WO2021093567A1 - 荧光陶瓷以及光源装置 - Google Patents

荧光陶瓷以及光源装置 Download PDF

Info

Publication number
WO2021093567A1
WO2021093567A1 PCT/CN2020/123810 CN2020123810W WO2021093567A1 WO 2021093567 A1 WO2021093567 A1 WO 2021093567A1 CN 2020123810 W CN2020123810 W CN 2020123810W WO 2021093567 A1 WO2021093567 A1 WO 2021093567A1
Authority
WO
WIPO (PCT)
Prior art keywords
red
ceramic
ceramic particles
fluorescent
particles
Prior art date
Application number
PCT/CN2020/123810
Other languages
English (en)
French (fr)
Inventor
田梓峰
徐虎
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2021093567A1 publication Critical patent/WO2021093567A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/68Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing chromium, molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7736Vanadates; Chromates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7794Vanadates; Chromates; Molybdates; Tungstates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate

Definitions

  • the present invention relates to the technical field of laser illumination and display, in particular to a fluorescent ceramic and a light source device.
  • the fluorescent ceramic absorbs the excitation light and radiates fluorescence to realize light conversion. Due to the deviation of the wavelength of the single chip of the packaged laser light source module, and the wavelength of the laser due to the change of the driving current and the temperature of the chip, the above reasons lead to the absorption wavelength range and the ideal value of the fluorescent ceramic in the current fluorescence conversion light-emitting device. There is a certain deviation, so that a large amount of excitation light is not absorbed by the fluorescent ceramic, and the efficiency of the fluorescent ceramic to absorb the excitation light is low.
  • the main technical problem to be solved by the present invention is to provide a fluorescent ceramic and a light source device, which can broaden the absorption wavelength range of the fluorescent ceramic.
  • a technical solution adopted by the present invention is to provide a fluorescent ceramic which includes at least two red light ceramic particles, at least two of which have different absorption wavelength ranges, and at least two of them have different absorption wavelength ranges.
  • the red light ceramic particles have the same matrix system and activator, but the mole fraction of matrix ions are different.
  • the matrix system is tungstate, molybdate or tungstomolybdate.
  • At least two red ceramic particles have different mole fractions of anions, or different mole fractions of cations.
  • the chemical expression of at least two kinds of red ceramic particles is R x Ln y M z O s :Eu 3+ ;
  • R is at least one of Li, Na, K, and Rb, or R is at least one of Mg, Ca, Sr, and Ba;
  • Ln is at least one of Sc, Y, Gd, and Lu;
  • M is at least one of Mo and W
  • x, y, z and s represent mole fractions
  • the elements and/or element ratios included in M in the chemical expressions of at least two red ceramic particles are different; or, the chemical expressions of at least two red ceramic particles include R and/or Ln The elements and/or element ratios are different.
  • R includes at least one of Sr, Ba, and Rb.
  • the at least two red light ceramic particles include a first red light ceramic particle, a second red light ceramic particle, and a third red light ceramic particle, wherein the absorption wavelength range of the first red light ceramic particle is 461-463nm, the absorption wavelength range of the second red ceramic particles is 464-466nm, and the absorption wavelength range of the third red ceramic particles is 467-469nm.
  • the fluorescent ceramic further includes adhesive phase particles, and the adhesive phase particles are matrix materials of the same matrix system as the at least two red ceramic particles.
  • another technical solution adopted by the present invention is to provide a fluorescent ceramic, which includes yellow ceramic particles and/or green ceramic particles, and also includes at least two red ceramic particles; wherein, At least two kinds of red light ceramic particles have different absorption wavelength ranges, and at least two kinds of red light ceramic particles have the same matrix system and activator, but different molar fractions of matrix ions.
  • the chemical expression of the yellow ceramic particles is Y 3 (Al,Ga) 5 O 12 :Ce 3+
  • the chemical expression of the green ceramic particles is Lu 3 (Al,Ga) 5 O 12 :Ce 3+ .
  • another technical solution adopted by the present invention is to provide a light source device, which includes the fluorescent ceramic as described in the above embodiments.
  • the beneficial effect of the present invention is that, different from the prior art, the present invention provides a fluorescent ceramic, which includes at least two kinds of red ceramic particles.
  • the at least two kinds of red ceramic particles have the same matrix system and activator, but the molar fractions of the matrix ions are different, so that the at least two kinds of red ceramic particles have different absorption wavelength ranges, and the absorption of the fluorescent ceramic
  • the wavelength range is the superposition of the absorption wavelength ranges of the at least two kinds of red light ceramic particles, which achieves the effect of broadening the absorption wavelength range of the fluorescent ceramics, thereby improving the efficiency of the fluorescent ceramics in absorbing excitation light.
  • FIG. 1 is a schematic diagram of the structure of an embodiment of the fluorescent ceramic of the present invention.
  • FIG. 2 is a schematic diagram of the normalized spectrum of the absorption spectrum of the red ceramic particles and the emission spectrum of the blue laser according to the present invention
  • FIG. 3 is a schematic diagram of the absorption spectrum and the emission spectrum of the red ceramic particles of the present invention.
  • FIG. 4 is a schematic diagram of the absorption spectra of the single-phase fluorescent ceramics and the multi-phase fluorescent ceramics of the present invention.
  • Fig. 5 is a schematic structural diagram of another embodiment of the fluorescent ceramic of the present invention.
  • Fig. 6 is a schematic structural diagram of an embodiment of a light source device of the present invention.
  • an embodiment of the present invention provides a fluorescent ceramic.
  • the fluorescent ceramic includes at least two types of red ceramic particles, and the at least two types of red ceramic particles have In different absorption wavelength ranges, at least two of the red light ceramic particles have the same matrix system and activator, but the mole fraction of matrix ions are different. This will be explained in detail below.
  • FIG. 1 is a schematic structural diagram of an embodiment of the fluorescent ceramic of the present invention.
  • the fluorescent ceramic 1 includes at least two types of red ceramic particles 11.
  • the at least two kinds of red ceramic particles 11 have the same matrix system and activator, but the molar fractions of the matrix ions are different, so that the at least two kinds of red ceramic particles 11 have different absorption wavelength ranges.
  • the adjustment of the mole fraction of the matrix ions in the red ceramic particles 11 can realize the adjustment of the absorption peak of the red ceramic particles 11, that is, if the mole fraction of the matrix ions in the red ceramic particles 11 is different, the red ceramic particles 11
  • the absorption wavelength range is different.
  • the absorption wavelength range of the red light ceramic particles 11 is defined as the half-width range corresponding to the absorption peak of the red light ceramic particles 11.
  • Figure 1 shows the case where the fluorescent ceramic 1 includes three types of red ceramic particles 11, including the first red ceramic particles 111, the second red ceramic particles 112 and the third red ceramic particles 113. This is only for discussion, not for this reason. The number of red ceramic particles 11 included in the fluorescent ceramic 1 is limited.
  • the at least two red ceramic particles have different mole fractions of anions, or different mole fractions of cations, so as to realize the adjustment of the mole fraction of matrix ions in the red ceramic particles, and then adjust the absorption wavelength of the red ceramic particles. range.
  • the matrix system of the red ceramic particles can be tungstate, molybdate or tungstomolybdate.
  • the inventors summarized through a large number of experiments and obtained red light ceramic particles using tungstate, molybdate or tungstate molybdate as the matrix system, which are easier to form dense fluorescent ceramics, and exhibit good structural stability and higher Light conversion efficiency.
  • the fluorescent ceramic 1 further includes adhesive phase particles 12, as shown in FIG. 1.
  • the bonding phase particles are the matrix materials of the same matrix system as the at least two red ceramic particles mentioned above, that is, the bonding phase particles are non-ion-doped matrix materials of the same matrix system, such as non-ion-doped tungstate and molybdenum. Salt or tungstomolybdate, etc.
  • the fluorescent ceramic formed by the bonding phase particles and the red ceramic particles is a continuous phase, which helps to form dense fluorescent ceramics, and has high structural strength and good thermal conductivity.
  • the red ceramic particles are in progress. During light conversion, a large amount of heat generated can be discharged in time, which can further improve the stability of fluorescent ceramics.
  • the light conversion process of the red ceramic particles is specifically that the red ceramic particles receive excitation light irradiation, the incident excitation light (such as blue laser, etc.) is absorbed by the red ceramic particles, and the red ceramic particles radiate red fluorescence to complete the light. Conversion.
  • the chemical expression of the above-mentioned at least two kinds of red ceramic particles is R x Ln y M z O s :Eu 3+ , which means that Eu 3+ is doped in the matrix.
  • R is at least one of Li, Na, K, and Rb, or R is at least one of Mg, Ca, Sr, and Ba; Ln is at least one of Sc, Y, Gd, and Lu; M is At least one of Mo and W; x, y, z, and s represent mole fractions.
  • R includes at least one of Sr, Ba, and Rb.
  • the inventor has concluded through a large number of experiments that when R includes at least one of Sr, Ba, and Rb, the absorption wavelength range of the single-phase red ceramic particles can be adjusted, which is specifically expressed by adjusting the wavelength corresponding to the absorption peak, and the red ceramic particles It can show good performance in all aspects to meet the needs of actual use.
  • the thermal Stokes shift of the red light is relatively large, so that the red light is prone to thermal saturation.
  • the commercial Eu 2+ doped (Sr,Ca)AlSiN 3 :Eu 2+ red powder is prone to thermal decomposition above 600 °C, and it is easy to chemically react with the glass powder of the oxide system at high temperature, which makes it impossible to prepare high-efficiency red powder.
  • Luminous glass due to the low diffusion coefficient of the (Sr,Ca)AlSiN 3 :Eu 2+ nitride system, it is impossible to prepare high-density and high-efficiency red light ceramics. As a result, the red light brightness cannot be improved, which limits the brightness, efficiency and efficiency of the display light source. Improvement of color gamut.
  • the red light ceramic particles provided in this embodiment are doped with Eu 3+ , and Eu 3+ is used as an activator.
  • Eu 3+ doped oxides, especially tungstates, molybdates and their composite salts exhibit strong 4f-4f sharp line absorption near blue light with a wavelength of 465 nm (4f is the name of the transition electron orbital, sharp line Refers to the narrow band. Because the 4f-4f transition is the transition of the same parity state, according to the law of parity non-conservation, the 4f-4f transition is forbidden, so its absorption spectrum is a sharp line), which is similar to a single 465nm blue
  • the normalized diagram of the emission spectrum of the color laser is shown in FIG.
  • the spectrum 21 is the absorption spectrum of the Eu 3+ doped red ceramic particles
  • the spectrum 22 is the emission spectrum of the blue laser. It can be known that the half-width of the absorption peak of the red ceramic doped with Eu 3+ is 4 ⁇ 5nm, which is still wider than the half-width of the emission peak of the blue laser with a wavelength of 465nm, which is 1.5nm, so the red doped with Eu 3+ Photoceramics can effectively absorb blue laser light with a wavelength around 465nm.
  • the absorption and emission spectra of Eu 3+-doped red ceramics are shown in Figure 3.
  • the emission spectrum shows strong 4f-4f sharp line emission in the wavelength range of 610 to 630 nm (4f is the name of the transition electron orbital
  • the sharp line refers to the narrow band. Since the 4f-4f transition is the transition of the same parity state, according to the law of parity non-conservation, the 4f-4f transition is forbidden, so its emission spectrum is a sharp line), its emission spectrum
  • the color coordinate X value can be changed within the range of 0.64-0.68, and the color purity is high, which can exceed the REC.709 red light standard.
  • the wavelength of the light-emitting chip in the packaged laser light source module has a deviation of 1 ⁇ 2nm, and the wavelength of the laser has a deviation of about 2nm with the change of the driving current and the chip temperature.
  • the deviation of 3 ⁇ 4nm caused by the above-mentioned reasons is It may make the ceramic doped Eu 3+ red absorption peak emission peak of the excitation light can not be covered, thus limiting the applications of ceramic red Eu 3+ doped.
  • this embodiment fine-tunes the crystal field of the red light ceramic particles through the doping of host ions, and then adjusts the absorption peak and the absorption wavelength range of the Eu 3+ doped red light ceramic particles to achieve a range of 461-469 nm Within changes.
  • the Eu 3+ -doped red ceramic particles of this embodiment have an obvious broadening of the absorption peak width near the wavelength of 465 nm, thereby ensuring the stability of the Eu 3+ -doped red ceramic particles in absorbing excitation light.
  • the preparation process of Eu 3+-doped oxide ceramics is simple, generally high-density ceramics can be prepared in an air atmosphere, and the cost is low. And because of the high thermal conductivity and stability of ceramics, it can effectively improve its red light brightness, red light color purity and reliability.
  • the absorption spectrum of the fluorescent ceramic formed by mixing and sintering the same matrix system and different ion-doped red ceramic particles in this embodiment is shown in FIG. 4.
  • the elements and/or element ratios included in M in the chemical expressions of the at least two red ceramic particles are different, or the elements and/or element ratios included in R and/or Ln are different , And have different absorption peaks and absorption wavelength ranges.
  • the different elements and/or element ratios mean that different types of red light ceramic particles include different elements or the same elements and different element ratios.
  • the above-mentioned at least two kinds of red ceramic particles include a first red ceramic particle, a second red ceramic particle and a third red ceramic particle, and the three red ceramic particles are of the same matrix system but have different Elements and/or mole fractions of anions.
  • the first red light ceramic particles are CaWO 4 : (Eu 3+ , K + ), the absorption wavelength range is 461-463 nm, and the emission wavelength is 613 nm;
  • the second red light ceramic particles are CaW 0.5 Mo 0.5 O 4 : (Eu 3+ ,Na + ), its absorption wavelength range is 464 ⁇ 466nm, emission wavelength is 615nm;
  • the third red light ceramic particle is CaMoO 4 :(Eu 3+ ,Li + ), its absorption wavelength range is 467 ⁇ 469nm , The emission wavelength is 617nm.
  • the absorption wavelength range can be understood as the wavelength range defined by the 1/2 half-width of the wavelength corresponding to the absorption peak.
  • the fluorescent ceramic formed by mixing and sintering the first red ceramic particles, the second red ceramic particles and the third red ceramic particles according to the mass ratio of 1:2:1 can exhibit absorption in the wavelength range of 461-469nm, and the emission wavelength is
  • the narrow-band red fluorescence of 613 ⁇ 617nm can absorb blue laser with a wavelength of 465nm stably and radiate high-quality red fluorescence at the same time.
  • the mole fraction of an element is understood as the element ratio corresponding to the element in the chemical expression.
  • the mole fraction of Ca is 1, and the mole fraction of O is 4.
  • the above-mentioned at least two kinds of red ceramic particles include a first red ceramic particle, a second red ceramic particle and a third red ceramic particle, and the three red ceramic particles are of the same matrix system but have different Elements and/or mole fractions of cations.
  • the first red light ceramic particles are CaWO 4 :(Eu 3+ , K + ), the best absorption wavelength is 465 nm, and the emission wavelength is 616 nm;
  • the second red light ceramic particles are Ca 0.8 Sr 0.2 WO 4 :( Eu 3+ ,Na + ), its absorption wavelength range is 461 ⁇ 463nm, emission wavelength is 612 ⁇ 615nm;
  • the third red light ceramic particle is Ca 0.8 Ba 0.2 WO 4 :(Eu 3+ ,Li + ), its absorption wavelength The range is from 464 to 468 nm, and the emission wavelength is from 616 to 618 nm.
  • the multiphase fluorescent ceramic formed by the three kinds of red ceramic particles has an absorption wavelength range of 461-468 nm and an emission wavelength range of 612-618 nm.
  • the above-mentioned at least two kinds of red ceramic particles include a first red ceramic particle, a second red ceramic particle and a third red ceramic particle, and the three red ceramic particles are of the same matrix system but have different Elements and/or mole fractions of cations and anions form a complex fluorescent ceramic with different anions and cations in the same matrix system.
  • the first red ceramic particles are Ca 0.4 Y 0.1 WO 4 : (Eu 3+ , K + ), the absorption wavelength range is 460-462 nm, and the emission wavelength range is 612-615 nm;
  • the second red ceramic particles are Sr 0.4 Gd 0.1 W 0.5 Mo 0.5 O 4 :(Eu 3+ ,Na + ), its absorption wavelength range is 465 ⁇ 470nm, emission wavelength range is 616 ⁇ 618nm;
  • the third red light ceramic particle is Ba 0.4 La 0.1 WO 4 : (Eu 3+ ,Li + ), its absorption wavelength range is 464 ⁇ 466nm, emission wavelength is 616 ⁇ 620nm.
  • the multiphase fluorescent ceramic formed by the three kinds of red light ceramic particles can broaden its absorption wavelength range to 460-470 nm, that is, it exhibits absorption in the wavelength range of 460-470 nm, and the emission wavelength is in the range of 610-620 nm.
  • the present invention at least two red ceramic particles doped with different ions of the same matrix system are mixed and sintered with the binder phase particles to prepare Eu 3+ -doped multiphase fluorescent ceramics.
  • Different kinds of red ceramic particles have different absorption wavelengths, and the absorption wavelength range of the formed fluorescent ceramics is the superposition of the absorption wavelength ranges of different kinds of red ceramic particles, so as to achieve the effect of broadening the absorption wavelength range of fluorescent ceramics, and then Improve the efficiency of fluorescent ceramics in absorbing excitation light.
  • the binder phase particles can be CaWO 4 or CaMoO 4, etc., which is not limited here.
  • FIG. 5 is a schematic structural diagram of another embodiment of the fluorescent ceramic of the present invention.
  • the fluorescent ceramic 3 includes yellow ceramic particles 31 and/or green ceramic particles 32, and also includes at least two types of red ceramic particles 33.
  • at least two kinds of red ceramic particles 33 have different absorption wavelength ranges, and at least two kinds of red ceramic particles 33 have the same matrix system and activator, but different molar fractions of matrix ions. It should be noted that the at least two kinds of red ceramic particles 33 have been described in detail in the above embodiments, and will not be repeated here.
  • the ceramic particles corresponding to the excitation light of different wavelengths are combined with the above-mentioned at least two kinds of red light ceramic particles 33, so that the fluorescent ceramic 3 can output the excitation light of the corresponding wavelength.
  • Light For example, it can be realized by combining the yellow ceramic particles 31 and/or the green ceramic particles 32 with the above-mentioned at least two kinds of red ceramic particles 33.
  • the yellow light ceramic particles 31 and green light ceramic particles 32 are mixed and sintered with the red light ceramic particles 33 and the binder phase particles to obtain stimulated emission white light.
  • Fluorescent ceramic 3 the yellow ceramic particles 31 and the green ceramic particles 32 cannot absorb ultraviolet light and/or near ultraviolet light.
  • the chemical expression of the yellow ceramic particles 31 is Y 3 (Al,Ga) 5 O 12 :Ce 3+
  • the chemical expression of the green ceramic particles 32 is Lu 3 (Al,Ga) 5 O 12 :Ce 3+ .
  • the lower synthesis temperature is for yellow ceramic particles Y 3 Al 5 O 12 : Ce 3+ , green ceramic particles Lu 3 Al 5 O 12 : Ce 3+ has little effect on the efficiency, especially the yellow ceramic particles containing Ga Y 3 (Al,Ga) 5 O 12 : Ce 3+ and green ceramic particles Lu 3 (Al,Ga) 5 O 12 :
  • the Ce 3+ system has little influence, so it can realize the high efficiency of Eu 3+ red ceramic particles and yellow ceramic particles Y 3 Al 5 O 12 :Ce 3+ and green ceramic particles Lu 3 Al 5 O 12 :Ce 3+ Preparation of white light composite ceramics.
  • FIG. 6 is a schematic structural diagram of an embodiment of a light source device of the present invention.
  • the light source device 4 includes a fluorescent ceramic 41.
  • the fluorescent ceramic 41 may be the fluorescent ceramic described in the above-mentioned embodiment, which will not be repeated here.
  • the specific application form of the light source device 4 may be a fixed light source, a micro-projection light source, a television, and other projection equipment, etc., which are not limited herein.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种荧光陶瓷以及光源装置。该荧光陶瓷包括至少两种红光陶瓷颗粒,至少两种红光陶瓷颗粒具有不同的吸收波长范围,其中至少两种红光陶瓷颗粒具有相同的基质体系和激活剂,但基质离子的摩尔份数不同。通过上述方式,本发明能够拓宽荧光陶瓷的吸收波长范围。

Description

荧光陶瓷以及光源装置 技术领域
本发明涉及激光照明显示技术领域,特别是涉及一种荧光陶瓷以及光源装置。
背景技术
在目前的荧光转换型发光装置中,荧光陶瓷吸收激发光后辐射荧光,实现光转换。由于封装激光光源模组的单个芯片波长存在偏差,并且激光的波长由于驱动电流和芯片温度的变化也存在一定偏差,上述原因导致目前的荧光转换型发光装置中荧光陶瓷的吸收波长范围与理想值存在一定的偏差,致使大量的激发光未被荧光陶瓷吸收,荧光陶瓷吸收激发光的效率较低。
发明内容
有鉴于此,本发明主要解决的技术问题是提供一种荧光陶瓷以及光源装置,能够拓宽荧光陶瓷的吸收波长范围。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种荧光陶瓷,该荧光陶瓷包括至少两种红光陶瓷颗粒,至少两种红光陶瓷颗粒具有不同的吸收波长范围,其中至少两种红光陶瓷颗粒具有相同的基质体系和激活剂,但基质离子的摩尔份数不同。
在本发明的一实施例中,基质体系为钨酸盐、钼酸盐或钨钼酸盐。
在本发明的一实施例中,至少两种红光陶瓷颗粒阴离子的摩尔份数不同,或者阳离子的摩尔份数不同。
在本发明的一实施例中,至少两种红光陶瓷颗粒的化学表达式为 R xLn yM zO s:Eu 3+
其中,R为Li、Na、K、Rb中的至少一种,或R为Mg、Ca、Sr、Ba中的至少一种;
Ln为Sc、Y、Gd、Lu中的至少一种;
M为Mo、W中的至少一种;
x、y、z和s表示摩尔份数;
其中,至少两种红光陶瓷颗粒的化学表达式中的M所包括的元素和/或元素配比不同;或者,至少两种红光陶瓷颗粒的化学表达式中的R和/或Ln所包括的元素和/或元素配比不同。
在本发明的一实施例中,R至少包括Sr、Ba、Rb中的至少一种。
在本发明的一实施例中,至少两种红光陶瓷颗粒包括第一红光陶瓷颗粒、第二红光陶瓷颗粒和第三红光陶瓷颗粒,其中第一红光陶瓷颗粒的吸收波长范围为461~463nm,第二红光陶瓷颗粒的吸收波长范围为464~466nm,第三红光陶瓷颗粒的吸收波长范围为467~469nm。
在本发明的一实施例中,荧光陶瓷还包括粘接相颗粒,粘接相颗粒为与至少两种红光陶瓷颗粒相同基质体系的基质材料。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种荧光陶瓷,该荧光陶瓷包括黄光陶瓷颗粒和/或绿光陶瓷颗粒,还包括至少两种红光陶瓷颗粒;其中,至少两种红光陶瓷颗粒具有不同的吸收波长范围,至少两种红光陶瓷颗粒具有相同的基质体系和激活剂,但基质离子的摩尔份数不同。
在本发明的一实施例中,黄光陶瓷颗粒的化学表达式为Y 3(Al,Ga) 5O 12:Ce 3+,绿光陶瓷颗粒的化学表达式为Lu 3(Al,Ga) 5O 12:Ce 3+
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种光源装置,该光源装置包括如上述实施例所阐述的荧光陶瓷。
本发明的有益效果是:区别于现有技术,本发明提供一种荧光陶瓷,该荧光陶瓷包括至少两种红光陶瓷颗粒。其中,该至少两种红光陶瓷颗粒具有相同的基质体系和激活剂,但基质离子的摩尔份数不同,使得该至少两种红光陶瓷颗粒具有不同的吸收波长范围,而该荧光陶瓷的吸收 波长范围即为该至少两种红光陶瓷颗粒的吸收波长范围的叠加,达到拓宽荧光陶瓷的吸收波长范围的效果,进而提高荧光陶瓷吸收激发光的效率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本发明荧光陶瓷一实施例的结构示意图;
图2是本发明红光陶瓷颗粒的吸收光谱和蓝色激光的发射光谱归一化的光谱示意图;
图3是本发明红光陶瓷颗粒的吸收光谱和发射光谱的光谱示意图;
图4是本发明单相荧光陶瓷和复相荧光陶瓷的吸收光谱的光谱示意图;
图5是本发明荧光陶瓷另一实施例的结构示意图;
图6是本发明光源装置一实施例的结构示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图,对本发明的具体实施方式做详细的说明。可以理解的是,此处所描述的具体实施例仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方 法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
为解决现有技术中荧光陶瓷吸收激发光效率较低的技术问题,本发明的一实施例提供一种荧光陶瓷,该荧光陶瓷包括至少两种红光陶瓷颗粒,至少两种红光陶瓷颗粒具有不同的吸收波长范围,其中至少两种红光陶瓷颗粒具有相同的基质体系和激活剂,但基质离子的摩尔份数不同。以下进行详细阐述。
请参阅图1,图1是本发明荧光陶瓷一实施例的结构示意图。
在本实施例中,荧光陶瓷1包括至少两种红光陶瓷颗粒11。该至少两种红光陶瓷颗粒11具有相同的基质体系和激活剂,但基质离子的摩尔份数不同,使得该至少两种红光陶瓷颗粒11具有不同的吸收波长范围。红光陶瓷颗粒11中基质离子的摩尔份数的调整,能够实现红光陶瓷颗粒11的吸收峰值的调整,即红光陶瓷颗粒11中基质离子的摩尔份数不同,则红光陶瓷颗粒11的吸收波长范围不同。其中,红光陶瓷颗粒11的吸收波长范围定义为红光陶瓷颗粒11的吸收峰值对应的半峰宽范围。图1展示了荧光陶瓷1包括三种红光陶瓷颗粒11的情况,包括第一红光陶瓷颗粒111、第二红光陶瓷颗粒112和第三红光陶瓷颗粒113,仅为论述需要,并非因此对荧光陶瓷1所包括的红光陶瓷颗粒11的种数造成限定。
具体地,该至少两种红光陶瓷颗粒阴离子的摩尔份数不同,或者阳离子的摩尔份数不同,实现红光陶瓷颗粒中基质离子的摩尔份数的调整,进而调整红光陶瓷颗粒的吸收波长范围。
进一步地,红光陶瓷颗粒的基质体系可以为钨酸盐、钼酸盐或钨钼 酸盐等。发明人通过大量实验总结得到采用钨酸盐、钼酸盐或钨钼酸盐为基质体系的红光陶瓷颗粒,其更易于形成致密的荧光陶瓷,并且表现出良好的结构稳定性以及较高的光转换效率。
更进一步地,荧光陶瓷1还包括粘接相颗粒12,如图1所示。粘接相颗粒为与上述至少两种红光陶瓷颗粒相同基质体系的基质材料,即粘接相颗粒为相同基质体系的无离子掺杂的基质材料,例如无离子掺杂的钨酸盐、钼酸盐或钨钼酸盐等。如此一来,粘接相颗粒与红光陶瓷颗粒所形成的荧光陶瓷为连续相,有助于形成致密的荧光陶瓷,并且具备较高的结构强度以及良好的导热性能,红光陶瓷颗粒在进行光转换时,所产生大量的热量能够及时导出,能够进一步提高荧光陶瓷的稳定性。其中,红光陶瓷颗粒的光转换过程具体为红光陶瓷颗粒接收激发光照射,入射的激发光(例如蓝色激光等)被红光陶瓷颗粒吸收,进而红光陶瓷颗粒辐射红色荧光,完成光转换。
在一实施例中,上述至少两种红光陶瓷颗粒的化学表达式为R xLn yM zO s:Eu 3+,其所表达的含义为在基质中掺杂Eu 3+。其中,R为Li、Na、K、Rb中的至少一种,或R为Mg、Ca、Sr、Ba中的至少一种;Ln为Sc、Y、Gd、Lu中的至少一种;M为Mo、W中的至少一种;x、y、z和s表示摩尔份数。
需要说明的是,上述红光陶瓷颗粒的化学表达式中R至少包括Sr、Ba、Rb中的至少一种。发明人通过大量实验总结得到当R包括Sr、Ba、Rb中的至少一种时,能够调整单相红光陶瓷颗粒的吸收波长范围,具体表现为调整吸收峰对应的波长,同时红光陶瓷颗粒在各方面均能表现出良好的性能,以满足实际使用的需求。
在目前的荧光转换型发光装置中,由于红光的热斯托克斯位移较大,导致红光容易发生热饱和。目前商用Eu 2+掺杂的(Sr,Ca)AlSiN 3:Eu 2+红粉在600℃以上容易发生热分解,而且容易与氧化物体系的玻璃粉在高温发生化学反应导致无法制备出高效的红光发光玻璃。并且由于(Sr,Ca)AlSiN 3:Eu 2+氮化物体系低扩散系数,导致无法制备高致密度的高效红光陶瓷,因而致使红光亮度无法提升,进而限制了显示光源的亮 度,效率和色域的提升。
有鉴于此,本实施例所提供的红光陶瓷颗粒掺杂有Eu 3+,Eu 3+作为激活剂。Eu 3+掺杂的氧化物,尤其是钨酸盐,钼酸盐及其复合盐类在波长为465nm的蓝光附近呈现较强的4f-4f锐线吸收(4f是跃迁电子轨道名称,锐线指的是窄带。由于4f-4f的跃迁是同一宇称态的跃迁,根据宇称不守恒定律,4f-4f跃迁是禁阻的,因而其吸收光谱是锐线),其与单颗465nm蓝色激光的发射光谱图归一化图如图2所示,其中光谱图21为掺杂Eu 3+的红光陶瓷颗粒的吸收光谱,光谱图22为蓝色激光的发射光谱。可以知道掺杂Eu 3+的红光陶瓷的吸收峰半峰宽为4~5nm,仍然宽于波长为465nm的蓝色激光的发射峰半峰宽1.5nm,因而掺杂有Eu 3+的红光陶瓷能够有效吸收波长为465nm附近的蓝色激光。
并且,掺杂Eu 3+的红光陶瓷的吸收光谱和发射光谱如图3所示,发射光谱在610~630nm的波长范围内出现较强的4f-4f锐线发射(4f是跃迁电子轨道名称,锐线指的是窄带。由于4f-4f的跃迁是同一宇称态的跃迁,根据宇称不守恒定律,4f-4f跃迁是禁阻的,因而其发射光谱是锐线),其发射光谱的色坐标X值可达0.64-0.68范围内变化,色纯度较高,可以超过REC.709红光标准。
然而,完成封装的激光光源模组中的发光芯片波长存在1~2nm的偏差,并且激光的波长是随驱动电流和芯片温度的变化大约存在2nm的偏差,上述原因所导致3~4nm的偏差有可能使掺杂Eu 3+的红光陶瓷的吸收峰无法涵盖激发光的发射峰,因而限制了Eu 3+掺杂的红光陶瓷的应用。
有鉴于此,本实施例通过基质离子的掺杂以微调红光陶瓷颗粒的晶体场,进而调整Eu 3+掺杂的红光陶瓷颗粒的吸收峰值及其吸收波长范围,实现在461~469nm范围内变化。本实施例的Eu 3+掺杂的红光陶瓷颗粒在波长465nm附近的吸收峰峰宽明显宽化,从而保证Eu 3+掺杂的红光陶瓷颗粒吸收激发光的稳定性。同时,由于掺杂Eu 3+的氧化物陶瓷制备工艺简单,一般在空气氛围下即可制备形成高致密度的陶瓷,成本较低。并且由于陶瓷的热导率和稳定性较高,因而能够有效提升其红光亮度,红光色纯度和可靠性。
并且,本实施例的同一基质体系、不同离子掺杂的红光陶瓷颗粒混合烧结形成的荧光陶瓷,其吸收光谱如图4所示。相较于单种Eu 3+掺杂的红光陶瓷颗粒形成的单相荧光陶瓷而言,多种Eu 3+掺杂的红光陶瓷颗粒所混合形成的复相荧光陶瓷其吸收峰峰宽明显加宽,从而保证Eu 3+掺杂的红光陶瓷颗粒吸收激发光的稳定性。
在本实施例中,上述至少两种红光陶瓷颗粒的化学表达式中的M所包括的元素和/或元素配比不同,或者R和/或Ln所包括的元素和/或元素配比不同,进而具有不同的吸收峰值以及吸收波长范围。其中元素和/或元素配比不同意味着不同种红光陶瓷颗粒所包括的部分元素不同或元素相同、元素配比不同。
以下针对复相荧光陶瓷进行阐述:
在一实施例中,上述至少两种红光陶瓷颗粒包括第一红光陶瓷颗粒、第二红光陶瓷颗粒和第三红光陶瓷颗粒,并且三种红光陶瓷颗粒是同一基质体系但具有不同元素和/或摩尔份数的阴离子。
具体地,第一红光陶瓷颗粒为CaWO 4:(Eu 3+,K +),其吸收波长范围为461~463nm,发射波长为613nm;第二红光陶瓷颗粒为CaW 0.5Mo 0.5O 4:(Eu 3+,Na +),其吸收波长范围为464~466nm,发射波长为615nm;第三红光陶瓷颗粒为CaMoO 4:(Eu 3+,Li +),其吸收波长范围为467~469nm,发射波长为617nm。其中,吸收波长范围可以理解为吸收峰对应的波长左右的1/2半峰宽所限定的波长范围。将第一红光陶瓷颗粒、第二红光陶瓷颗粒和第三红光陶瓷颗粒按照质量比1:2:1混合烧结形成的荧光陶瓷可以在461~469nm的波长范围内呈现吸收,发射波长为613~617nm的窄带红色荧光,能够稳定吸收波长为465nm的蓝色激光,同时辐射高质量的红色荧光。
需要说明的是,元素的摩尔份数理解为化学表达式中该元素对应的元素配比数。例如在CaWO 4:(Eu 3+,K +)中,Ca的摩尔份数为1,O的摩尔份数为4。
在一实施例中,上述至少两种红光陶瓷颗粒包括第一红光陶瓷颗粒、第二红光陶瓷颗粒和第三红光陶瓷颗粒,并且三种红光陶瓷颗粒是 同一基质体系但具有不同元素和/或摩尔份数的阳离子。
具体地,第一红光陶瓷颗粒为CaWO 4:(Eu 3+,K +),其最佳吸收波长为465nm,发射波长为616nm;第二红光陶瓷颗粒为Ca 0.8Sr 0.2WO 4:(Eu 3+,Na +),其吸收波长范围为461~463nm,发射波长为612~615nm;第三红光陶瓷颗粒为Ca 0.8Ba 0.2WO 4:(Eu 3+,Li +),其吸收波长范围为464~468nm,发射波长为616~618nm。三种红光陶瓷颗粒所形成的复相荧光陶瓷其吸收波长范围为461~468nm,发射波长范围为612~618nm。
在一实施例中,上述至少两种红光陶瓷颗粒包括第一红光陶瓷颗粒、第二红光陶瓷颗粒和第三红光陶瓷颗粒,并且三种红光陶瓷颗粒是同一基质体系但具有不同元素和/或摩尔份数的阳离子以及阴离子,其形成同一基质体系的不同阴、阳离子复配形式的复相荧光陶瓷。
具体地,第一红光陶瓷颗粒为Ca 0.4Y 0.1WO 4:(Eu 3+,K +),其吸收波长范围为460~462nm,发射波长范围为612~615nm;第二红光陶瓷颗粒为Sr 0.4Gd 0.1W 0.5Mo 0.5O 4:(Eu 3+,Na +),其吸收波长范围为465~470nm,发射波长范围为616~618nm;第三红光陶瓷颗粒为Ba 0.4La 0.1WO 4:(Eu 3+,Li +),其吸收波长范围为464~466nm,发射波长为616~620nm。该三种红光陶瓷颗粒所形成的复相荧光陶瓷能够将其吸收波长范围拓宽至460~470nm,即在460~470nm的波长范围内呈现吸收,发射波长在610~620nm范围内。
以上可见,本发明将同一基质体系的不同离子掺杂的至少两种红光陶瓷颗粒同粘接相颗粒混合烧结制备得到掺杂Eu 3+的复相荧光陶瓷。不同种的红光陶瓷颗粒的吸收波长不同,而所形成的荧光陶瓷的吸收波长范围即为不同种红光陶瓷颗粒的吸收波长范围的叠加,从而达到拓宽荧光陶瓷的吸收波长范围的效果,进而提高荧光陶瓷吸收激发光的效率。其中,粘接相颗粒可以为CaWO 4或者CaMoO 4等,在此不做限定。
请参阅图5,图5是本发明荧光陶瓷另一实施例的结构示意图。
在本实施例中,荧光陶瓷3包括黄光陶瓷颗粒31和/或绿光陶瓷颗粒32,还包括至少两种红光陶瓷颗粒33。其中,至少两种红光陶瓷颗 粒33具有不同的吸收波长范围,至少两种红光陶瓷颗粒33具有相同的基质体系和激活剂,但基质离子的摩尔份数不同。需要说明的是,该至少两种红光陶瓷颗粒33已在上述实施例中详细阐述,在此就不再赘述。
为实现荧光陶瓷3能够按照产品需求输出对应波长的激发光,通过将对应不同波长的激发光的陶瓷颗粒与上述至少两种红光陶瓷颗粒33进行组合,使得荧光陶瓷3能够输出对应波长的激发光。例如通过黄光陶瓷颗粒31和/或绿光陶瓷颗粒32与上述至少两种红光陶瓷颗粒33进行组合实现。
需要说明的是,为制备适用于蓝色激光激发的白光荧光陶瓷,选用黄光陶瓷颗粒31和绿光陶瓷颗粒32同红光陶瓷颗粒33、粘接相颗粒混合烧结制得受激辐射白光的荧光陶瓷3。其中,黄光陶瓷颗粒31和绿光陶瓷颗粒32不能吸收紫外光和/或近紫外光。
进一步地,黄光陶瓷颗粒31的化学表达式为Y 3(Al,Ga) 5O 12:Ce 3+,绿光陶瓷颗粒32的化学表达式为Lu 3(Al,Ga) 5O 12:Ce 3+。由于钼酸盐或者钨酸盐的陶瓷粉体合成温度一般在1200℃以下,较低的合成温度对于黄光陶瓷颗粒Y 3Al 5O 12:Ce 3+、绿光陶瓷颗粒Lu 3Al 5O 12:Ce 3+的效率影响较小,特别是含Ga的黄光陶瓷颗粒Y 3(Al,Ga) 5O 12:Ce 3+、绿光陶瓷颗粒Lu 3(Al,Ga) 5O 12:Ce 3+体系影响较小,因而可以实现Eu 3+红光陶瓷颗粒与黄光陶瓷颗粒Y 3Al 5O 12:Ce 3+、绿光陶瓷颗粒Lu 3Al 5O 12:Ce 3+的高效白光复合陶瓷的制备。
请参阅图6,图6是本发明光源装置一实施例的结构示意图。
在本实施例中,光源装置4包括荧光陶瓷41。荧光陶瓷41可以为上述实施例所阐述的荧光陶瓷,在此就不再赘述。光源装置4的具体应用形式可以为固定式光源、微投光源、电视以及其他投影设备等,在此不做限定。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种荧光陶瓷,其特征在于,所述荧光陶瓷包括至少两种红光陶瓷颗粒,所述至少两种红光陶瓷颗粒具有不同的吸收波长范围,其中所述至少两种红光陶瓷颗粒具有相同的基质体系和激活剂,但基质离子的摩尔份数不同。
  2. 根据权利要求1所述的荧光陶瓷,其特征在于,所述基质体系为钨酸盐、钼酸盐或钨钼酸盐。
  3. 根据权利要求2所述的荧光陶瓷,其特征在于,所述至少两种红光陶瓷颗粒的阴离子的摩尔份数不同,或者阳离子的摩尔份数不同。
  4. 根据权利要求1所述的荧光陶瓷,其特征在于,所述至少两种红光陶瓷颗粒的化学表达式为R xLn yM zO s:Eu 3+
    其中,R为Li、Na、K、Rb中的至少一种,或R为Mg、Ca、Sr、Ba中的至少一种;
    Ln为Sc、Y、Gd、Lu中的至少一种;
    M为Mo、W中的至少一种;
    x、y、z和s表示摩尔份数;
    其中,所述至少两种红光陶瓷颗粒的化学表达式中的M所包括的元素和/或元素配比不同;或者,所述至少两种红光陶瓷颗粒的化学表达式中的R和/或Ln所包括的元素和/或元素配比不同。
  5. 根据权利要求4所述的荧光陶瓷,其特征在于,R至少包括Sr、Ba、Rb中的至少一种。
  6. 根据权利要求1所述的荧光陶瓷,其特征在于,所述至少两种红光陶瓷颗粒包括第一红光陶瓷颗粒、第二红光陶瓷颗粒和第三红光陶瓷颗粒,其中所述第一红光陶瓷颗粒的吸收波长范围为461~463nm,所述第二红光陶瓷颗粒的吸收波长范围为464~466nm,所述第三红光陶瓷颗粒的吸收波长范围为467~469nm。
  7. 根据权利要求1至6任一项所述的荧光陶瓷,其特征在于,所述荧光陶瓷还包括粘接相颗粒,所述粘接相颗粒为与所述至少两种红光 陶瓷颗粒相同基质体系的基质材料。
  8. 一种荧光陶瓷,其特征在于,所述荧光陶瓷包括黄光陶瓷颗粒和/或绿光陶瓷颗粒,还包括至少两种红光陶瓷颗粒;
    其中,所述至少两种红光陶瓷颗粒具有不同的吸收波长范围,所述至少两种红光陶瓷颗粒具有相同的基质体系和激活剂,但基质离子的摩尔份数不同。
  9. 根据权利要求8所述的荧光陶瓷,其特征在于,黄光陶瓷颗粒的化学表达式为Y 3(Al,Ga) 5O 12:Ce 3+,绿光陶瓷颗粒的化学表达式为Lu 3(Al,Ga) 5O 12:Ce 3+
  10. 一种光源装置,其特征在于,所述光源装置包括如权利要求1至7任一项所述的荧光陶瓷或如权利要求8或9所述的荧光陶瓷。
PCT/CN2020/123810 2019-11-12 2020-10-27 荧光陶瓷以及光源装置 WO2021093567A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911101172.7A CN112851345B (zh) 2019-11-12 2019-11-12 荧光陶瓷以及光源装置
CN201911101172.7 2019-11-12

Publications (1)

Publication Number Publication Date
WO2021093567A1 true WO2021093567A1 (zh) 2021-05-20

Family

ID=75911947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123810 WO2021093567A1 (zh) 2019-11-12 2020-10-27 荧光陶瓷以及光源装置

Country Status (2)

Country Link
CN (1) CN112851345B (zh)
WO (1) WO2021093567A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101501160A (zh) * 2006-08-11 2009-08-05 默克专利有限公司 陶瓷体形式的led转换无机发光材料
CN101519589A (zh) * 2009-03-27 2009-09-02 中国地质大学(武汉) 一种高亮度小颗粒红色荧光粉及其制备方法
CN101536199A (zh) * 2006-11-10 2009-09-16 皇家飞利浦电子股份有限公司 包括单片陶瓷发光转换器的照明系统
CN101796159A (zh) * 2007-09-04 2010-08-04 皇家飞利浦电子股份有限公司 包括复合SiAlON基陶瓷材料的发光器件
JP2014003065A (ja) * 2012-06-15 2014-01-09 Konica Minolta Inc Led装置、及びその製造方法
JP2014201726A (ja) * 2013-04-09 2014-10-27 スタンレー電気株式会社 セラミック蛍光体、その製造方法及び発光装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI405838B (zh) * 2009-03-27 2013-08-21 Chunghwa Picture Tubes Ltd 紅光螢光材料及其製造方法、及白光發光裝置
CN103045248A (zh) * 2013-01-04 2013-04-17 昆明理工大学 一种铋和铕离子共掺杂的钨酸盐荧光陶瓷粉及其制备方法
CN103146385B (zh) * 2013-03-15 2015-06-03 南京工业大学 一种双掺杂双钙钛矿红色荧光粉及其制备方法
JP6850265B2 (ja) * 2015-06-24 2021-03-31 シーバラ アイピー アイ ビー.ブイ. 蛍光体セラミック
CN107935581B (zh) * 2017-11-20 2020-12-04 中国科学院上海光学精密机械研究所 两相均匀分布的复合石榴石闪烁陶瓷及其制备方法
CN109896853B (zh) * 2017-12-11 2022-07-15 上海航空电器有限公司 具有较低膨胀系数的陶瓷复合体、制备方法及光源装置
CN108178629A (zh) * 2018-01-10 2018-06-19 上海应用技术大学 一种红色荧光陶瓷及其制备方法
JP2021520433A (ja) * 2018-04-06 2021-08-19 ルミレッズ ホールディング ベーフェー 発光材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101501160A (zh) * 2006-08-11 2009-08-05 默克专利有限公司 陶瓷体形式的led转换无机发光材料
CN101536199A (zh) * 2006-11-10 2009-09-16 皇家飞利浦电子股份有限公司 包括单片陶瓷发光转换器的照明系统
CN101796159A (zh) * 2007-09-04 2010-08-04 皇家飞利浦电子股份有限公司 包括复合SiAlON基陶瓷材料的发光器件
CN101519589A (zh) * 2009-03-27 2009-09-02 中国地质大学(武汉) 一种高亮度小颗粒红色荧光粉及其制备方法
JP2014003065A (ja) * 2012-06-15 2014-01-09 Konica Minolta Inc Led装置、及びその製造方法
JP2014201726A (ja) * 2013-04-09 2014-10-27 スタンレー電気株式会社 セラミック蛍光体、その製造方法及び発光装置

Also Published As

Publication number Publication date
CN112851345A (zh) 2021-05-28
CN112851345B (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
Geng et al. NaBaY (BO3) 2: Ce3+, Tb3+: A novel sharp green‐emitting phosphor used for WLED and FEDs
CN103237867B (zh) 硼磷酸盐磷光体和光源
US8344611B2 (en) Oxyfluoride phosphors and white light emitting diodes including the oxyfluoride phosphor for solid-state lighting applications
CN103314074B (zh) 赛伦磷光体、其制造方法和具有其的发光装置封装件
Worku et al. Optically pumped white light-emitting diodes based on metal halide perovskites and perovskite-related materials
WO2013056570A1 (zh) 一种led红色荧光物质及含有该荧光物质的发光器件
Yu et al. Tunable color emitting of CaAl2Si2O8: Eu, Tb phosphors for light emitting diodes based on energy transfer
EP2386619A1 (en) Optically Active Compositions And Combinations Of Same With Indium Gallium Nitride Semiconductors
Guo et al. Generation of bright white-light by energy-transfer strategy in Ca19Zn2 (PO4) 14: Ce3+, Tb3+, Mn2+ phosphors
Hu et al. Thermal quenching properties of narrow-band blue-emitting MBe 2 (PO 4) 2: Eu 2+(M= Ca, Sr) phosphors towards backlight display applications
CN101591534B (zh) 红光荧光材料及其制造方法、及白光发光装置
Hu et al. Tunable luminescence properties and energy transfer of single-phase Ca4 (PO4) 2O: Dy3+, Eu2+ multi-color phosphors for warm white light
Zeng et al. Color-tunable properties and energy transfer in Ba3GdNa (PO4) 3F: Eu2+, Tb3+ phosphor pumped for n-UV w-LEDs
WO2013056408A1 (zh) 氮化物红色发光材料、包括其的发光件以及发光器件
Tang et al. Luminescence enhancement of Ca3Sr3 (VO4) 4: Eu3+, Sm3+ red-emitting phosphor by charge compensation
Li et al. Synthesis, structure and optical properties of blue-emitting phosphor Sr4La (PO4) 3O: Eu2+ for n-UV white-light-emitting diodes
Park et al. Investigation of red-emitting Bi4Si3O12: Eu3+ phosphor under the deep UV irradiation as a novel material for white light and color tunable emission
WO2016199406A1 (ja) 蛍光体およびその製造方法、ならびにledランプ
Hiramatsu et al. Tb3+ luminescence by energy transfer from Eu2+ in (Sr, Ba) 2SiO4 phosphor
Zhang et al. Dual energy transfers and color tunable emission in Eu2+/Tb3+/Mn2+-triactivated Mg21Ca4Na4 (PO4) 18 phosphors
WO2021093567A1 (zh) 荧光陶瓷以及光源装置
Zhang et al. Photoluminescence properties and energy transfer of a novel bluish-green tunable KSrY (PO4) 2: Ce3+, Tb3+ phosphor
Zhang et al. Weak thermal quenching of the luminescence in Y2. 94-xLuxAl4GaO12: 0.06 Ce3+ green phosphor for white light-emitting diodes
TW200409810A (en) Method for producing white-light LED with high brightness by phosphor powder
CN115873595A (zh) 一种可调控红光与近红外稀土发光材料及制备方法和红外led装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20888602

Country of ref document: EP

Kind code of ref document: A1