~1400℃,真空度10-2~10-4Pa,保温时间为1~20小时,进一步地,保温5~10小时。
10.光源装置,其特征在于,包含有,
蓝光激发器;以及,
权利要求1至9中任意一项所述的陶瓷复合体。
CN201711313345.2A 2017-12-11 2017-12-11 具有较低膨胀系数的陶瓷复合体、制备方法及光源装置 Active CN109896853B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711313345.2A CN109896853B (zh) 2017-12-11 2017-12-11 具有较低膨胀系数的陶瓷复合体、制备方法及光源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711313345.2A CN109896853B (zh) 2017-12-11 2017-12-11 具有较低膨胀系数的陶瓷复合体、制备方法及光源装置

Publications (2)

Publication Number Publication Date
CN109896853A true CN109896853A (zh) 2019-06-18
CN109896853B CN109896853B (zh) 2022-07-15

Family

ID=66942891

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711313345.2A Active CN109896853B (zh) 2017-12-11 2017-12-11 具有较低膨胀系数的陶瓷复合体、制备方法及光源装置

Country Status (1)

Country Link
CN (1) CN109896853B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112225560A (zh) * 2020-10-23 2021-01-15 陕西天璇涂层科技有限公司 一种固相法制备低热导高温热障陶瓷CaMoNb2O9的方法
CN112851345A (zh) * 2019-11-12 2021-05-28 深圳市绎立锐光科技开发有限公司 荧光陶瓷以及光源装置
CN113024242A (zh) * 2019-12-09 2021-06-25 上海航空电器有限公司 获得高流明激光照明的超细陶瓷荧光体及其制备方法
CN113213928A (zh) * 2021-05-08 2021-08-06 松山湖材料实验室 荧光陶瓷、其制备方法及应用
WO2022199623A1 (zh) * 2021-03-24 2022-09-29 中国科学院福建物质结构研究所 一种增强单基质白光led陶瓷荧光体及其制备方法和应用
CN115650725A (zh) * 2022-10-12 2023-01-31 中国科学院上海光学精密机械研究所 一种具有多波段荧光发射的荧光陶瓷材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102173774A (zh) * 2011-01-28 2011-09-07 中国科学院上海光学精密机械研究所 掺铈铽钇石榴石透明陶瓷荧光材料及其制备方法
CN103964834A (zh) * 2014-02-18 2014-08-06 张红卫 一种用于白光led的石榴石型结构的复合荧光透明陶瓷体
CN104220398A (zh) * 2012-03-29 2014-12-17 默克专利有限公司 包含转化磷光体和具有负的热膨胀系数的材料的复合陶瓷

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102173774A (zh) * 2011-01-28 2011-09-07 中国科学院上海光学精密机械研究所 掺铈铽钇石榴石透明陶瓷荧光材料及其制备方法
CN104220398A (zh) * 2012-03-29 2014-12-17 默克专利有限公司 包含转化磷光体和具有负的热膨胀系数的材料的复合陶瓷
CN103964834A (zh) * 2014-02-18 2014-08-06 张红卫 一种用于白光led的石榴石型结构的复合荧光透明陶瓷体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周立亚等: "白光LED用红色荧光粉CaMoO4:Eu3+的制备及发光性能研究", 《化学研究与应用》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112851345A (zh) * 2019-11-12 2021-05-28 深圳市绎立锐光科技开发有限公司 荧光陶瓷以及光源装置
CN112851345B (zh) * 2019-11-12 2023-09-15 深圳市绎立锐光科技开发有限公司 荧光陶瓷以及光源装置
CN113024242A (zh) * 2019-12-09 2021-06-25 上海航空电器有限公司 获得高流明激光照明的超细陶瓷荧光体及其制备方法
CN112225560A (zh) * 2020-10-23 2021-01-15 陕西天璇涂层科技有限公司 一种固相法制备低热导高温热障陶瓷CaMoNb2O9的方法
WO2022199623A1 (zh) * 2021-03-24 2022-09-29 中国科学院福建物质结构研究所 一种增强单基质白光led陶瓷荧光体及其制备方法和应用
CN113213928A (zh) * 2021-05-08 2021-08-06 松山湖材料实验室 荧光陶瓷、其制备方法及应用
CN115650725A (zh) * 2022-10-12 2023-01-31 中国科学院上海光学精密机械研究所 一种具有多波段荧光发射的荧光陶瓷材料及其制备方法
CN115650725B (zh) * 2022-10-12 2023-11-03 中国科学院上海光学精密机械研究所 一种具有多波段荧光发射的荧光陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN109896853B (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
Zhou et al. Efficient spectral regulation in Ce: Lu 3 (Al, Cr) 5 O 12 and Ce: Lu 3 (Al, Cr) 5 O 12/Ce: Y 3 Al 5 O 12 transparent ceramics with high color rendering index for high-power white LEDs/LDs
CN109896853A (zh) 具有较低膨胀系数的陶瓷复合体、制备方法及光源装置
JP7056553B2 (ja) 蛍光体、発光装置、照明装置及び画像表示装置
CN109896852B (zh) 用于蓝光激发的白光照明的复相荧光陶瓷、制备方法及光源装置
Liu et al. Transparent Ce: GdYAG ceramic color converters for high-brightness white LEDs and LDs
Ma et al. High recorded color rendering index in single Ce,(Pr, Mn): YAG transparent ceramics for high-power white LEDs/LDs
WO2019223023A1 (zh) 一种yag荧光陶瓷及其制备方法和应用
EP2148910B1 (en) White emitting light source and luminescent material with improved colour stability
CN109437900A (zh) 一种荧光陶瓷块体、制备方法及其在激光照明中的应用
CN109896851B (zh) 具有浓度梯度的陶瓷复合体、制备方法及光源装置
JP2018021193A (ja) 焼結蛍光体、発光装置、照明装置、画像表示装置および車両用表示灯
CN108503352B (zh) 一种石榴石基红色荧光陶瓷材料及其制备方法
KR101762818B1 (ko) 백색 발광다이오드용 형광체 및 이의 제조방법
CN110204324B (zh) 一种绿色荧光透明陶瓷的制备方法和应用
CN106978176B (zh) 一种黄色荧光粉及制备方法和其在发光器件中的应用
CN109592978A (zh) 高功率led/ld照明用暖白光高显指荧光陶瓷及其制备方法与应用
KR20190013977A (ko) 형광분말, 이의 제조방법 및 이를 구비하는 발광소자
CN110305661A (zh) 红色氮化物萤光体及其发光装置
Zhao et al. Synthesis and luminescence properties of color-tunable Ce, Mn co-doped LuAG transparent ceramics by sintering under atmospheric pressure
JP2018077463A (ja) 光波長変換部材及び発光装置
CN111285682A (zh) 用于激光照明与显示的全光谱复相荧光陶瓷及制备方法
DU et al. Ce: YAG transparent ceramics enabling high luminous efficacy for high-power LEDs/LDs
CN109987932A (zh) 用于白光照明的复相荧光陶瓷、制备方法及光源装置
CN103992795B (zh) 一种led用红色荧光粉及其制备方法
Liu et al. Spectrum regulation of YAG: Ce/YAG: Cr/YAG: Pr phosphor ceramics with barcode structure prepared by tape casting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant