CN112851345B - 荧光陶瓷以及光源装置 - Google Patents

荧光陶瓷以及光源装置 Download PDF

Info

Publication number
CN112851345B
CN112851345B CN201911101172.7A CN201911101172A CN112851345B CN 112851345 B CN112851345 B CN 112851345B CN 201911101172 A CN201911101172 A CN 201911101172A CN 112851345 B CN112851345 B CN 112851345B
Authority
CN
China
Prior art keywords
red
ceramic
ceramic particles
particles
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911101172.7A
Other languages
English (en)
Other versions
CN112851345A (zh
Inventor
田梓峰
徐虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YLX Inc
Original Assignee
YLX Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YLX Inc filed Critical YLX Inc
Priority to CN201911101172.7A priority Critical patent/CN112851345B/zh
Priority to PCT/CN2020/123810 priority patent/WO2021093567A1/zh
Publication of CN112851345A publication Critical patent/CN112851345A/zh
Application granted granted Critical
Publication of CN112851345B publication Critical patent/CN112851345B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/68Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing chromium, molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7736Vanadates; Chromates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7794Vanadates; Chromates; Molybdates; Tungstates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate

Abstract

本发明涉及激光照明显示技术领域,公开了一种荧光陶瓷以及光源装置。该荧光陶瓷包括至少两种红光陶瓷颗粒,至少两种红光陶瓷颗粒具有不同的吸收波长范围,其中至少两种红光陶瓷颗粒具有相同的基质体系和激活剂,但基质离子的摩尔份数不同。通过上述方式,本发明能够拓宽荧光陶瓷的吸收波长范围。

Description

荧光陶瓷以及光源装置
技术领域
本发明涉及激光照明显示技术领域,特别是涉及一种荧光陶瓷以及光源装置。
背景技术
在目前的荧光转换型发光装置中,荧光陶瓷吸收激发光后辐射荧光,实现光转换。由于封装激光光源模组的单个芯片波长存在偏差,并且激光的波长由于驱动电流和芯片温度的变化也存在一定偏差,上述原因导致目前的荧光转换型发光装置中荧光陶瓷的吸收波长范围与理想值存在一定的偏差,致使大量的激发光未被荧光陶瓷吸收,荧光陶瓷吸收激发光的效率较低。
发明内容
有鉴于此,本发明主要解决的技术问题是提供一种荧光陶瓷以及光源装置,能够拓宽荧光陶瓷的吸收波长范围。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种荧光陶瓷,该荧光陶瓷包括至少两种红光陶瓷颗粒,至少两种红光陶瓷颗粒具有不同的吸收波长范围,其中至少两种红光陶瓷颗粒具有相同的基质体系和激活剂,但基质离子的摩尔份数不同。
在本发明的一实施例中,基质体系为钨酸盐、钼酸盐或钨钼酸盐。
在本发明的一实施例中,至少两种红光陶瓷颗粒阴离子的摩尔份数不同,或者阳离子的摩尔份数不同。
在本发明的一实施例中,至少两种红光陶瓷颗粒的化学表达式为RxLnyMzOs:Eu3+
其中,R为Li、Na、K、Rb中的至少一种,或R为Mg、Ca、Sr、Ba中的至少一种;
Ln为Sc、Y、Gd、Lu中的至少一种;
M为Mo、W中的至少一种;
x、y、z和s表示摩尔份数;
其中,至少两种红光陶瓷颗粒的化学表达式中的M所包括的元素和 /或元素配比不同;或者,至少两种红光陶瓷颗粒的化学表达式中的R 和/或Ln所包括的元素和/或元素配比不同。
在本发明的一实施例中,R至少包括Sr、Ba、Rb中的至少一种。
在本发明的一实施例中,至少两种红光陶瓷颗粒包括第一红光陶瓷颗粒、第二红光陶瓷颗粒和第三红光陶瓷颗粒,其中第一红光陶瓷颗粒的吸收波长范围为461~463nm,第二红光陶瓷颗粒的吸收波长范围为 464~466nm,第三红光陶瓷颗粒的吸收波长范围为467~469nm。
在本发明的一实施例中,荧光陶瓷还包括粘接相颗粒,粘接相颗粒为与至少两种红光陶瓷颗粒相同基质体系的基质材料。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种荧光陶瓷,该荧光陶瓷包括黄光陶瓷颗粒和/或绿光陶瓷颗粒,还包括至少两种红光陶瓷颗粒;其中,至少两种红光陶瓷颗粒具有不同的吸收波长范围,至少两种红光陶瓷颗粒具有相同的基质体系和激活剂,但基质离子的摩尔份数不同。
在本发明的一实施例中,黄光陶瓷颗粒的化学表达式为 Y3(Al,Ga)5O12:Ce3+,绿光陶瓷颗粒的化学表达式为Lu3(Al,Ga)5O12:Ce3+
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种光源装置,该光源装置包括如上述实施例所阐述的荧光陶瓷。
本发明的有益效果是:区别于现有技术,本发明提供一种荧光陶瓷,该荧光陶瓷包括至少两种红光陶瓷颗粒。其中,该至少两种红光陶瓷颗粒具有相同的基质体系和激活剂,但基质离子的摩尔份数不同,使得该至少两种红光陶瓷颗粒具有不同的吸收波长范围,而该荧光陶瓷的吸收波长范围即为该至少两种红光陶瓷颗粒的吸收波长范围的叠加,达到拓宽荧光陶瓷的吸收波长范围的效果,进而提高荧光陶瓷吸收激发光的效率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本发明荧光陶瓷一实施例的结构示意图;
图2是本发明红光陶瓷颗粒的吸收光谱和蓝色激光的发射光谱归一化的光谱示意图;
图3是本发明红光陶瓷颗粒的吸收光谱和发射光谱的光谱示意图;
图4是本发明单相荧光陶瓷和复相荧光陶瓷的吸收光谱的光谱示意图;
图5是本发明荧光陶瓷另一实施例的结构示意图;
图6是本发明光源装置一实施例的结构示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图,对本发明的具体实施方式做详细的说明。可以理解的是,此处所描述的具体实施例仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
为解决现有技术中荧光陶瓷吸收激发光效率较低的技术问题,本发明的一实施例提供一种荧光陶瓷,该荧光陶瓷包括至少两种红光陶瓷颗粒,至少两种红光陶瓷颗粒具有不同的吸收波长范围,其中至少两种红光陶瓷颗粒具有相同的基质体系和激活剂,但基质离子的摩尔份数不同。以下进行详细阐述。
请参阅图1,图1是本发明荧光陶瓷一实施例的结构示意图。
在本实施例中,荧光陶瓷1包括至少两种红光陶瓷颗粒11。该至少两种红光陶瓷颗粒11具有相同的基质体系和激活剂,但基质离子的摩尔份数不同,使得该至少两种红光陶瓷颗粒11具有不同的吸收波长范围。红光陶瓷颗粒11中基质离子的摩尔份数的调整,能够实现红光陶瓷颗粒11的吸收峰值的调整,即红光陶瓷颗粒11中基质离子的摩尔份数不同,则红光陶瓷颗粒11的吸收波长范围不同。其中,红光陶瓷颗粒11的吸收波长范围定义为红光陶瓷颗粒11的吸收峰值对应的半峰宽范围。图1展示了荧光陶瓷1包括三种红光陶瓷颗粒11的情况,包括第一红光陶瓷颗粒111、第二红光陶瓷颗粒112和第三红光陶瓷颗粒113,仅为论述需要,并非因此对荧光陶瓷1所包括的红光陶瓷颗粒11的种数造成限定。
具体地,该至少两种红光陶瓷颗粒阴离子的摩尔份数不同,或者阳离子的摩尔份数不同,实现红光陶瓷颗粒中基质离子的摩尔份数的调整,进而调整红光陶瓷颗粒的吸收波长范围。
进一步地,红光陶瓷颗粒的基质体系可以为钨酸盐、钼酸盐或钨钼酸盐等。发明人通过大量实验总结得到采用钨酸盐、钼酸盐或钨钼酸盐为基质体系的红光陶瓷颗粒,其更易于形成致密的荧光陶瓷,并且表现出良好的结构稳定性以及较高的光转换效率。
更进一步地,荧光陶瓷1还包括粘接相颗粒12,如图1所示。粘接相颗粒为与上述至少两种红光陶瓷颗粒相同基质体系的基质材料,即粘接相颗粒为相同基质体系的无离子掺杂的基质材料,例如无离子掺杂的钨酸盐、钼酸盐或钨钼酸盐等。如此一来,粘接相颗粒与红光陶瓷颗粒所形成的荧光陶瓷为连续相,有助于形成致密的荧光陶瓷,并且具备较高的结构强度以及良好的导热性能,红光陶瓷颗粒在进行光转换时,所产生大量的热量能够及时导出,能够进一步提高荧光陶瓷的稳定性。其中,红光陶瓷颗粒的光转换过程具体为红光陶瓷颗粒接收激发光照射,入射的激发光(例如蓝色激光等)被红光陶瓷颗粒吸收,进而红光陶瓷颗粒辐射红色荧光,完成光转换。
在一实施例中,上述至少两种红光陶瓷颗粒的化学表达式为 RxLnyMzOs:Eu3+,其所表达的含义为在基质中掺杂Eu3+。其中,R为Li、 Na、K、Rb中的至少一种,或R为Mg、Ca、Sr、Ba中的至少一种;Ln为Sc、Y、Gd、Lu中的至少一种;M为Mo、W中的至少一种;x、 y、z和s表示摩尔份数。
需要说明的是,上述红光陶瓷颗粒的化学表达式中R至少包括Sr、Ba、Rb中的至少一种。发明人通过大量实验总结得到当R包括Sr、Ba、Rb中的至少一种时,能够调整单相红光陶瓷颗粒的吸收波长范围,具体表现为调整吸收峰对应的波长,同时红光陶瓷颗粒在各方面均能表现出良好的性能,以满足实际使用的需求。
在目前的荧光转换型发光装置中,由于红光的热斯托克斯位移较大,导致红光容易发生热饱和。目前商用Eu2+掺杂的(Sr,Ca)AlSiN3:Eu2+红粉在600℃以上容易发生热分解,而且容易与氧化物体系的玻璃粉在高温发生化学反应导致无法制备出高效的红光发光玻璃。并且由于 (Sr,Ca)AlSiN3:Eu2+氮化物体系低扩散系数,导致无法制备高致密度的高效红光陶瓷,因而致使红光亮度无法提升,进而限制了显示光源的亮度,效率和色域的提升。
有鉴于此,本实施例所提供的红光陶瓷颗粒掺杂有Eu3+,Eu3+作为激活剂。Eu3+掺杂的氧化物,尤其是钨酸盐,钼酸盐及其复合盐类在波长为465nm的蓝光附近呈现较强的4f-4f锐线吸收(4f是跃迁电子轨道名称,锐线指的是窄带。由于4f-4f的跃迁是同一宇称态的跃迁,根据宇称不守恒定律,4f-4f跃迁是禁阻的,因而其吸收光谱是锐线),其与单颗465nm蓝色激光的发射光谱图归一化图如图2所示,其中光谱曲线 21为掺杂Eu3+的红光陶瓷颗粒的吸收光谱,光谱曲线22为蓝色激光的发射光谱。可以知道掺杂Eu3+的红光陶瓷的吸收峰半峰宽为4~5nm,仍然宽于波长为465nm的蓝色激光的发射峰半峰宽1.5nm,因而掺杂有 Eu3+的红光陶瓷能够有效吸收波长为465nm附近的蓝色激光。
并且,掺杂Eu3+的红光陶瓷的吸收光谱和发射光谱如图3所示,发射光谱在610~630nm的波长范围内出现较强的4f-4f锐线发射(4f是跃迁电子轨道名称,锐线指的是窄带。由于4f-4f的跃迁是同一宇称态的跃迁,根据宇称不守恒定律,4f-4f跃迁是禁阻的,因而其发射光谱是锐线),其发射光谱的色坐标X值可达0.64-0.68范围内变化,色纯度较高,可以超过REC.709红光标准。
然而,完成封装的激光光源模组中的发光芯片波长存在1~2nm的偏差,并且激光的波长是随驱动电流和芯片温度的变化大约存在2nm的偏差,上述原因所导致3~4nm的偏差有可能使掺杂Eu3+的红光陶瓷的吸收峰无法涵盖激发光的发射峰,因而限制了Eu3+掺杂的红光陶瓷的应用。
有鉴于此,本实施例通过基质离子的掺杂以微调红光陶瓷颗粒的晶体场,进而调整Eu3+掺杂的红光陶瓷颗粒的吸收峰值及其吸收波长范围,实现在461~469nm范围内变化。本实施例的Eu3+掺杂的红光陶瓷颗粒在波长465nm附近的吸收峰峰宽明显宽化,从而保证Eu3+掺杂的红光陶瓷颗粒吸收激发光的稳定性。同时,由于掺杂Eu3+的氧化物陶瓷制备工艺简单,一般在空气氛围下即可制备形成高致密度的陶瓷,成本较低。并且由于陶瓷的热导率和稳定性较高,因而能够有效提升其红光亮度,红光色纯度和可靠性。
并且,本实施例的同一基质体系、不同离子掺杂的红光陶瓷颗粒混合烧结形成的荧光陶瓷,其吸收光谱如图4所示。相较于单种Eu3+掺杂的红光陶瓷颗粒形成的单相荧光陶瓷而言,多种Eu3+掺杂的红光陶瓷颗粒所混合形成的复相荧光陶瓷其吸收峰峰宽明显加宽,从而保证Eu3+掺杂的红光陶瓷颗粒吸收激发光的稳定性。
在本实施例中,上述至少两种红光陶瓷颗粒的化学表达式中的M所包括的元素和/或元素配比不同,或者R和/或Ln所包括的元素和/或元素配比不同,进而具有不同的吸收峰值以及吸收波长范围。其中元素和 /或元素配比不同意味着不同种红光陶瓷颗粒所包括的部分元素不同或元素相同、元素配比不同。
以下针对复相荧光陶瓷进行阐述:
在一实施例中,上述至少两种红光陶瓷颗粒包括第一红光陶瓷颗粒、第二红光陶瓷颗粒和第三红光陶瓷颗粒,并且三种红光陶瓷颗粒是同一基质体系但具有不同元素和/或摩尔份数的阴离子。
具体地,第一红光陶瓷颗粒为CaWO4:(Eu3+,K+),其吸收波长范围为461~463nm,发射波长为613nm;第二红光陶瓷颗粒为 CaW0.5Mo0.5O4:(Eu3+,Na+),其吸收波长范围为464~466nm,发射波长为 615nm;第三红光陶瓷颗粒为CaMoO4:(Eu3+,Li+),其吸收波长范围为467~469nm,发射波长为617nm。其中,吸收波长范围可以理解为吸收峰对应的波长左右的1/2半峰宽所限定的波长范围。将第一红光陶瓷颗粒、第二红光陶瓷颗粒和第三红光陶瓷颗粒按照质量比1:2:1混合烧结形成的荧光陶瓷可以在461~469nm的波长范围内呈现吸收,发射波长为 613~617nm的窄带红色荧光,能够稳定吸收波长为465nm的蓝色激光,同时辐射高质量的红色荧光。
需要说明的是,元素的摩尔份数理解为化学表达式中该元素对应的元素配比数。例如在CaWO4:(Eu3+,K+)中,Ca的摩尔份数为1,O的摩尔份数为4。
在一实施例中,上述至少两种红光陶瓷颗粒包括第一红光陶瓷颗粒、第二红光陶瓷颗粒和第三红光陶瓷颗粒,并且三种红光陶瓷颗粒是同一基质体系但具有不同元素和/或摩尔份数的阳离子。
具体地,第一红光陶瓷颗粒为CaWO4:(Eu3+,K+),其最佳吸收波长为 465nm,发射波长为616nm;第二红光陶瓷颗粒为 Ca0.8Sr0.2WO4:(Eu3+,Na+),其吸收波长范围为461~463nm,发射波长为 612~615nm;第三红光陶瓷颗粒为Ca0.8Ba0.2WO4:(Eu3+,Li+),其吸收波长范围为464~468nm,发射波长为616~618nm。三种红光陶瓷颗粒所形成的复相荧光陶瓷其吸收波长范围为461~468nm,发射波长范围为 612~618nm。
在一实施例中,上述至少两种红光陶瓷颗粒包括第一红光陶瓷颗粒、第二红光陶瓷颗粒和第三红光陶瓷颗粒,并且三种红光陶瓷颗粒是同一基质体系但具有不同元素和/或摩尔份数的阳离子以及阴离子,其形成同一基质体系的不同阴、阳离子复配形式的复相荧光陶瓷。
具体地,第一红光陶瓷颗粒为Ca0.4Y0.1WO4:(Eu3+,K+),其吸收波长范围为460~462nm,发射波长范围为612~615nm;第二红光陶瓷颗粒为 Sr0.4Gd0.1W0.5Mo0.5O4:(Eu3+,Na+),其吸收波长范围为465~470nm,发射波长范围为616~618nm;第三红光陶瓷颗粒为Ba0.4La0.1WO4:(Eu3+,Li+),其吸收波长范围为464~466nm,发射波长为616~620nm。该三种红光陶瓷颗粒所形成的复相荧光陶瓷能够将其吸收波长范围拓宽至460~470nm,即在460~470nm的波长范围内呈现吸收,发射波长在610~620nm范围内。
以上可见,本发明将同一基质体系的不同离子掺杂的至少两种红光陶瓷颗粒同粘接相颗粒混合烧结制备得到掺杂Eu3+的复相荧光陶瓷。不同种的红光陶瓷颗粒的吸收波长不同,而所形成的荧光陶瓷的吸收波长范围即为不同种红光陶瓷颗粒的吸收波长范围的叠加,从而达到拓宽荧光陶瓷的吸收波长范围的效果,进而提高荧光陶瓷吸收激发光的效率。其中,粘接相颗粒可以为CaWO4或者CaMoO4等,在此不做限定。
请参阅图5,图5是本发明荧光陶瓷另一实施例的结构示意图。
在本实施例中,荧光陶瓷3包括黄光陶瓷颗粒31和/或绿光陶瓷颗粒32,还包括至少两种红光陶瓷颗粒33。其中,至少两种红光陶瓷颗粒33具有不同的吸收波长范围,至少两种红光陶瓷颗粒33具有相同的基质体系和激活剂,但基质离子的摩尔份数不同。需要说明的是,该至少两种红光陶瓷颗粒33已在上述实施例中详细阐述,在此就不再赘述。
为实现荧光陶瓷3能够按照产品需求输出对应波长的激发光,通过将对应不同波长的激发光的陶瓷颗粒与上述至少两种红光陶瓷颗粒33 进行组合,使得荧光陶瓷3能够输出对应波长的激发光。例如通过黄光陶瓷颗粒31和/或绿光陶瓷颗粒32与上述至少两种红光陶瓷颗粒33进行组合实现。
需要说明的是,为制备适用于蓝色激光激发的白光荧光陶瓷,选用黄光陶瓷颗粒31和绿光陶瓷颗粒32同红光陶瓷颗粒33、粘接相颗粒混合烧结制得受激辐射白光的荧光陶瓷3。其中,黄光陶瓷颗粒31和绿光陶瓷颗粒32不能吸收紫外光和/或近紫外光。
进一步地,黄光陶瓷颗粒31的化学表达式为Y3(Al,Ga)5O12:Ce3+,绿光陶瓷颗粒32的化学表达式为Lu3(Al,Ga)5O12:Ce3+。由于钼酸盐或者钨酸盐的陶瓷粉体合成温度一般在1200℃以下,较低的合成温度对于黄光陶瓷颗粒Y3Al5O12:Ce3+、绿光陶瓷颗粒Lu3Al5O12:Ce3+的效率影响较小,特别是含Ga的黄光陶瓷颗粒Y3(Al,Ga)5O12:Ce3+、绿光陶瓷颗粒 Lu3(Al,Ga)5O12:Ce3+体系影响较小,因而可以实现Eu3+红光陶瓷颗粒与黄光陶瓷颗粒Y3Al5O12:Ce3+、绿光陶瓷颗粒Lu3Al5O12:Ce3+的高效白光复合陶瓷的制备。
请参阅图6,图6是本发明光源装置一实施例的结构示意图。
在本实施例中,光源装置4包括荧光陶瓷41。荧光陶瓷41可以为上述实施例所阐述的荧光陶瓷,在此就不再赘述。光源装置4的具体应用形式可以为固定式光源、微投光源、电视以及其他投影设备等,在此不做限定。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (9)

1.一种荧光陶瓷,其特征在于,所述荧光陶瓷包括至少两种红光陶瓷颗粒,所述至少两种红光陶瓷颗粒具有不同的吸收波长范围,其中所述至少两种红光陶瓷颗粒具有相同的基质体系和激活剂;
所述至少两种红光陶瓷颗粒的化学表达式为RxLnyMzOs:Eu3+
其中,R为Li、Na、K、Rb中的至少一种,或R为Mg、Ca、Sr、Ba中的至少一种;
Ln为Sc、Y、Gd、Lu中的至少一种;
M为Mo、W中的至少一种;
x、y、z和s表示摩尔份数;
其中,所述基质体系为钨酸盐、钼酸盐或钨钼酸盐;
其中,所述至少两种红光陶瓷颗粒的化学表达式中的M所包括的元素和/或元素配比不同;或者,所述至少两种红光陶瓷颗粒的化学表达式中的R和/或Ln所包括的元素和/或元素配比不同;
所述荧光陶瓷,所述至少两种红光陶瓷颗粒包括第一红光陶瓷颗粒、第二红光陶瓷颗粒和第三红光陶瓷颗粒,其中所述第一红光陶瓷颗粒的吸收波长范围为461~463nm,所述第二红光陶瓷颗粒的吸收波长范围为464~466nm,所述第三红光陶瓷颗粒的吸收波长范围为467~469nm;
或所述第一红光陶瓷颗粒的最佳吸收波长为465nm,所述第二红光陶瓷颗粒的吸收波长范围为461~463nm,所述第三红光陶瓷颗粒的吸收波长范围为461~468nm。
2.根据权利要求1所述的荧光陶瓷,其特征在于,R至少包括Sr、Ba、Rb中的至少一种。
3.根据权利要求1所述的荧光陶瓷,其特征在于,所述至少两种红光陶瓷颗粒包括第一红光陶瓷颗粒、第二红光陶瓷颗粒和第三红光陶瓷颗粒;
其中所述第一红光陶瓷颗粒为CaWO4:(Eu3+,K+),所述第二红光陶瓷颗粒为CaW0.5Mo0.5O4:(Eu3+,Na+),所述第三红光陶瓷颗粒为CaMoO4:(Eu3+,Li+);
或,所述第一红光陶瓷颗粒为CaWO4:(Eu3+,K+),第二红光陶瓷颗粒为Ca0.8Sr0.2WO4:(Eu3 +,Na+),第三红光陶瓷颗粒为Ca0.8Ba0.2WO4:(Eu3+,Li+)。
4.根据权利要求3所述的荧光陶瓷,其特征在于,所述陶瓷颗粒的吸收波长范围为461~469nm,发射波长范围为613~617nm;
或,所述陶瓷颗粒的吸收波长范围为461nm~468nm,发射波长范围为612~618nm。
5.根据权利要求1至4任一项所述的荧光陶瓷,其特征在于,所述荧光陶瓷还包括粘接相颗粒,所述粘接相颗粒为与所述至少两种红光陶瓷颗粒相同基质体系的基质材料。
6.根据权利要求5所述的荧光陶瓷,其特征在于,所述粘接相颗粒为CaWO4或CaMoO4
7.一种荧光陶瓷,其特征在于,所述荧光陶瓷包括黄光陶瓷颗粒和/或绿光陶瓷颗粒,还包括至少两种红光陶瓷颗粒;
其中,所述至少两种红光陶瓷颗粒具有不同的吸收波长范围,所述至少两种红光陶瓷颗粒具有相同的基质体系和激活剂;
所述至少两种红光陶瓷颗粒的化学表达式为RxLnyMzOs:Eu3+
其中,R为Li、Na、K、Rb中的至少一种,或R为Mg、Ca、Sr、Ba中的至少一种;
Ln为Sc、Y、Gd、Lu中的至少一种;
M为Mo、W中的至少一种;
x、y、z和s表示摩尔份数;
其中,所述基质体系为钨酸盐、钼酸盐或钨钼酸盐;
其中,所述至少两种红光陶瓷颗粒的化学表达式中的M所包括的元素和/或元素配比不同;或者,所述至少两种红光陶瓷颗粒的化学表达式中的R和/或Ln所包括的元素和/或元素配比不同;
所述荧光陶瓷,所述至少两种红光陶瓷颗粒包括第一红光陶瓷颗粒、第二红光陶瓷颗粒和第三红光陶瓷颗粒,其中所述第一红光陶瓷颗粒的吸收波长范围为461~463nm,所述第二红光陶瓷颗粒的吸收波长范围为464~466nm,所述第三红光陶瓷颗粒的吸收波长范围为467~469nm;
或所述第一红光陶瓷颗粒的最佳吸收波长为465nm,所述第二红光陶瓷颗粒的吸收波长范围为461~463nm,所述第三红光陶瓷颗粒的吸收波长范围为461~468nm。
8.根据权利要求7所述的荧光陶瓷,其特征在于,黄光陶瓷颗粒的化学表达式为Y3(Al,Ga)5O12:Ce3+,绿光陶瓷颗粒的化学表达式为Lu3(Al,Ga)5O12:Ce3+
9.一种光源装置,其特征在于,所述光源装置包括如权利要求1至6任一项所述的荧光陶瓷或如权利要求7或8所述的荧光陶瓷。
CN201911101172.7A 2019-11-12 2019-11-12 荧光陶瓷以及光源装置 Active CN112851345B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911101172.7A CN112851345B (zh) 2019-11-12 2019-11-12 荧光陶瓷以及光源装置
PCT/CN2020/123810 WO2021093567A1 (zh) 2019-11-12 2020-10-27 荧光陶瓷以及光源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911101172.7A CN112851345B (zh) 2019-11-12 2019-11-12 荧光陶瓷以及光源装置

