WO2013056408A1 - 氮化物红色发光材料、包括其的发光件以及发光器件 - Google Patents

氮化物红色发光材料、包括其的发光件以及发光器件 Download PDF

Info

Publication number
WO2013056408A1
WO2013056408A1 PCT/CN2011/080866 CN2011080866W WO2013056408A1 WO 2013056408 A1 WO2013056408 A1 WO 2013056408A1 CN 2011080866 W CN2011080866 W CN 2011080866W WO 2013056408 A1 WO2013056408 A1 WO 2013056408A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminescent material
light
emitting
nitride red
luminescent
Prior art date
Application number
PCT/CN2011/080866
Other languages
English (en)
French (fr)
Inventor
胡运生
何涛
何华强
庄卫东
刘荣辉
刘元红
李楠
Original Assignee
北京有色金属研究总院
有研稀土新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京有色金属研究总院, 有研稀土新材料股份有限公司 filed Critical 北京有色金属研究总院
Priority to PCT/CN2011/080866 priority Critical patent/WO2013056408A1/zh
Priority to US14/349,703 priority patent/US9252339B2/en
Priority to KR1020147012618A priority patent/KR101717241B1/ko
Priority to JP2014534907A priority patent/JP6002772B2/ja
Priority to EP11874429.1A priority patent/EP2770037A4/en
Publication of WO2013056408A1 publication Critical patent/WO2013056408A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/63Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing boron
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/77927Silicon Nitrides or Silicon Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/77928Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax

Definitions

  • the present invention relates to the field of luminescent materials, and more particularly to a nitride red luminescent material, a illuminating member including the same, and a illuminating device.
  • Red luminescent materials are indispensable as an important component of the three primary colors of red, green and blue.
  • the currently widely used red luminescent materials are Y 2 0 3 :Eu 3+ (Bi 3+ ), Y 2 0 2 S:Eu 3+ (Bi 3+ ), Y(V,P)0 4 :Eu 3+ ( Bi 3+ ), (Y, Gd) B0 3 : Eu 3+ (Ca, S r )S : E U 2+ CTm 3+ ), etc.; but with the transformation of traditional technical methods such as display and illumination, these were once large
  • the traditional red luminescent materials that shine can not meet the needs of the development of new technologies such as 3D display and white LED due to the change of application fields and excitation methods. Since the late 1990s, a new class of nitrogen/nitrogen oxide luminescent materials has been developed.
  • the anionic groups of such luminescent materials contain a highly negatively charged N 3 _, and the electron cloud expansion effect causes the excitation spectrum to be near-ultraviolet.
  • the visible light moves in the long-wave direction, and their matrix has a relatively tight network structure and is stable in physical and chemical properties.
  • the element, E is one or two elements of B/Al/Ga/In/Sc/Y/La/Ga/Lu, and X is selected from one or two of 0, N and F;
  • the inorganic compound has The same crystal structure as CaAlSiN 3 , and 0.00001 ⁇ a ⁇ 0.1, 0.5 ⁇ c ⁇ 4, 0.5 ⁇ d ⁇ 8, 0.8x (2 / 3 + 4 / 3xc + d) ⁇
  • the typical composition is CaAlSiN 3 :Eu.
  • the luminescence intensity of this CaAlSiN 3 :Eu luminescent material at room temperature is 89% at room temperature.
  • the red phosphors referred to in the above documents have more excellent temperature characteristics than the conventional sulfide red phosphor ((Ca, Sr)S : E U 2+ ).
  • the red luminescent material involved in the above literature has a luminous intensity lower than 90% at room temperature at 150 ° C, which needs to be further improved; and for device applications, it can effectively improve color development.
  • the red luminescent material of the index has a half width requirement, and the illuminating half width of the luminescent material is generally about 90 nm, which is required for further widening; in addition, a technical scheme of adding a red luminescent material to improve the color rendering index is currently adopted.
  • the present invention provides a nitride red luminescent material having a structure of the formula (1), and the formula (1) is M a (Al, B) b Si c N d O e :Eu m , R n , wherein: M is at least one of Mg, Ca, Sr, Ba, Zn; R is at least one of rare earth elements Y, La, Ce, Gd, Lu; Molar of element B and Al
  • the ratio X satisfies 0 ⁇ x ⁇ 0.1; and 0.9 ⁇ a ⁇ 1.1, 0.9 ⁇ b ⁇ l, l ⁇ c ⁇ l.
  • the above M includes at least Ca and/or Sr.
  • the above R contains at least the rare earth element Y and/or Gd.
  • the above R is a rare earth element Y.
  • the range of ⁇ described above is 0.001 ⁇ ⁇ ⁇ 0.05.
  • the range of the above m is 0.005 ⁇ m ⁇ 0.025.
  • the above luminescent material is any one of the following materials: Cao.99 lo.9Bo.oo9Sii.iN3.80o.oo2£uo.oi, Yo.ooi;
  • the luminescent material is in the form of a powder, a film or a sheet.
  • the present invention also provides a light-emitting member which is formed by dispersing the above-mentioned nitride red light-emitting material in a glass material, a plastic material or a resin material, or is illuminated by the above-mentioned nitride red.
  • the material is formed by co-dispersing with other luminescent materials in a glass material, a plastic material or a resin material.
  • the other luminescent materials mentioned above are one or more of the following phosphors:
  • the above-mentioned radiation source is a vacuum ultraviolet, or ultraviolet, or violet, or blue light emitting source.
  • the light-emitting device further includes another luminescent material that is excited by the radiation source to emit light.
  • the other luminescent materials mentioned above are one or more of the following phosphors:
  • FIG. 1 is a view showing comparison of emission spectra of luminescent materials prepared in Example 1 and Comparative Example of the present invention.
  • a nitride red luminescent material containing both a divalent metal M, a rare earth element Eu ( ⁇ ), 1, A1 (aluminum), Si (silicon), and N (nitrogen) And 0 (oxygen), and having the structure of the general formula (1), the general formula (1) is M a (Al, B) b Si c N d O e : Eu m , R n .
  • M is at least one of Mg, Ca, Sr, Ba, and Zn
  • R is at least one of rare earth elements Y, La, Ce, Gd, and Lu, and element B and
  • the molar ratio x of Al satisfies 0 ⁇ x ⁇ 0.1, and wherein 0.9 ⁇ a ⁇ 1.1, 0.9 ⁇ b ⁇ l, l ⁇ c ⁇ 1.5, 2.5 ⁇ d ⁇ 5, 0 ⁇ e ⁇ 0.1, 0 ⁇ m ⁇ 0.05, 0 ⁇ n ⁇ 0.1, l ⁇ c/b ⁇ 1.5.
  • the structure of the above luminescent material is constructed based on a SiN 4 tetrahedron, with Eu 2+ as the luminescent center.
  • the addition amount b of ( ⁇ , ⁇ ) is similar to the addition amount a of the divalent metal element M, wherein a ranges from 0.9 ⁇ a ⁇ l.
  • the range of b is 0.9 ⁇ b ⁇ l, and the ratio of b to Si satisfies l ⁇ c / b ⁇ 1.5; the above synergistic effect makes the structure of the luminescent material more stable and compact, thereby improving the temperature characteristics of the luminescent material.
  • the addition of A1 and B has achieved other significant effects.
  • the low melting point and activity of element B (boron) make it very useful for intensifying roasting, which in turn helps to improve the crystallinity of the luminescent material, so that the luminescent material has high luminous efficiency, good temperature characteristics and small light.
  • the amount of introduction of B (boron) should be appropriate.
  • the molar ratio X of B (boron) to A1 (aluminum) is in the range of 0 ⁇ x ⁇ 0.1. If it exceeds this range, B (boron) and A1 (aluminum) The difference in radius is too large, causing lattice distortion, which is disadvantageous to the luminous efficiency and lifetime of the luminescent material.
  • the co-doping of the rare earth element R (including Y, La, Ce, Gd, Lu) in the above luminescent material is beneficial to enhance the absorption of the radiant energy of the illuminating material by the luminescent material, and can transmit the absorbed energy to the illuminating center Eu to improve Luminous brightness, and does not produce competitive absorption or reabsorption with the luminescent center, thus ensuring the material has excellent luminous efficiency;
  • the introduction of rare earth elements R (including Y, La, Ce, Gd, Lu) also acts as a strengthening luminescent material
  • the effect of calcination, together with the addition of B (boron) improves the crystallinity of the luminescent material particles, enhances the luminous efficiency, and simultaneously reduces the light decay and thermal quenching; likewise, the rare earth element R (including Y, La, Ce, Gd, Lu)
  • B boron
  • an appropriate amount of 0 is also introduced to broaden the half width of the emission spectrum of the material, when the oxygen introduction amount e is in the range of 0 ⁇ e ⁇ 0.1.
  • the half-width of the luminescence spectrum of the luminescent material can be adjusted between 95 and 130 nm, which is wider than about 90 nm of the existing red luminescent materials such as M x Si y N z :Eu and (Ca,Sr)AlSiN 3 :Eu. Half width, and the light efficiency is kept good.
  • the oxygen addition amount e exceeds 0.1, since the structure and the crystal field are more easily changed by recombination with (A1, B), Si, and rare earth in the structure, the luminance of the red luminescent material is greatly weakened.
  • Eu 2+ is an illuminating center which can be efficiently excited by radiation having a wavelength of 500 nm or less, and emits a broad spectrum of visible red light having a spectrum of 500 to 780 nm.
  • the luminescent materials of the present invention are comprehensively adjusted to adjust the types and proportions of the divalent elements Mg, Ca, Sr, Ba, and Zn represented by M in the general formula, And the concentration of the activator Eu, etc., to achieve a controllable adjustment of its emission main peak and spectral coverage area.
  • the main peak of the emission of the material gradually shifts red, and the color of the luminescence tends to be redder.
  • the concentration of the activator Eu increases, the luminescent center increases, the main peak of the emission also shifts red, and the luminescence intensity increases.
  • the concentration of Eu exceeds 0.025, the luminescence of the material will have a concentration quenching effect.
  • the concentration of Eu is lowered, and when the concentration of Eu is increased to 0.05, the concentration ⁇ The effect of extinction is very serious, and the brightness of the material is significantly reduced.
  • the content a of the divalent metal M component is 0.9 ⁇ a ⁇ 1.
  • M in the above nitride red luminescent material contains at least Ca and/or Sr.
  • the luminescent material When M or at least one of Ca and Sr is contained in M, the luminescent material has excellent luminescent brightness and temperature characteristics under the condition of obtaining the same chromaticity.
  • R contains at least a rare earth element Y and/or Gd.
  • R contains at least one or two of rare earth elements ⁇ , Gd, the luminescent material has excellent luminescent brightness and temperature characteristics under the same chromaticity. More preferably, R is a rare earth element Y.
  • the addition amount ⁇ of R in the above-mentioned nitride red luminescent material ranges from 0.001 ⁇ ⁇ ⁇ 0.05.
  • the luminescent material has excellent luminescent brightness and temperature characteristics.
  • the addition amount m of Eu in the above-mentioned nitride red luminescent material is 0.005 ⁇ m ⁇ 0.025.
  • the luminescent material has excellent luminescent brightness and temperature characteristics. This is because when the amount of Eu added is less than 0.005, the luminescent center Eu is too small, and the illuminating brightness is low; when Eu exceeds 0.025, the concentration quenching effect occurs again, and the illuminating brightness decreases with the increase of Eu, and the temperature of the phosphor decreases. The characteristics also deteriorate.
  • nitride red luminescent material is any one of the following materials:
  • the luminescent material of the present invention can be directly processed into a powder, a film or a sheet.
  • a method for preparing the nitride red luminescent material of the present invention will be given as follows: According to the stoichiometric ratio shown by the general formula (1), a nitride of a divalent metal M, aluminum nitride, boron nitride, Raw materials such as silicon nitride and Eu compound and rare earth R compound are accurately weighed and uniformly mixed, and then calcined in a nitrogen or nitrogen-hydrogen mixed atmosphere at a high temperature of 1400 to 1800 ° C for 4 to 20 hours to obtain a calcined product.
  • the red luminescent material of the present invention can be obtained by further steps such as crushing, sieving, washing, and drying.
  • a light-emitting member which may be a light-emitting film or a light-emitting sheet, which is dispersed in a glass material, a plastic material or the like by the above-mentioned nitride red light-emitting material.
  • the resin material is formed or formed by uniformly dispersing the above-described nitride red luminescent material together with other luminescent materials in a glass material, a plastic material or a resin material.
  • the light-emitting member provided by the present invention is characterized in that the nitride red light-emitting material of the present invention, or the nitride red light-emitting material of the present invention and other light-emitting materials are added to the glass material, in the preparation process of the glass material, the plastic material or the resin material.
  • the raw material of the plastic material or the resin material is uniformly mixed, and then formed into a film shape or a sheet shape according to a conventional method of a glass material, a plastic material or a resin material, the nitride red light-emitting material of the present invention, or the nitride red light-emitting material of the present invention.
  • the amount of the mixture with other luminescent materials added to the glass material, the plastic material or the resin material may be equal to the amount of the luminescent material added during the preparation of the illuminating member in the prior art. Based on the present invention, those skilled in the art can prepare the luminescent film or the luminescent film provided by the present invention by a reasonable technical means, and thus the manufacturing method thereof will not be described again.
  • the other luminescent material is (Y, Gd, Lu, Tb) 3 (Al, Ga) 5 0 12 : Ce, (Mg, Ca, Sr, Ba) 2 Si0 4 : Eu, (Ca, Sr) 3 Si0 5 :Eu, (La,Ca) 3 Si 6 N u :Ce, a-SiA10N:Eu P-SiA10N:Eu Ba 3 Si 6 0 12 N 2 :Eu, Ca 3 (Sc,Mg) 2 Si 3 0 12 : Ce, CaSc 2 0 4 : Eu, BaAl 8 0 13 : Eu, (Ca, Sr, Ba) Al 2 0 4 : Eu, (Sr, Ca, Ba) (Al, Ga, In) 2 S 4 : Eu, (Ca,Sr) 8 (Mg,Zn)(Si0 4 ) 4 Cl 2 :Eu/Mn , (Ca,Sr,Ba) 3 MgSi
  • the mixing ratio of the nitride red luminescent material and the other luminescent material provided by the present invention can be reasonably adjusted according to the application and the requirements of the color adjustment, and those skilled in the art have reasonable basis on the basis of the present invention. Analysis, capable of producing the desired illuminating parts.
  • a light emitting device comprising at least a radiation source and the above nitride red luminescent material having the general formula (1), wherein the general formula (1) is M a (Al,B) b Si c N d O e :Eu m , R n .
  • the above-mentioned luminescent material may be in the form of a powder, a film or a sheet, or may be a luminescent member prepared by dispersing in a glass material, a plastic material or a resin material.
  • the radiation source may be any radiation source capable of emitting radiation having a wavelength of less than 500 nm.
  • the radiation source is a vacuum ultraviolet, ultraviolet, violet or blue radiation source, and under their respective excitations, the luminescent material of the present invention Both can emit efficient red light.
  • the nitride red luminescent material having the structure in the general formula (1) in addition to the nitride red luminescent material having the structure in the general formula (1), other luminescent materials capable of being effectively excited by the corresponding radiation source may be added, such as in "blue LED + luminescence involved in the present invention.
  • a yellow or green luminescent material capable of being excited by blue light can be added to form a white light emitting device; in a "vacuum ultraviolet, ultraviolet or violet LED + luminescent material of the invention", a vacuum ultraviolet, ultraviolet or violet light can be added.
  • Blue and green luminescent materials can also form white light emitting devices, and the like, these white light emitting devices can be used in the field of illumination or display.
  • luminescent materials which can be used in combination with the nitride red luminescent material of the present invention in the above-mentioned light-emitting device are mainly: (Y, Gd, Lu, Tb) 3 (Al, Ga) 5 0 12 : Ce, (Mg, Ca, Sr , Ba) 2 Si0 4 :Eu , (Ca,Sr) 3 Si0 5 :Eu , (La,Ca) 3 Si 6 Nn:Ce a-SiA10N:Eu P-SiA10N:Eu Ba 3 Si 6 0 12 N 2 : Eu, Ca 3 (Sc,Mg) 2 Si 3 0 12 :Ce, CaSc 2 0 4 :Eu , BaAl 8 0 13 :Eu , (Ca,Sr,Ba)Al 2 0 4 :Eu , (Sr,Ca, Ba) (Al, Ga, In) 2 S 4 :Eu, (Ca,
  • the chromaticity coordinates, relative brightness and half width of the nitride red luminescent material provided by the present invention will be further described below in conjunction with the specific examples 1-22 and comparative examples. Meanwhile, the advantageous effects of the light-emitting device provided by the present invention will be further explained in conjunction with Examples 23-33.
  • the chemical formula of the nitride red luminescent material in Example 1-22 is shown in Table 1, and the comparative example is pure.
  • Example 1-22 and Comparative Example of Preparation of Luminescent Material According to the stoichiometric ratio in the general formula shown in General Formula 1-22, the nitride of the divalent metal M, aluminum nitride, boron nitride, Raw materials such as silicon nitride and Eu compound and rare earth R compound are accurately weighed and uniformly mixed, wherein oxygen in the component is introduced by Eu compound or rare earth R compound, and then in a nitrogen or nitrogen-hydrogen mixed atmosphere, 1500.
  • the novel red luminescent materials of the present invention all have higher luminosity and wider half width than the comparative Ca 99 AlSiN 3 :E U Q1 luminescent materials. These are very beneficial to the application of device luminous efficiency and color rendering index. Further, from the temperature characteristic data of the light-emitting materials of Examples 1-22 given in Table 2, the light-emitting luminance of the light-emitting material according to Example 1-22 was in the range of 91 to 94% at room temperature at a high temperature of 150 °C. Within, it is higher than 89% of the comparative Ca ⁇ AlSiN ⁇ Eu fu luminescent material.
  • the luminescent material of the present invention is a rare earth element Y and/or Gd
  • the luminescent material has a better luminescent brightness. Comparing Examples 10 and 14 in Table 1, the luminescent material of Example 10 has a component Gd added to the luminescent material of Example 14, and their color coordinates are substantially the same, but the brightness of the luminescent material in Example 10 is significantly better than that of the implementation.
  • Comparing Examples 3 and 15 in Table 1 the luminescent material in Example 3 is relative to the luminescent material in Example 15, R is selected as Y, Gd and Lu in Example 3, and R is selected as Ce and Lu in Example 15. .
  • R in the luminescent material of the present invention is a rare earth element Y
  • the luminescent material has a better luminescent brightness. Comparing Examples 8 and 16-19 in Table 1, wherein the luminescent material R of the embodiment 16 is selected as Gd, and the luminescent materials of the embodiments 8, 17, 18 and 19 are selected as Y, and their color coordinates are substantially the same. However, the luminance of the luminescent material in Examples 8, 17, 18 and 19 was significantly better than that in the luminescent material of Example 8. It can be seen that when R is a rare earth element ⁇ in the luminescent material of the invention, the luminescent material has better luminescence brightness.
  • the luminescent material of the present invention has a better luminescent brightness.
  • the color coordinates thereof are substantially the same, but the luminance of the luminescent materials in Examples 8 and 17 is significantly better than that in Example 18 and The illuminating brightness of the luminescent material in 19. It can be seen that when the amount ⁇ of R in the luminescent material of the invention is 0.001 ⁇ ⁇ ⁇ 0.05, the luminescent material has a better luminescent brightness.
  • the emission spectrum and the excitation spectrum of the luminescent material prepared by Example 1 and the luminescent material prepared by the comparative example were respectively tested, see the attached drawings. 1 and Figure 2.
  • the abscissa is the wavelength
  • the ordinate is the relative emission intensity
  • L1 represents the luminescent material prepared in Example 1 of the present invention
  • L2 represents the luminescent material prepared in the comparative example.
  • the nitride luminescent material prepared in Example 1 of the present invention has a higher emission intensity and a wider emission range with respect to the comparative example, and has a half width of 108 nm and a width wider than that of the comparative example of 91 nm, which is advantageous.
  • the color rendering index of the application device was improved; their relative brightness was tested by a spectral radiation analysis system, and the relative brightness of Example 1 was 138.
  • the excitation spectrum of the luminescent material prepared in Example 1 and the luminescent material prepared in the comparative example as shown in FIG. 2, in the excitation range of 250-500 nm, the nitride luminescent material prepared in Example 1 of the present invention was compared with the comparative example.
  • the luminescent material prepared in Example 1 has better luminescence brightness than the comparative ratio at the same excitation wavelength.
  • the nitride red luminescent material has a very high excitation efficiency at 250-500 nm, which indicates that the luminescent material can be applied to the purple bud and the violet light.
  • a blue light source is used in combination to fabricate a light emitting device.
  • Example 23 The red luminescent material obtained in Example 1 was dispersed in a silicone resin having a refractive index of 1.41, and uniformly stirred to form a slurry, which was dispensed and cured on a 410 nm violet LED chip, and the circuit was soldered and sealed with a resin. At the end, a red-emitting light-emitting device is obtained, and its color coordinates are (0.6727, 0.3214).
  • Example 24 The red luminescent material obtained in Example 17 and the Y 3 Al 5 0 12: Ce yellow luminescent material were dispersed in a ratio of 1:6 in a silicone resin having a refractive index of 1.53, uniformly stirred and then coated.
  • Example 25 The red luminescent material obtained in Example 2 and (Mg, Ca, Sr, Ba) 2 SiO 4 :Eu yellow luminescent material were dispersed in a ratio of 1:10 in a silicone resin having a refractive index of 1.52, and uniformly stirred.
  • Example 26 The red luminescent material obtained in Example 9 and the a-SiA10N:Eu yellow luminescent material were dispersed in a ratio of 1:12 in an epoxy resin having a refractive index of 1.51, uniformly stirred to form a blue light at 450 nm. On the LED chip, the circuit is cured, and the circuit is soldered, and the resin is sealed to obtain a white light emitting device.
  • Example 27 The red luminescent material obtained in Example 6 and the Ba 3 Si 6 0 12 N 2 :Eu green luminescent material were dispersed in an epoxy resin having a refractive index of 1.52 in a ratio of 1:8, and uniformly pulverized and then coated. It is coated on a 452.5nm blue LED chip, cured, soldered and sealed with resin to obtain a white light emitting device with color coordinates (0.3728, 0.3336), color rendering index of 90.6, and correlated color temperature of 3859K.
  • Example 28 The red luminescent material obtained in Example 3 and the (Sr,Ba) 2 SiO 4 :E U green luminescent material were dispersed in a ratio of 1:5 in a silicone resin having a refractive index of 1.52, and uniformly stirred to form a slurry. It is coated on a 460nm blue LED chip, cured, soldered and sealed with resin to obtain a white light emitting device with color coordinates (0.4306, 0.3804), color rendering index 86, and correlated color temperature of 2907K.
  • Example 29 The red luminescent material obtained in Example 8 and the (Y,Lu) 3 (Al,Ga) 5 0 12 :Ce green luminescent material were dispersed in a ratio of 1:4 in an epoxy resin having a refractive index of 1.52. After being uniformly stirred into a slurry, it is coated on a 445 nm blue LED chip, solidified, and soldered, and sealed with a resin to obtain a white light emitting device having a color coordinate of (0.4377, 0.3691) and a color rendering index of 89. The correlated color temperature is 2685K.
  • Example 30 The red luminescent material obtained in Example ⁇ and the P-SiA10N:Eu green luminescent material and the Sr 5 (P0 4 )3Cl:Eu blue luminescent material were dispersed in a ratio of 1:5:3 in a silicone resin having a refractive index of 1.52. After being uniformly stirred into a slurry, it is coated on a 380 nm near-ultraviolet LED chip, cured, and soldered to a circuit, and sealed with a resin to obtain a white-emitting light-emitting device having a color coordinate of (0.3832, 0.3505). The color index is 89.7 and the correlated color temperature is 3698 K.
  • Example 31 The red luminescent material obtained in Example 14 and Ca 3 (Sc, Mg) 2 Si 3 0 12 :Ce green luminescent material, B a MgAl 1Q 0 17: Eu blue luminescent material in a ratio of 1:6:2 Disperseed in a silicone resin with a refractive index of 1.46, uniformly stirred into a slurry, coated on a 360 nm UV LED chip, cured, soldered, and sealed with a resin to obtain a white light emitting device.
  • the color coordinates are (0.3571, 0.3002), the color rendering index is 82.7, and the correlated color temperature is 4123 K.
  • Example 32 The red luminescent material obtained in Example 20 and the Zn 2 SiO 4 : Mn green luminescent material and BaMgA 11Q 0 17 : Eu blue luminescent material were respectively pulverized, rolled, and uniformly coated by screen printing. In the barrier groove of the substrate behind the PDP, the printed substrate is then baked, packaged, filled with Ne-Xe mixed inert gas, and soldered to form a color plasma light-emitting device. The chromaticity coordinates of the device are (0.3211). , 0.3308), brightness 864cd/m 2 .
  • Example 33 The red luminescent material obtained in Example 2 and the (Y, Gd) B0 3 :Eu red powder were uniformly mixed, and (Zn 2 Si0 4 : Mn + (Y, Lu) 3 A 15 0 12 : Ce) mixed green luminescence
  • the material and BaMgA 11() 0 17 :Eu blue luminescent material are separately pulverized, rolled, and uniformly coated in the barrier groove of the PDP rear substrate by screen printing, and then the printed substrate is baked at a low temperature.
  • the package is filled with Ne-Xe mixed inert gas, and the circuit is soldered to form a color plasma light-emitting device.
  • the chromaticity coordinates of the device are C0.3340, 0.3264), and the brightness is 788 cd/m 2 . It can be seen from the light-emitting devices prepared in Examples 23-31, and the color plasma light-emitting devices prepared in Examples 32 and 33 that the nitride red light-emitting materials provided by the present invention can satisfy ultraviolet, violet or blue light of different wavelengths. The excitation of the radiation source is required so that it can be used in combination with them to fabricate light-emitting devices having different light color parameters.
  • the nitride red luminescent material provided by the present invention can be combined with a radiation source and other luminescent materials to produce a low color temperature with a color temperature lower than 4000K and a color rendering index greater than 80.
  • High color rendering white LED device Embodiments 23-33 are merely embodiments of the present invention, which do not limit the scope of protection of the present invention.
  • the luminescent material can be mixed with glass, plastic, and resin materials to form a light-emitting element.
  • the glass material, the plastic material, and the resin material may be optional in the present invention, as long as the luminescent materials can be obtained without chemical reaction with them, and can be dispersed after being dispersed in them.
  • the ultraviolet, violet or blue radiation source is effectively excited and emits light.

Abstract

本发明公开了一种氮化物红色发光材料、包括其的发光件以及发光器件。该发光材料的通式为:Ma(Al,B)bSicNdOe:Eum,Rn,其中M代表碱土金属元素Mg、Ca、Sr、Ba、Zn中的至少一种;R为稀土元素Y、La、Ce、Gd、Lu中的至少一种;且0.9≤a<1.1,0.9≤b≤1,1≤c≤1.5,2.5<d<5,0<e<0.1,0<m<0.05,0<n<0.1,1<c/b<1.5。该发光材料可以被波长为500nm以下的辐射光有效激发,并发射出500nm-780nm的宽谱可见红光。本发明的发光材料具有发光效率高、温度特性优良、半宽度宽等特点,可单独用于或与其他发光材料组合用于制作高性能的发光器件。

Description

氮化物红色发光材料、 包括其的发光件以及发光器件 技术领域 本发明属于发光材料技术领域, 尤其是涉及一种氮化物红色发光材料、 包括其的 发光件及发光器件。 背景技术 红色发光材料作为红、 绿、 蓝三基色中的重要组成部分不可或缺。 目前广泛使用 的红色发光材料有 Y203:Eu3+(Bi3+)、 Y202S:Eu3+(Bi3+)、 Y(V,P)04:Eu3+(Bi3+)、 (Y,Gd)B03:Eu3+ (Ca,Sr)S:EU 2+CTm3+)等; 但随着显示和照明等传统技术方式的变革, 这些曾经大放异彩的传统红色发光材料由于应用领域、 激发方式的改变而不能很好地 满足 3D显示、 白光 LED等新技术发展的需要。 上世纪 90年代末以来, 一类新型的氮 /氮氧化物发光材料被开发出来, 这类发光 材料的阴离子基团含有高负电荷的 N3_, 电子云膨胀效应使得其激发光谱向近紫外、可 见光等长波方向移动, 而且它们的基质具有较为紧密的网络结构,物理化学性质稳定。
2001年专利文献 EP1104799A1公开了一类 MxSiyNz:Eu (M为 Ca/Sr/Ba中至少一 种, z=2/3x+4/3y) 氮化物红色发光材料, 其代表性的发光材料主要有 MSiN2:Eu、 M2Si5N8:Eu和 MSi7N1Q:Eu等三种。 据非专利文献 Chem. Mater. 2006, 18: 5578报道, 这种 Sr2Si5N8: Eu氮化物红色发光材料在 150°C时发光强度只有室温时的 86%。 中国发明专利 ZL 200480040967.7发明了一类 MaAbDcEdXe红色发光材料, 式中 a+b=l 以及 M为 Mn/Ce/Pr/Nd/Sm/Eu/Tb/Dy/Ho/Er/Tm/Yb 中一种或两种元素, A为 Mg/Ca/Sr/Ba 中一种或两种元素, D 为 Si/Ge/Sn/Ti/Zr/Hf 中一种或两种元素, E 为 B/Al/Ga/In/Sc/Y/La/Ga/Lu中一种或两种元素, X选自 0、 N和 F中的一种或两种元素; 该无机化合物具有与 CaAlSiN3相同的晶体结构,且 0.00001≤a≤0.1, 0.5≤c≤4, 0.5≤d≤8, 0.8x(2/3+4/3xc+d)≤e禾口, e≤l.2(2/3+4/3 xc+d).其中典型组成为 CaAlSiN3:Eu。 据非专利 文献 Sci. Technol. Adv. Mat., 2007, 8(7-8): 588-600报道, 这种 CaAlSiN3:Eu发光材料在 150°C时发光强度是室温时的 89%, 要优于 Sr2Si5N8:Eu发光材料。
2009年非专利文献(Int. J. Appl. Ceram. Technol., 2010, 7(6):787-802)在 CaSiN2:Eu 的基础上引入一定量的 A1N得到了 Cal-xAlzSiN2+z:Eux (0<z<0.3 ), 但随着 A1N的引 入, 材料的发光效率显著下降, 它在 405 和 450nm激发下的外量子效率也分别只有 28.5%禾 P 24.5%; 另外, 根据该文献报道, Ca ^SiN^Eu fxn的热猝灭温度较低, 大约 为 110°C, 温度特性不佳。 上述文献中涉及的红色荧光粉具有比传统硫化物红色荧光粉((Ca,Sr)S:EU 2+)更为 优异的温度特性。 同时, 也不难看出, 上述文献中涉及的红色发光材料在 150°C时发 光强度均低于室温时的 90%, 尚有待于进一步改善; 而且对器件应用来说, 作为可以 有效提高显色指数的红色发光材料, 其半宽度要求要宽, 而上述发光材料的发光半宽 度一般在 90nm左右, 有进一步宽化的需要; 此外, 当前采用加入红色发光材料来提 高显色指数的技术方案, 虽然可以获得高的显色指数, 但同时却带来了器件整体发光 效率大幅度下降的问题, 这就需要进一步改善红色发光材料的发光效率来缓解。 发明内容 本发明的目的在于提供一种发光效率高、 温度特性优良、 半宽度宽的氮化物红色 发光材料。 本发明的另一个目的在于提供一种采用所述氮化物红色发光材料的发光器件。 为此, 本发明提供了一种氮化物红色发光材料, 该氮化物红色发光材料具有通式 ( 1 ) 中结构, 通式(1 )为 Ma(Al,B)bSicNdOe:Eum, Rn, 其中: M为 Mg、 Ca、 Sr、 Ba、 Zn中的至少一种; R为稀土元素 Y、 La、 Ce、 Gd、 Lu中至少一种; 元素 B和 Al的 摩尔比 X满足 0≤x≤0.1;以及 0.9≤a<l .1, 0.9<b≤l, l≤c≤l .5, 2.5<d<5, 0<e<0.1, 0<m<0.05, 0<n<0.1 , l<c/b<1.5。 进一步地, 上述 M至少包含 Ca和 /或 Sr。 进一步地, 上述 R至少包含稀土元素 Y和 /或 Gd。 进一步地, 上述 R为稀土元素 Y。 进一步地, 上述 η的范围为 0.001≤η≤0.05。 进一步地, 上述 m的范围为 0.005≤m≤0.025。 进一步地, 上述发光材料为下列材料中的任一种: Cao.99 lo.9Bo.oo9Sii.iN3.80o.oo2£uo.oi,Yo.ooi ;
Cao.2Sro.89 lo.99SiN30o.ooi^Euo.oo8,Yo.ooi,Lao.ooi ; Cao.75Sro.22 lo.92Bo.07Sil.2 40o.015 ^EUo.025,Yo.02,Gdo.005,L o.005 ;
Cao.45Sro.45Zno.02 lo.9Sii.48 40o.05
Figure imgf000005_0001
;
Sri.05Alo.9Bo.09Sil.3 3.50o.0005£Uo.005,Yo.008 ;
Cao.675Sro.3 lo.9SiN2.60o.oo5^Euo.o2,Gdo.oo3,Lao.oo2 ; Sri.05Alo.9Bo.09Sil.3 3.50o.0005£Uo.005,Yo.05 ;
Sri.05Alo.9Bo.09Sil.3 3.50o.0005£Uo.005,Yo.0008 ; Sri.05Alo.9Bo.09Sil.3 3.50o.0005£Uo.005,Yo.095 ; 或者
Cao.2Sro.89 lo.99SiN30o.ooi^Euo.oo5,Yo.ooi,Lao.ooi。 进一步地, 上述发光材料为粉末状、 薄膜状或片状。 同时, 在本发明中还提供了一种发光件, 该发光件是上述的氮化物红色发光材料 分散在玻璃材料、 塑料材料或树脂材料中所形成的, 或者, 是由上述的氮化物红色发 光材料与其他发光材料共同分散在玻璃材料、 塑料材料或树脂材料所形成的。 进一步地, 上述其他发光材料为下列荧光粉中一种或几种:
(Y,Gd,Lu,Tb)3(Al,Ga)50i2:Ce 、 (Mg,Ca,Sr,Ba)2Si04:Eu 、 (Ca,Sr)3Si05:Eu 、 (La,Ca)3Si6Nn:Ce a-SiA10N:Eu P-SiA10N:Eu Ba3Si6012N2:Eu、 Ca3(Sc,Mg)2Si3012:Ce、 CaSc204:Eu 、 BaAl8013:Eu 、 (Ca,Sr,Ba)Al204:Eu 、 (Sr,Ca,Ba)(Al,Ga,In)2S4:Eu 、 (Ca,Sr)8(Mg,Zn)(Si04)4Cl2:Eu/Mn 、 (Ca,Sr,Ba)3MgSi208:Eu/Mn 、
(Ca,Sr,Ba)2(Mg,Zn)Si207:Eu、 Zn2Si04:Mn、 (Y,Gd)B03:Tb ZnS:Cu,Cl/AK ZnS:Ag,Cl/Al、 (Sr,Ca)2Si5N8:Eu (Li,Na,K)3ZrF7:Mn (Li,Na,K)2(Ti,Zr)F6:Mn (Ca,Sr,Ba)(Ti,Zr)F6:Mn、 Ba。.65Zr。.35F2.7:Mn、 (Sr,Ca)S:Eu、 (Y,Gd)B03:Eu、 (Y,Gd)(V,P)04:Eu、 Y203:Eu、 (Sr,Ca,Ba,Mg)5(P04)3Cl:Eu 、 (Ca,Sr,Ba)MgAli0Oi7:Eu 、 (Ca,Sr,Ba)Si202N2:Eu 、 3.5MgO0.5MgF2'Ge02:Mn。 同时, 在本发明中还提供了一种发光器件, 该发光器件至少包括辐射源和上述的 氮化物红色发光材料。 进一步地, 上述辐射源为真空紫外、 或紫外、 或紫光、 或蓝光发射源。 进一步地, 上述发光器件中还含有被所述辐射源激发发光的其他发光材料。 进一步地, 上述其他发光材料为下列荧光粉中一种或多种:
(Y,Gd,Lu,Tb)3(Al,Ga)50i2:Ce 、 (Mg,Ca,Sr,Ba)2Si04:Eu 、 (Ca,Sr)3Si05:Eu 、 (La,Ca)3Si6Nn:Ce a-SiA10N:Eu P-SiA10N:Eu Ba3Si6012N2:Eu、 Ca3(Sc,Mg)2Si3012:Ce、 CaSc204:Eu 、 BaAl8013:Eu 、 (Ca,Sr,Ba)Al204:Eu 、 (Sr,Ca,Ba)(Al,Ga,In)2S4:Eu 、 (Ca,Sr)8(Mg,Zn)(Si04)4Cl2:Eu/Mn 、 (Ca,Sr,Ba)3MgSi208:Eu/Mn 、
(Ca,Sr,Ba)2(Mg,Zn)Si207:Eu、 Zn2Si04:Mn、 (Y,Gd)B03:Tb ZnS:Cu,Cl/AK ZnS:Ag,Cl/Al、 (Sr,Ca)2Si5N8:Eu (Li,Na,K)3ZrF7:Mn (Li,Na,K)2(Ti,Zr)F6:Mn (Ca,Sr,Ba)(Ti,Zr)F6:Mn、 Ba0.65Zr。.35F2.7:Mn、 (Sr,Ca)S:Eu、 (Y,Gd)B03:Eu、 (Y,Gd)(V,P)04:Eu、 Y203:Eu、 (Sr,Ca,Ba,Mg)5(P04)3Cl:Eu 、 (Ca,Sr,Ba)MgAli0Oi7:Eu 、 (Ca,Sr,Ba)Si202N2:Eu 、 3.5MgO0.5MgF2'Ge02:Mn。 本发明的有益效果: 本发明所提供的氮化物红色发光材料发光效率高、 温度特性 优良、 半宽度宽, 同时由其所制备的发光器件亮度得到明显提高。 除了上面所描述的目的、特征和优点之外, 本发明还有其它的目的、特征和优点。 下面将参照图, 对本发明作进一步详细的说明。 附图说明 附图构成本说明书的一部分、 用于进一步理解本发明, 附图示出了本发明的优选 实施例, 并与说明书一起用来说明本发明的原理。 图中: 图 1示出了本发明实施例 1与对比例所制备的发光材料的发射光谱比较图; 以及 图 2示出了本发明实施例 1与对比例所制备的发光材料的激发光谱比较图。 具体实施方式 应该指出, 以下详细说明都是例示性的, 旨在对本发明提供进一步的说明。 除非 另有指明, 本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人 员通常理解的相同含义。 在本发明的一种典型的实施方式中, 一种氮化物红色发光材料, 其中同时含有二 价金属 M、 稀土元素 Eu (铕) 和1、 A1 (铝)、 Si (硅)、 N (氮) 和 0 (氧), 并具有 通式 (1 ) 的结构, 通式 (1 ) 为 Ma(Al,B)bSicNdOe:Eum, Rn。 其中, M为 Mg、 Ca、 Sr、 Ba、 Zn中的至少一种, R为稀土元素 Y、 La、 Ce、 Gd、 Lu中至少一种, 元素 B和 Al的摩尔比 x满足 0≤x<0.1,并且,其中 0.9<a<l .1, 0.9<b≤l, l≤c≤l .5, 2.5<d<5, 0<e<0.1, 0<m<0.05, 0<n<0.1 , l<c/b<1.5。 上述发光材料的结构是基于 SiN4四面体来构建的, 以 Eu2+为发光中心。通过向发 光材料中引入易趋向网络结构的 (ΑΙ,Β)组分, 并采用少量稀土元素 R (包括 Y、 La、 Ce、 Gd、 Lu)来补位或填隙; 同时为了维持该发光材料的四面体结构, 而又不至于引 起较大的晶格畸变, (ΑΙ,Β)的加入量 b近似于二价金属元素 M的加入量 a, 其中 a的 范围为 0.9≤a<l . l, b的范围为 0.9≤b≤l, 且 b与 Si的比例满足 l<c/b<1.5 ; 上述协同作 用可以使发光材料的结构更为稳固和紧凑, 进而改善了发光材料的温度特性。 同时, A1和 B的加入还取得了其他显著的效果。如元素 B (硼)的低熔点和活性, 使其非常有助于强化焙烧, 进而有利于改善发光材料的颗粒结晶度, 使得该发光材料 具有高的发光效率、 良好的温度特性和小的光衰, B (硼) 的引入量应该适宜, 应保 证 B (硼)和 A1 (铝) 的摩尔比 X在 0≤x≤0.1范围内, 如果超过该范围, 由于 B (硼) 和 A1 (铝) 的半径差别太大, 会引起晶格畸变, 反而对该发光材料的发光效率和寿命 不利。 在上述发光材料中稀土元素 R (包括 Y、 La、 Ce、 Gd、 Lu) 的共掺杂有利于增强 发光材料对激发光辐射能量的吸收, 并能将吸收的能量传递给发光中心 Eu而提高发 光亮度, 而且不会产生与发光中心的竞争吸收或重吸收, 从而保证了材料具有优越的 发光效率; 稀土元素 R (包括 Y、 La、 Ce、 Gd、 Lu) 的引入也起到强化发光材料焙烧 的作用, 与加入的 B (硼) 共同改善发光材料颗粒结晶度, 增强发光效率, 同时降低 光衰和热猝灭; 同样地, 稀土元素 R (包括 Y、 La、 Ce、 Gd、 Lu) 也有一个适量的加 入量 n: 0<n<0.1 , 加入量过大则会产生明显不发光的杂相, 损害发光亮度。 为了满足高显色的应用需求, 在上述组分的基础上, 还引入了适量的 0 (氧) 来 宽化材料发射光谱的半宽度, 当氧的引入量 e在 0<e<0.1范围时, 发光材料的发光光 谱的半宽度可在 95〜130nm之间调整, 要宽于现有的 MxSiyNz:Eu和 (Ca,Sr)AlSiN3:Eu 等红色发光材料的 90nm左右的半宽度, 且光效保持得较好。 但当氧的加入量 e超过 0.1时, 由于其更易于与结构中的 (A1,B)、 Si和稀土等复合而改变结构和晶体场, 反而 会使得红色发光材料的发光亮度大为减弱。 在本发明发光材料中, Eu2+为发光中心, 其可以被波长位于 500nm以下的辐射光 有效激发, 发射出光谱位于 500-780nm的宽谱可见红光。 同时, 为了满足不同发光器件对发光材料光色性能等的应用要求, 本发明发光材 料综合采用调节其通式中 M所代表的二价元素 Mg、 Ca、 Sr、 Ba、 Zn的种类和比例、 以及激活剂 Eu 的浓度等途径来实现其发射主峰和光谱覆盖面积的可控调节。 如随着 Sr含量的增加和 Ca含量的减少, 材料的发射主峰逐渐红移, 发光颜色趋向于更红; 提高激活剂 Eu 的浓度, 发光中心增多, 发射主峰也红移, 同时发光强度增强, 但当 Eu的浓度超过 0.025 时, 该材料的发光将出现浓度猝灭效应, 此时即便继续增加 Eu 浓度反而会使得发光材料的发光强度降低, 且当 Eu的浓度增大到 0.05时, 浓度猝灭 效应十分严重,材料的发光亮度显著下降。当二价金属 M组分的含量 a处于 0.9≤a<l. l、 Eu浓度 m满足 0<m<0.05时, 可实现该类发光材料发射光谱在 500〜780nm可见光波 段的可控调节。 本领域技术人员通过阅读本发明申请文件, 在本发明申请文件的教导 下, 能够合理的运用常规技术手段, 实现该类发光材料发射光谱在 500〜780nm可见 光波段的可控调节, 在此不再赘述。 优选地, 上述氮化物红色发光材料中 M至少包含 Ca和 /或 Sr。 当 M中至少包含 Ca、 Sr中的一种或两种时, 在获得相同色度的条件下, 该发光材料具有优异的发光亮 度和温度特性。 优选地, 上述氮化物红色发光材料中 R至少包含稀土元素 Y和 /或 Gd。 当 R中至 少包含稀土元素¥、 Gd中的一种或两种时, 在获得相同色度的条件下, 该发光材料具 有优异的发光亮度和温度特性。 更为优选地, R为稀土元素 Y。 优选地, 上述氮化物红色发光材料中 R的加入量 η的范围为 0.001≤η≤0.05。 在该 范围内该发光材料具有优异的发光亮度和温度特性。 优选地, 上述氮化物红色发光材料中 Eu的加入量 m, 0.005≤m<0.025在该范围内 该发光材料具有优异的发光亮度和温度特性。 这是因为当 Eu的加入量小于 0.005时, 发光中心 Eu太少, 发光亮度低下; 当 Eu超过 0.025时又会发生浓度猝灭效应, 发光 亮度随着 Eu的增加反而下降, 且荧光粉的温度特性也变差。 此外, 在本发明氮化物红色发光材料中必不可免的会存在微量 C (碳), 在本发明 中氮化物红色发光材料中 C的质量百分含量不超过该发光材料总质量的 0.1%。微量 C 的存在有利于稳定发光材料发光中心 Eu2+的价态, 防止转化成 Eu3+而损害发光效率; 但当其含量超过 0.1%时会污染发光材料, 不仅影响体色, 而且光效也大幅下降。 优选地, 上述氮化物红色发光材料为下列材料中的任一种:
Cao.99 lo.9Bo.009Sil.lN3.80o.002£Uo.01,Yo.OOi ;
Cao.2Sro.89 lo.99SiN30o.ooi^Euo.oo8,Yo.ooi,Lao.ooi ; Cao.75Sro.22 lo.92Bo.07Sil.2 40o.015 ^EUo.025,Yo.02,Gdo.005,L o.005 ;
Cao.45Sro.45Zno.02 lo.9Sii.48 40o.05
Figure imgf000009_0001
;
Sri.05Alo.9Bo.09Sil.3 3.50o.0005£Uo.005,Yo.008 ;
Cao.675Sro.3 lo.9SiN2.60o.005
Figure imgf000009_0002
Sri.05Alo.9Bo.09Sil.3 3.50o.0005£Uo.005,Yo.05 ;
Sri.05Alo.9Bo.09Sil.3 3.50o.0005£Uo.005,Yo.0008 ;
Sri.05Alo.9Bo.09Sil.3 3.50o.0005£Uo.005,Yo.095 ; 或者
Cao.2Sro.89 lo.99SiN30o.ooi^Euo.oo5,Yo.ooi,Lao.ooi。 同时, 为了适用不同的应用需求, 本发明涉及的发光材料可以直接被加工成为粉 末状、 薄膜状或片状。 以下将给出一种制备本发明氮化物红色发光材料的方法, 具体如下: 根据通式 (1 ) 所示的化学计量比, 将二价金属 M的氮化物、 氮化铝、 氮化硼、 氮化硅以及 Eu的化合物和稀土 R的化合物等原料准确称量后混合均匀, 然后再在氮 气或氮氢混合气氛中、 1400〜1800°C的高温下焙烧 4〜20小时, 所得的焙烧产物再经 过破碎、 过筛、 洗涤、 烘干等步骤即可以得到本发明所述的红色发光材料。 在本发明的一种典型的实施方式中, 提供了一种发光件, 这种件可以是发光膜也 可以是发光片, 其是由上述的氮化物红色发光材料分散在玻璃材料、 塑料材料或树脂 材料中所形成的, 或者, 是由上述的氮化物红色发光材料与其他发光材料一起均匀地 分散在玻璃材料、 塑料材料或树脂材料所形成的。 本发明所提供的这种发光件, 只要在玻璃材料、塑料材料或树脂材料制备过程中, 将本发明氮化物红色发光材料, 或者本发明氮化物红色发光材料与其他发光材料添加 到玻璃材料、 塑料材料或树脂材料的原料中混合均匀, 然后按照玻璃材料、 塑料材料 或树脂材料的常规方法制备成膜状或片状即可, 本发明氮化物红色发光材料, 或者本 发明氮化物红色发光材料与其他发光材料的混合物加入到玻璃材料、 塑料材料或树脂 材料的量与现有技术中发光件制备过程中发光材料的加入量相等即可。 本领域技术人 员在本发明的基础上, 能够通过合理的技术手段制备出本发明所提供的这种发光膜或 发光片, 故对其制作方法不再赘述。 优选地,上述其他发光材料为 (Y,Gd,Lu,Tb)3(Al,Ga)5012:Ce、(Mg,Ca,Sr,Ba)2Si04:Eu、 (Ca,Sr)3Si05:Eu、 (La,Ca)3Si6Nu:Ce、 a-SiA10N:Eu P-SiA10N:Eu Ba3Si6012N2:Eu、 Ca3(Sc,Mg)2Si3012:Ce 、 CaSc204:Eu 、 BaAl8013:Eu 、 (Ca,Sr,Ba)Al204:Eu 、 (Sr,Ca,Ba)(Al,Ga,In)2S4:Eu 、 (Ca,Sr)8(Mg,Zn)(Si04)4Cl2:Eu/Mn 、 (Ca,Sr,Ba)3MgSi208:Eu/Mn、 (Ca,Sr,Ba)2(Mg,Zn)Si207:Eu、 Zn2Si04:Mn、 (Y,Gd)B03:Tb ZnS:Cu,Cl/Al 、 ZnS:Ag,Cl/Al 、 (Sr,Ca)2Si5N8:Eu 、 (Li,Na,K)3ZrF7:Mn 、 (Li,Na,K)2(Ti,Zr)F6:Mn、 (Ca,Sr,Ba)(Ti,Zr)F6:Mn、 Ba0.65Zr0.35F2.7:Mn、 (Sr,Ca)S:Eu、 (Y,Gd)B03:Eu 、 (Y,Gd)(V,P)04:Eu Y203:Eu 、 (Sr,Ca,Ba,Mg)5(P04)3Cl:Eu 、 (Ca,Sr,Ba)MgAl1。017:Eu、 (Ca,Sr,Ba)Si202N2:Eu、 3.5MgO'0.5MgF2'GeO2:Mn 中的一种 或几种。 在制作发光件的过程中本发明所提供的氮化物红色发光材料与其他发光材料的混 合比例可以根据应用和光色调节的需求来合理的调节, 本领域技术人员在本发明的基 础上经过合理的分析, 有能力制备出所需的发光件。 在本发明的一种典型的实施方式中, 还提供了一种发光器件, 这种发光器件至少 包括辐射源和上述具有通式 ( 1 ) 的氮化物红色发光材料, 通式 ( 1 ) 为 Ma(Al,B)bSicNdOe:Eum, Rn。 上述发光材料可以是粉末状、 薄膜状或片状, 也可以通过分散在玻璃材料、 塑料 材料或者树脂材料中制备成的发光件。 辐射源可以是任何一种能够发出波长位于 500nm以下的辐射光的辐射源,优选地, 辐射源为真空紫外、 紫外、 紫光或蓝光辐射源, 在它们的分别激发下, 本发明涉及的 发光材料均能够发出高效的红光。 优选地, 上述发光器件中, 除具有通式(1 ) 中结构的氮化物红色发光材料外, 还 可以加入其他能够被相应辐射源有效激发的发光材料, 如在"蓝光 LED+本发明涉及的 发光材料"组合中, 加入能够被蓝光激发的黄色或绿色发光材料可形成白光发光器件; 在"真空紫外、 紫外或紫光 LED+本发明涉及的发光材料"中加入能够被真空紫外、 紫 外或紫光激发的蓝色和绿色发光材料也可形成白光发光器件, 等等, 这些白光发光器 件能够用于照明或显示领域。 上述发光器件中可用于与本发明氮化物红色发光材料混合使用的其他发光材料主 要有: (Y,Gd,Lu,Tb)3(Al,Ga)5012:Ce 、 (Mg,Ca,Sr,Ba)2Si04:Eu 、 (Ca,Sr)3Si05:Eu 、 (La,Ca)3Si6Nn:Ce a-SiA10N:Eu P-SiA10N:Eu Ba3Si6012N2:Eu、 Ca3(Sc,Mg)2Si3012:Ce、 CaSc204:Eu 、 BaAl8013:Eu 、 (Ca,Sr,Ba)Al204:Eu 、 (Sr,Ca,Ba)(Al,Ga,In)2S4:Eu 、 (Ca,Sr)8(Mg,Zn)(Si04)4Cl2:Eu/Mn 、 (Ca,Sr,Ba)3MgSi208:Eu/Mn 、
(Ca,Sr,Ba)2(Mg,Zn)Si207:Eu、 Zn2Si04:Mn、 (Y,Gd)B03:Tb ZnS:Cu,Cl/AK ZnS:Ag,Cl/Al、 (Sr,Ca)2Si5N8:Eu (Li,Na,K)3ZrF7:Mn (Li,Na,K)2(Ti,Zr)F6:Mn (Ca,Sr,Ba)(Ti,Zr)F6:Mn、 Ba0.65Zr。.35F2.7:Mn 、 (Sr,Ca)S:Eu 、 (Y,Gd)B03:Eu 、 (Y,Gd)(V,P)04:Eu Y203:Eu 、 (Sr,Ca,Ba,Mg)5(P04)3Cl:Eu 、 (Ca,Sr,Ba)MgAli0Oi7:Eu 、 (Ca,Sr,Ba)Si202N2:Eu 、 3.5MgO0.5MgF2*Ge02:Mn等。 以下将结合具体实施例 1-22和对比例进一步说明本发明所提供的氮化物红色发光 材料的色品坐标、 相对亮度和半宽度情况。 同时, 将结合实施例 23-33进一步说明本 发明所提供的发光器件的有益效果。 实施例 1-22 中氮化物红色发光材料的化学式如表 1 所示, 对比例选择纯
Ca0.99AlSiN3:Euo.oi发光材料。 实施例 1-22以及对比例中发光材料制备方法: 根据通式实施例 1-22所示的通式中的化学计量比, 将二价金属 M的氮化物、 氮 化铝、 氮化硼、 氮化硅以及 Eu的化合物和稀土 R的化合物等原料准确称量后混合均 匀, 其中组分中的氧由 Eu的化合物或稀土 R的化合物引入, 然后再在氮气或氮氢混 合气氛中、 1500〜1600°C的高温下焙烧 6〜8小时, 所得的焙烧产物再经过破碎(破碎 至 5〜20微米)、 过 100〜500目筛、 经稀酸酸洗或去离子水水洗、 80〜120°C烘干, 即 得到具有实施例 1-22和对比例化学式的样品。 测试方法: 采用分光光度计对对比例和实施例 1-22中氮化物红色发光材料进行色品坐标、相 对亮度和半宽度测试, 其中设定激发波长为 460nm, 并定义对比例发光材料的相对亮 度为 100, 测试结果如表 1所示。
表 1对比例及实施例 1一 22发光材料的化学式及其光色性能参数
Figure imgf000012_0001
表 2 对比例及实施例 1一 22发光材料相对亮度的温度特性数据
Figure imgf000013_0001
从表 1列举的实施例 1-22结果不难看出,本发明涉及的新型红色发光材料均具有 比对比例 Ca 99AlSiN3:EU Q1发光材料更高的发光亮度和更宽的半宽度, 这些均非常有 利于应用器件发光效率及显色指数的提升。 而且, 从表 2给出的实施例 1-22发光材料 的温度特性数据来看, 在 150°C高温时, 实施例 1-22涉及的发光材料的发光亮度处于 室温时的 91〜94%范围内, 高于对比例 Ca^AlSiN^Eu fu发光材料的 89%。 同时, 由表 1中实施例 1-22的相应数据不难发现以下现象: ( 1 ) 当本发明发光材料中 M不含有 Ca或 Sr时, 所制备的发光材料的发光亮度 明显偏低。 如表 1中实施例 11、 12、 13所示, 在实施例 11、 12和 13中发光材料中 M不含 有 Ca或 Sr, 由表 1中结果可知, 实施例 11、 12和 13所制备的发光材料在三种不同 的色坐标下的发光亮度都明显低于 M含有 Ca或 Sr的其他实施例所制备的发光材料的 发光亮度。 由此可见, 本发明发光材料 M中含 Ca、 Sr时, 其发光效率明显有所提高。
(2) 当本发明发光材料中 R为稀土元素 Y和 /或 Gd时, 发光材料具有更好的发 光亮度。 对比表 1中实施例 10和 14, 实施例 10中发光材料相对于实施例 14中发光材料 增加了组分 Gd, 它们的色坐标基本相同, 但实施例 10中发光材料的亮度明显优于实 施例 14中发光材料的发光亮度。 对比表 1中实施例 3和 15, 实施例 3中发光材料相对于实施例 15中发光材料而 言, 实施例 3中 R选用为 Y、 Gd和 Lu, 实施例 15中 R选用为 Ce和 Lu。 它们的色 坐标基本相同, 但实施例 10中发光材料的亮度明显优于实施例 14中发光材料的发光 亮度。 由此可见, 发光材料中 R为稀土元素 Y和 /或 Gd时, 发光材料具有更好的发光亮 度。
(3 ) 当本发明发光材料中 R为稀土元素 Y时, 发光材料具有更好的发光亮度。 对比表 1中实施例 8和 16-19, 其中, 实施例 16的发光材料 R选用为 Gd, 实施 例 8、 17、 18和 19的发光材料中 R选用为 Y, 它们的色坐标基本相同, 但实施例 8、 17、 18和 19中发光材料的亮度明显优于实施例 8中发光材料的发光亮度。 由此可见, 发明发光材料中 R为稀土元素 Υ、 时, 发光材料具有更好的发光亮度。
(4) 当本发明发光材料中 R的用量 η为 0.001≤η≤0.05时, 发光材料具有更好的 发光亮度。 为了增加对比性, 以发光材料中 R都选用 Υ时的实施例 8和 17-19为例, 它们的 色坐标基本相同,但实施例 8和 17中发光材料的亮度明显优于实施例 18和 19中发光 材料的发光亮度。 由此可见, 发明发光材料中 R的用量 η为 0.001≤η≤0.05时, 发光材 料具有更好的发光亮度。 ( 5 ) 当本发明发光材料中 Eu的用量 m为 0.005≤m≤0.025时, 发光材料具有更好 的发光亮度。 对比表 1中实施例 2和 20、 5和 21、 6和 22, 实施例 20相对于 2、 实施例 21相 对于 5、以及实施例 22相对于 6都仅是 Eu的用量 m的改变。由表 1中结果可以看出, 当本发明发光材料中 Eu的用量 m为 0.005≤m≤0.025时, 发光材料具有更好的发光亮 度。 为了进一步说明本发明所制备的发光材料相对于对比例中发光材料的有益效果, 分别测试由实施例 1所制备发光材料和由对比例所制备的发光材料的发射光谱和激发 光谱, 参见附图 1和附图 2。 在附图 1和附图 2中横坐标为波长、 纵坐标为相对发射 强度, L1代表本发明实施例 1所制备的发光材料, L2代表对比例所制备的发光材料。 如图 1所示, 本发明实施例 1所制备的氮化物发光材料相对于对比例具有更高的 发射强度和更宽的发射范围, 其半宽度为 108nm, 宽于对比例的 91nm, 有利于改善应 用器件的显色指数; 经光谱辐射分析系统测试它们的相对亮度, 以对比例的亮度为 100, 测试得到实施例 1的相对亮度为 138。 如图 2所示的由实施例 1所制备发光材料和由对比例所制备发光材料的激发光谱, 在 250-500nm激发范围内, 本发明实施例 1所制备的氮化物发光材料相对于对比例具 有更高的激发效率, 在相同激发波长下, 实施例 1所制备的发光材料的发光亮度要优 于对比例。 同时从实施例 1涉及的发光材料的激发光谱容易看出, 该类氮化物红色发 光材料在 250-500nm均具有非常高的激发效率, 这表明该类发光材料可以应用于与紫 夕卜、 紫光或蓝光辐射源组合使用来制造发光器件。 以下将根据实施例 23-33进一步说明本发明所提供的发光材料在制备发光器件时 的有益效果。 实施例 23 : 将实施例 1得到的红色发光材料分散在折射率为 1.41的有机硅树脂中, 经搅拌均 匀成浆后在 410nm紫光 LED芯片上点胶、 固化, 并焊接好电路, 用树脂封结, 即可 得到发红光的发光器件, 其色坐标为 (0.6727, 0.3214)。 实施例 24 将实施例 17得到的红色发光材料和 Y3Al5012:Ce黄色发光材料按 1 : 6比例分散在 折射率为 1.53的有机硅树脂中,经搅拌均匀成浆后涂敷在 460nm的蓝光 LED芯片上, 固化, 并焊接好电路, 用树脂封结, 即可得到发白光的发光器件, 其色坐标为(0.4417, 0.3905 ), 显色指数 85, 相关色温 2809 K。 实施例 25 将实施例 2得到的红色发光材料和 (Mg,Ca,Sr,Ba)2Si04:Eu黄色发光材料按 1 : 10比 例分散在折射率为 1.52的有机硅树脂中,经搅拌均匀成浆后涂敷在 455nm的蓝光 LED 芯片上, 固化, 并焊接好电路, 用树脂封结, 即可得到发白光的发光器件, 其色坐标 为 (0.4228,0.3943 ), 显色指数 82, 相关色温 3173 K。 实施例 26 将实施例 9得到的红色发光材料和 a-SiA10N:Eu黄色发光材料按 1 : 12比例分散在 折射率为 1.51的环氧树脂中, 经搅拌均匀成浆后涂敷在 450nm的蓝光 LED芯片上, 固化, 并焊接好电路, 用树脂封结, 即可得到发白光的发光器件, 其色坐标为(0.3902, 0.3520), 显色指数 76, 相关色温 3518K。 实施例 27 将实施例 6得到的红色发光材料和 Ba3Si6012N2:Eu绿色发光材料按 1 :8比例分散 在折射率为 1.52的环氧树脂中, 经搅拌均匀成浆后涂敷在 452.5nm蓝光 LED芯片上, 固化, 并焊接好电路, 用树脂封结, 即可得到发白光的发光器件, 其色坐标为(0.3728, 0.3336), 显色指数 90.6, 相关色温 3859K。 实施例 28 将实施例 3得到的红色发光材料和 (Sr,Ba)2Si04:EU绿色发光材料按 1 :5比例分散在 折射率为 1.52的有机硅树脂中, 经搅拌均匀成浆后涂敷在 460nm蓝光 LED芯片上, 固化, 并焊接好电路, 用树脂封结, 即可得到发白光的发光器件, 其色坐标为(0.4306, 0.3804), 显色指数 86, 相关色温 2907K。 实施例 29 将实施例 8得到的红色发光材料和 (Y,Lu)3(Al,Ga)5012:Ce绿色发光材料按 1:4比例 分散在折射率为 1.52的环氧树脂中, 经搅拌均匀成浆后涂敷在 445nm蓝光 LED芯片 上,固化,并焊接好电路,用树脂封结,即可得到发白光的发光器件,其色坐标为(0.4377, 0.3691 ), 显色指数 89, 相关色温 2685K。 实施例 30 将实施例 Ί得到的红色发光材料和 P-SiA10N:Eu绿色发光材料、 Sr5(P04)3Cl:Eu蓝 色发光材料按 1 :5:3 比例分散在折射率为 1.52的有机硅树脂中, 经搅拌均匀成浆后涂 敷在 380nm的近紫外 LED芯片上, 固化, 并焊接好电路, 用树脂封结, 即可得到发 白光的发光器件, 其色坐标为 (0.3832, 0.3505), 显色指数 89.7, 相关色温 3698 K。 实施例 31 将实施例 14 得到的红色发光材料和 Ca3(Sc,Mg)2Si3012:Ce 绿色发光材料、 BaMgAl1Q017:Eu蓝色发光材料按 1 :6:2比例分散在折射率为 1.46的有机硅树脂中, 经 搅拌均匀成浆后涂敷在 360nm的紫外 LED芯片上, 固化, 并焊接好电路, 用树脂封 结, 即可得到发白光的发光器件, 其色坐标为 (0.3571, 0.3002), 显色指数 82.7, 相关 色温 4123 K。 实施例 32 将实施例 20得到的红色发光材料和 Zn2Si04:Mn绿色发光材料、 BaMgA11Q017:Eu 蓝色发光材料三者分别调浆、 辊扎, 并采用丝网印刷均匀涂敷在 PDP后基板的障壁槽 内, 之后将印刷好的基板低温烤屏、 封装、 充入 Ne-Xe混合惰性气体, 并焊接好电路 制成彩色等离子发光器件, 该器件的色品坐标为 (0.3211, 0.3308), 亮度 864cd/m2。 实施例 33 将实施例 2 得到的红色发光材料和(Y,Gd)B03:Eu 红粉混合均匀、 (Zn2Si04:Mn+(Y,Lu)3A15012:Ce)混合的绿色发光材料以及 BaMgA11()017:Eu蓝色发光材 料三者分别调浆、 辊扎, 并采用丝网印刷均匀涂敷在 PDP后基板的障壁槽内, 之后将 印刷好的基板低温烤屏、 封装、 充入 Ne-Xe混合惰性气体, 并焊接好电路制成彩色等 离子发光器件, 该器件的色品坐标为 C0.3340, 0.3264), 亮度 788cd/m2。 由实施例 23-31所制备的发光器件, 以及由实施例 32和 33所制备的彩色等离子 发光器件可以看出, 本发明所提供的氮化物红色发光材料可以满足不同波长的紫外、 紫光或蓝光辐射源的激发需要, 从而可以与它们组合使用来制造具有不同光色参数的 发光器件。 由实施例 23-31 中数据可以看出, 本发明所提供的氮化物红色发光材料可 以与辐射源及其他发光颜色的发光材料组合来制造色温低于 4000K、显色指数大于 80 的低色温、 高显色白光 LED器件。 实施例 23-33仅是本发明的实施例, 其不能限定本发明的保护范围, 本发明所保 护的发光器件中发光材料可以与玻璃、 塑料以及树脂材料进行混合形成发光元件, 进 而实现发光的作用, 在本发明中玻璃材料、 塑料材料以及树脂材料可以是任选的, 只 要能够达到发光材料与它们不发生化学反应, 且分散在它们之中形成的发光件后仍然 能够被紫外、 紫光或蓝光辐射源有效激发并发光即可。 以上仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技术人 员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的任何 修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种氮化物红色发光材料,其特征在于,所述氮化物红色发光材料具有通式(1) 的结构, 所述通式 (1) 为 Ma(Al,B)bSicNdOe:Eum, Rn, 其中:
所述 M为 Mg、 Ca、 Sr、 Ba、 Zn中的至少一种;
所述 R为稀土元素 Y、 La、 Ce、 Gd、 Lu中至少一种;
所述元素 B和 A1的摩尔比 X满足 0≤x≤0.1; 以及
0.9≤a<l.l, 0.9<b≤l, l≤c≤1.5, 2.5<d<5, 0<e<0.1, 0<m<0.05, 0<n<0.1, l<c/b<1.5。
2. 根据权利要求 1 所述的氮化物红色发光材料, 其特征在于, 所述 M至少包含 Ca禾口 /或 Sr。
3. 根据权利要求 1或 2所述的氮化物红色发光材料, 其特征在于, 所述 R至少包 含稀土元素 Y和 /或 Gd。
4. 根据权利要求 1-3中任一项所述的氮化物红色发光材料, 其特征在于, 所述 R 为稀土元素 Y。
5. 根据权利要求 1-4中任一项所述的氮化物红色发光材料, 其特征在于, 所述 η 的范围为 0.001≤η≤0.05。
6. 根据权利要求 1-5中任一项所述的氮化物红色发光材料, 其特征在于, 所述 m 的范围为 0.005≤m≤0.025。
7. 根据权利要求 1所述的氮化物红色发光材料, 其特征在于, 所述发光材料为下 列材料中的任一种:
Cao.99 lo.9Bo.009Sil.lN3.80o.002£Uo.01,Yo.OOi;
Cao.2Sro.89 lo.99SiN30o.ooi^Euo.oo8,Yo.ooi,Lao.ooi;
Cao.75Sro.22 lo.92Bo.07Sil.2 40o.015^EUo.025,Yo.02,Gdo.005,L o.005;
Cao.45Sro.45Zno.02 lo.9Sii.48 40o.05
Figure imgf000019_0001
;
Sri.05Alo.9Bo.09Sil.3 3.50o.0005£Uo.005,Yo.008;
Cao.675Sro.3 lo.9SiN2.60o.oo5^Euo.o2,Gdo.oo3,Lao.oo2; Sri.05Alo.9Bo.09Sil.3 3.50o.0005£Uo.005,Yo.05 ;
Sri.05Alo.9Bo.09Sil.3 3.50o.0005£Uo.005,Yo.0008 ;
Sri.05Alo.9Bo.09Sil.3 3.50o.0005£Uo.005,Yo.095 ; 或者
Cao.2Sro.89 lo.99SiN30o.ooi^Euo.oo5,Yo.ooi,Lao.ooi。
8. 根据权利要求 1-7中任一项所述的氮化物红色发光材料, 其特征在于, 所述发 光材料为粉末状、 薄膜状或片状。
9. 一种发光件, 其特征在于, 所述发光件是由权利要求 1-7中任一项所述的氮化 物红色发光材料分散在玻璃材料、 塑料材料或树脂材料中所形成的, 或者, 是 由权利要求 1-7中任一项所述的氮化物红色发光材料与其他发光材料共同分散 在玻璃材料、 塑料材料或树脂材料所形成的。
10. 根据权利要求 9所述的发光件, 其特征在于, 所述其他发光材料为下列荧光粉 中一种或几种:
(Y,Gd,Lu,Tb)3(Al,Ga)50i2:Ce、 (Mg,Ca,Sr,Ba)2Si04:Eu、 (Ca,Sr)3Si05:Eu、 (La,Ca)3Si6Nn:Ce 、 a-SiA10N:Eu 、 P-SiA10N:Eu 、 Ba3Si6012N2:Eu 、 Ca3(Sc,Mg)2Si3012:Ce 、 CaSc204:Eu 、 BaAl8013:Eu 、 (Ca,Sr,Ba)Al204:Eu 、 (Sr,Ca,Ba)(Al,Ga,In)2S4:Eu 、 (Ca,Sr)8(Mg,Zn)(Si04)4Cl2:Eu/Mn 、
(Ca,Sr,Ba)3MgSi208:Eu/Mn 、 (Ca,Sr,Ba)2(Mg,Zn)Si207:Eu 、 Zn2Si04:Mn 、 (Y,Gd)B03:Tb 、 ZnS:Cu,Cl/Al 、 ZnS:Ag,Cl/Al 、 (Sr,Ca)2Si5N8:Eu 、 (Li,Na,K)3ZrF7:Mn 、 (Li,Na,K)2(Ti,Zr)F6:Mn 、 (Ca,Sr,Ba)(Ti,Zr)F6:Mn 、 Ba0.65Zr。.35F2.7:Mn、 (Sr,Ca)S:Eu、 (Y,Gd)B03:Eu (Y,Gd)(V,P)04:Eu Y203:Eu、 (Sr,Ca,Ba,Mg)5(P04)3Cl:Eu、 (Ca,Sr,Ba)MgAli0Oi7:Eu、 (Ca,Sr,Ba)Si202N2:Eu、 3.5MgO0.5MgF2'Ge02:Mn。
11. 一种发光器件, 其特征在于, 所述发光器件至少包括辐射源和权利要求 1-8中 任一项中所述的氮化物红色发光材料。
12. 根据权利要求 11所述的发光器件, 其特征在于, 所述辐射源为真空紫外、或紫 夕卜、 或紫光、 或蓝光发射源。
13. 根据权利要求 11或 12所述的发光器件, 其特征在于, 所述发光器件中还含有 被所述辐射源激发发光的其他发光材料。 根据权利要求 13所述的发光器件,其特征在于,所述其他发光材料为下列荧光 粉中一种或多种:
(Y,Gd,Lu,Tb)3(Al,Ga)50i2:Ce、 (Mg,Ca,Sr,Ba)2Si04:Eu、 (Ca,Sr)3Si05:Eu、 (La,Ca)3Si6Nn:Ce 、 a-SiA10N:Eu 、 P-SiA10N:Eu 、 Ba3Si6012N2:Eu 、 Ca3(Sc,Mg)2Si3012:Ce 、 CaSc204:Eu 、 BaAl8013:Eu 、 (Ca,Sr,Ba)Al204:Eu 、 (Sr,Ca,Ba)(Al,Ga,In)2S4:Eu 、 (Ca,Sr)8(Mg,Zn)(Si04)4Cl2:Eu/Mn 、
(Ca,Sr,Ba)3MgSi208:Eu/Mn 、 (Ca,Sr,Ba)2(Mg,Zn)Si207:Eu 、 Zn2Si04:Mn 、 (Y,Gd)B03:Tb 、 ZnS:Cu,Cl/Al 、 ZnS:Ag,Cl/Al 、 (Sr,Ca)2Si5N8:Eu 、 (Li,Na,K)3ZrF7:Mn 、 (Li,Na,K)2(Ti,Zr)F6:Mn 、 (Ca,Sr,Ba)(Ti,Zr)F6:Mn 、 Ba0.65Zr。.35F2.7:Mn、 (Sr,Ca)S:Eu、 (Y,Gd)B03:Eu (Y,Gd)(V,P)04:Eu Y203:Eu、 (Sr,Ca,Ba,Mg)5(P04)3Cl:Eu、 (Ca,Sr,Ba)MgAli0Oi7:Eu、 (Ca,Sr,Ba)Si202N2:Eu、 3.5MgO0.5MgF2'Ge02:Mn。
PCT/CN2011/080866 2011-10-17 2011-10-17 氮化物红色发光材料、包括其的发光件以及发光器件 WO2013056408A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2011/080866 WO2013056408A1 (zh) 2011-10-17 2011-10-17 氮化物红色发光材料、包括其的发光件以及发光器件
US14/349,703 US9252339B2 (en) 2011-10-17 2011-10-17 Red light-emitting nitride material, and light-emitting part and light-emitting device comprising the same
KR1020147012618A KR101717241B1 (ko) 2011-10-17 2011-10-17 질화물 적색 발광재료, 그것을 포함한 발광체 및 발광소자
JP2014534907A JP6002772B2 (ja) 2011-10-17 2011-10-17 窒化物赤色発光材料、それを含む発光素子及び発光デバイス
EP11874429.1A EP2770037A4 (en) 2011-10-17 2011-10-17 RED-ILLUMINATING NITRIDE MATERIAL AND LIGHT-EMITTING ELEMENT AND LIGHT-EMITTING DEVICE THEREWITH

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/080866 WO2013056408A1 (zh) 2011-10-17 2011-10-17 氮化物红色发光材料、包括其的发光件以及发光器件

Publications (1)

Publication Number Publication Date
WO2013056408A1 true WO2013056408A1 (zh) 2013-04-25

Family

ID=48140290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080866 WO2013056408A1 (zh) 2011-10-17 2011-10-17 氮化物红色发光材料、包括其的发光件以及发光器件

Country Status (5)

Country Link
US (1) US9252339B2 (zh)
EP (1) EP2770037A4 (zh)
JP (1) JP6002772B2 (zh)
KR (1) KR101717241B1 (zh)
WO (1) WO2013056408A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015061902A (ja) * 2013-08-22 2015-04-02 パナソニックIpマネジメント株式会社 黄色蛍光体、発光デバイス、照明装置、および車両
CN109135745A (zh) * 2018-09-13 2019-01-04 济南大学 一种白光led用黄色荧光粉的制备方法及其应用
KR20220029811A (ko) 2020-08-27 2022-03-10 선문대학교 산학협력단 온도 센서용 α-사이알론 세라믹스 및 그 제조방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3211462A4 (en) * 2014-10-24 2018-07-11 Denka Company Limited Wavelength converter, light-emitting device using same, and production method for wavelength converter
CN105131944B (zh) * 2015-09-14 2017-03-22 中国计量学院 一种白光led用氮氧化物黄色荧光粉及其制备方法
CN105623658B (zh) * 2016-01-29 2017-04-12 江苏博睿光电有限公司 一种氮氧化物荧光粉及其制备方法、氮氧化物发光体和发光器件
KR102365962B1 (ko) * 2017-03-20 2022-02-22 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 형광체, 이를 포함하는 발광 소자 패키지 및 조명 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1104799A1 (en) 1999-11-30 2001-06-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Red emitting luminescent material
CN101157854A (zh) * 2007-07-02 2008-04-09 北京宇极科技发展有限公司 一种氮氧化合物发光材料、其制备方法及其应用
CN101473459A (zh) * 2006-06-21 2009-07-01 皇家飞利浦电子股份有限公司 具有至少一种陶瓷球形颜色转换器材料的发光器件

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063214A (ja) * 2004-08-27 2006-03-09 Dowa Mining Co Ltd 蛍光体及びその製造方法並びに光源
JP4756261B2 (ja) * 2005-01-27 2011-08-24 独立行政法人物質・材料研究機構 蛍光体とその製造方法および発光器具
ATE445686T1 (de) * 2005-02-21 2009-10-15 Koninkl Philips Electronics Nv Beleuchtungssystem mit strahlenquelle und lumineszierendem material
CN101138278A (zh) * 2005-03-09 2008-03-05 皇家飞利浦电子股份有限公司 包括辐射源和荧光材料的照明系统
CN103254894A (zh) * 2005-04-01 2013-08-21 三菱化学株式会社 无机功能材料原料用合金粉末及荧光体
JP4981042B2 (ja) * 2005-06-30 2012-07-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 黄緑色を放出するルミネッセント材料を含む照明系
US8159126B2 (en) * 2005-11-07 2012-04-17 Koninklijke Philips Electronics N.V. Light emitting device with an improved CaAlSiN light converting material
US7902564B2 (en) * 2006-12-22 2011-03-08 Koninklijke Philips Electronics N.V. Multi-grain luminescent ceramics for light emitting devices
JP5353192B2 (ja) 2007-11-09 2013-11-27 三菱化学株式会社 蛍光体、及びその製造方法
JP5111181B2 (ja) * 2008-03-19 2012-12-26 根本特殊化学株式会社 蛍光体および発光装置
JP5300968B2 (ja) * 2009-02-27 2013-09-25 信越化学工業株式会社 長残光蛍光体セラミックスとその製造方法
JP2011032332A (ja) * 2009-07-30 2011-02-17 Showa Denko Kk 蛍光体及びその製造方法
JP2011074268A (ja) * 2009-09-30 2011-04-14 Mitsubishi Chemicals Corp Tb付活希土類アルミン酸マグネシウム蛍光体、及びその製造方法、並びに該蛍光体を用いたバックライト用蛍光ランプおよび液晶表示装置
EP2531572B1 (en) * 2010-02-03 2015-09-16 Koninklijke Philips N.V. Phosphor converted led
JP5592764B2 (ja) * 2010-11-16 2014-09-17 日亜化学工業株式会社 発光装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1104799A1 (en) 1999-11-30 2001-06-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Red emitting luminescent material
CN101473459A (zh) * 2006-06-21 2009-07-01 皇家飞利浦电子股份有限公司 具有至少一种陶瓷球形颜色转换器材料的发光器件
CN101157854A (zh) * 2007-07-02 2008-04-09 北京宇极科技发展有限公司 一种氮氧化合物发光材料、其制备方法及其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEM. MATER., vol. 18, 2006, pages 5578
INT. J. APPL. CERAM. TECHNOL., vol. 7, no. 6, 2010, pages 787 - 802
SCI. TECHNOL. ADV. MAT., vol. 8, no. 7-8, 2007, pages 588 - 600
See also references of EP2770037A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015061902A (ja) * 2013-08-22 2015-04-02 パナソニックIpマネジメント株式会社 黄色蛍光体、発光デバイス、照明装置、および車両
CN109135745A (zh) * 2018-09-13 2019-01-04 济南大学 一种白光led用黄色荧光粉的制备方法及其应用
CN109135745B (zh) * 2018-09-13 2021-12-14 济南大学 一种白光led用黄色荧光粉的制备方法及其应用
KR20220029811A (ko) 2020-08-27 2022-03-10 선문대학교 산학협력단 온도 센서용 α-사이알론 세라믹스 및 그 제조방법

Also Published As

Publication number Publication date
KR20140089375A (ko) 2014-07-14
US20140239800A1 (en) 2014-08-28
US9252339B2 (en) 2016-02-02
EP2770037A1 (en) 2014-08-27
JP6002772B2 (ja) 2016-10-05
JP2014534298A (ja) 2014-12-18
EP2770037A4 (en) 2015-07-01
KR101717241B1 (ko) 2017-03-16

Similar Documents

Publication Publication Date Title
CN103045256B (zh) 一种led红色荧光物质及含有该荧光物质的发光器件
WO2008022552A1 (fr) Matériau luminescent à base de silicate avec pic multi-émission, son procédé de fabrication et son utilisation dans un dispositif d&#39;éclairage
WO2013056408A1 (zh) 氮化物红色发光材料、包括其的发光件以及发光器件
CN103314074B (zh) 赛伦磷光体、其制造方法和具有其的发光装置封装件
CN113444521B (zh) 一种红色荧光粉及具有其的发光器件
SG191944A1 (en) Carbonitride and carbidonitride phosphors and lighting devices using the same
CN104927865A (zh) 一种白光led用卤磷酸盐蓝色荧光粉及其制备方法
US20130140491A1 (en) Green to Yellow Light-Emitting Aluminate Phosphors
AU2015361064A1 (en) Phosphor compositions and lighting apparatus thereof
CN101307228B (zh) 氯铝硅酸盐荧光粉及其制备方法
CN109370580B (zh) 一种铋离子激活的钛铝酸盐荧光粉及其制备方法与应用
CN107636113B (zh) 荧光体及其制造方法、以及led灯
CN114540015A (zh) 一种宽谱黄绿色发射氮氧化物荧光粉及制备方法
CN106634997A (zh) 一种复合磷酸盐荧光体及其应用
JP2023522185A (ja) 緑色発光蛍光体およびそのデバイス
CN112625683A (zh) 一种锗酸盐型红色荧光粉及制备方法
CN104962286A (zh) 石榴石结构的复相荧光材料及其制备方法
CN104087300A (zh) 一种硫代磷酸盐荧光体及其应用
CN102399554B (zh) 氮化物红色发光材料、包括其的发光件以及发光器件
CN104073257B (zh) 一种硫代硅酸盐荧光体及其应用
KR101510124B1 (ko) 백색 발광다이오드 소자용 청녹색 발광 형광체 및 그를 이용한 백색 led 소자
CN104073256B (zh) 一种硫代硼酸盐荧光体及其应用
CN112852415B (zh) 一种高色纯度、高稳定性的发光绿色荧光粉及其制备方法
CN116144357B (zh) 一种紫外激发的绿光发射荧光粉及其制备方法与应用
JP2013214718A (ja) 酸窒化物系蛍光体およびこれを用いた発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874429

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14349703

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014534907

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011874429

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147012618

Country of ref document: KR

Kind code of ref document: A