Publications (2)

Publication Number Publication Date
CN112851345A CN112851345A (zh) 2021-05-28
CN112851345B true CN112851345B (zh) 2023-09-15

Family

ID=75911947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911101172.7A Active CN112851345B (zh) 2019-11-12 2019-11-12 荧光陶瓷以及光源装置

Country Status (2)

Country Link
CN (1) CN112851345B (zh)
WO (1) WO2021093567A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045248A (zh) * 2013-01-04 2013-04-17 昆明理工大学 一种铋和铕离子共掺杂的钨酸盐荧光陶瓷粉及其制备方法
CN103146385A (zh) * 2013-03-15 2013-06-12 南京工业大学 一种双掺杂双钙钛矿红色荧光粉及其制备方法
WO2016207380A1 (en) * 2015-06-24 2016-12-29 Seaborough Ip I B.V. Phosphor ceramic
CN107935581A (zh) * 2017-11-20 2018-04-20 中国科学院上海光学精密机械研究所 两相均匀分布的复合石榴石闪烁陶瓷及其制备方法
CN108178629A (zh) * 2018-01-10 2018-06-19 上海应用技术大学 一种红色荧光陶瓷及其制备方法
CN109896853A (zh) * 2017-12-11 2019-06-18 上海航空电器有限公司 具有较低膨胀系数的陶瓷复合体、制备方法及光源装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006037730A1 (de) * 2006-08-11 2008-02-14 Merck Patent Gmbh LED-Konversionsleuchtstoffe in Form von keramischen Körpern
CN101536199A (zh) * 2006-11-10 2009-09-16 皇家飞利浦电子股份有限公司 包括单片陶瓷发光转换器的照明系统
WO2009031089A1 (en) * 2007-09-04 2009-03-12 Philips Intellectual Property & Standards Gmbh Light emitting device comprising a composite sialon-based ceramic material
TWI405838B (zh) * 2009-03-27 2013-08-21 Chunghwa Picture Tubes Ltd 紅光螢光材料及其製造方法、及白光發光裝置
CN101519589A (zh) * 2009-03-27 2009-09-02 中国地质大学(武汉) 一种高亮度小颗粒红色荧光粉及其制备方法
JP5910340B2 (ja) * 2012-06-15 2016-04-27 コニカミノルタ株式会社 Led装置、及びその製造方法
JP2014201726A (ja) * 2013-04-09 2014-10-27 スタンレー電気株式会社 セラミック蛍光体、その製造方法及び発光装置
EP3775101A1 (en) * 2018-04-06 2021-02-17 Lumileds LLC Luminescent materials

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045248A (zh) * 2013-01-04 2013-04-17 昆明理工大学 一种铋和铕离子共掺杂的钨酸盐荧光陶瓷粉及其制备方法
CN103146385A (zh) * 2013-03-15 2013-06-12 南京工业大学 一种双掺杂双钙钛矿红色荧光粉及其制备方法
WO2016207380A1 (en) * 2015-06-24 2016-12-29 Seaborough Ip I B.V. Phosphor ceramic
CN107801399A (zh) * 2015-06-24 2018-03-13 西博勒Ip I 私人有限公司 磷光体陶瓷
CN107935581A (zh) * 2017-11-20 2018-04-20 中国科学院上海光学精密机械研究所 两相均匀分布的复合石榴石闪烁陶瓷及其制备方法
CN109896853A (zh) * 2017-12-11 2019-06-18 上海航空电器有限公司 具有较低膨胀系数的陶瓷复合体、制备方法及光源装置
CN108178629A (zh) * 2018-01-10 2018-06-19 上海应用技术大学 一种红色荧光陶瓷及其制备方法

Also Published As

Publication number Publication date
CN112851345A (zh) 2021-05-28
WO2021093567A1 (zh) 2021-05-20

Similar Documents

Publication Publication Date Title
Cao et al. Full-spectrum white light-emitting diodes enabled by an efficient broadband green-emitting CaY2ZrScAl3O12: Ce3+ garnet phosphor
Zhang et al. A full-color emitting phosphor Ca9Ce (PO4) 7: Mn2+, Tb3+: efficient energy transfer, stable thermal stability and high quantum efficiency
Shang et al. How to produce white light in a single-phase host?
Geng et al. NaBaY (BO3) 2: Ce3+, Tb3+: A novel sharp green‐emitting phosphor used for WLED and FEDs
Ye et al. Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties
Zhang et al. Properties and application of single Eu2+-activated color tuning phosphors
US8344611B2 (en) Oxyfluoride phosphors and white light emitting diodes including the oxyfluoride phosphor for solid-state lighting applications
Liang et al. The synthesis and luminescence properties of a novel red-emitting phosphor: Eu 3+-doped Ca 9 La (PO 4) 7
Qiao et al. Narrow bandwidth luminescence in Sr2Li (Al, Ga) O4: Eu2+ by selective site occupancy engineering for high definition displays
WO2009108840A1 (en) Yellow emitting phosphors based on ce3+-doped aluminate and via solid solution for solid-state lighting applications
Khan et al. Modern aspects of strategies for developing single-phase broadly tunable white light-emitting phosphors
CN103314074B (zh) 赛伦磷光体、其制造方法和具有其的发光装置封装件
CN103237867A (zh) 硼磷酸盐磷光体和光源
Gou et al. Li doping effect on the photoluminescence behaviors of KSrPO4: Dy3+ phosphors for WLED light
WO2011053455A1 (en) Solid solution phosphors based on oxyfluoride and white light emitting diodes including the phosphors for solid state white lighting applications
Kim et al. Color-Tunable and Highly Luminous N3–-Doped Ba2–x Ca x SiO4− δN2/3δ: Eu2+ (0.0≤ x≤ 1.0) Phosphors for White NUV-LED
Chen et al. Photoluminescence properties and thermal stability of RbBaPO 4: Eu 3+ phosphor
Liu et al. Broad-band excited and tunable luminescence of CaTbAl3O7: Re3+ (Re3+= Ce3+ and/or Eu3+) nanocrystalline phosphors for near-UV wleds
Lu et al. Eu3+-based efficient red phosphors Y1-xEuxGa3 (BO3) 4 (0< x≤ 1): A potential candidate for near ultraviolet LEDs with high thermal stability
Zeng et al. Color-tunable properties and energy transfer in Ba3GdNa (PO4) 3F: Eu2+, Tb3+ phosphor pumped for n-UV w-LEDs
Yan et al. Color-tunable Al 6 Si 2 O 13: Eu 2+, Mn 2+ phosphor with high color rendering index based on energy transfer for warm white LEDs
Tang et al. Luminescence enhancement of Ca3Sr3 (VO4) 4: Eu3+, Sm3+ red-emitting phosphor by charge compensation
Liu et al. Closing the deep-blue gap: Realizing narrow-band deep-blue emission with strong n-UV excitation by cationic substitution for full-spectrum warm w-LED lighting
Han et al. Europium‐Activated KSrPO 4–(Ba, Sr) 2 SiO 4 Solid Solutions as Color‐Tunable Phosphors for Near‐UV Light‐Emitting Diode Applications
Kohale et al. Eu2+ luminescence in SrCaP2O7 pyrophosphate phosphor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant