CN1269767C - 钇·铝·石榴石烧结体及其制法、该烧结体的烧结辅助剂 - Google Patents

钇·铝·石榴石烧结体及其制法、该烧结体的烧结辅助剂 Download PDF

Info

Publication number
CN1269767C
CN1269767C CNB2003101131774A CN200310113177A CN1269767C CN 1269767 C CN1269767 C CN 1269767C CN B2003101131774 A CNB2003101131774 A CN B2003101131774A CN 200310113177 A CN200310113177 A CN 200310113177A CN 1269767 C CN1269767 C CN 1269767C
Authority
CN
China
Prior art keywords
aluminum
yttrium
source compound
sintered body
garnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2003101131774A
Other languages
English (en)
Other versions
CN1510010A (zh
Inventor
新见德一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of CN1510010A publication Critical patent/CN1510010A/zh
Application granted granted Critical
Publication of CN1269767C publication Critical patent/CN1269767C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • C04B2235/3869Aluminium oxynitrides, e.g. AlON, sialon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6023Gel casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/652Reduction treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9692Acid, alkali or halogen resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明能够使钇·铝·石榴石烧结体的烧成温度低温化,同时使烧结体的耐蚀性提高,防止透光性降低。在采用烧结法由钇源化合物和铝源化合物制造钇·铝·石榴石烧结体时,将氮化铝作为烧结辅助剂使用。可认为,在烧成过程中,氮化铝与氧化铝反应,生成液相,使烧结温度降低。

Description

钇·铝·石榴石烧结体及其 制法、该烧结体的烧结辅助剂
技术领域
本发明涉及钇·铝·石榴石烧结体的制造方法、其烧结辅助剂以及烧结体。
背景技术
钇·铝·石榴石(Y3Al5O12:YAG)陶瓷在从可见光区到红外光区的宽范围显示高的透光性。为此,研究了在蓝宝石替代窗材、放电灯用发光材料、耐蚀构件上的适用。
可是,钇·铝·石榴石的熔点为约1950℃,由于需要高的烧结温度,因此制造成本的降低难,为此,例如,在专利文献1中,混合氧化铝粉末和氧化钇粉末,作为烧结辅助剂添加氧化锂、氧化钠、氧化镁、氧化钙、氧化硅,成形,在1600℃-1850℃烧成。
[专利文献1]日本特开平5-286761号公报
发明内容
本发明人研究了将钇·铝·石榴石烧结体例如用作为高压放电灯(金属卤化物灯和汞灯等)的放电管。这样的高压放电灯期待作为汽车用头灯和幻灯机的光源。原因是,由于钇·铝·石榴石烧结体透光性高,因此通过用该烧结体形成放电管,能够将放电管内的放电电弧利用作为点光源。
通过使用专利文献1所记载的烧结辅助剂,使钇·铝·石榴石烧结体的烧成温度降低是可能的。可是,这些烧结辅助剂,在烧结体中作为杂质残存,有时对卤化物气体等腐蚀性气体的耐蚀性降低。具体地,当长时间继续放电管的发光时,可看到透光性徐徐地降低的倾向。
本发明的课题是使钇·铝·石榴石烧结体的烧成温度低温化,同时使烧结体的耐蚀性提高,防止透光性降低。
本发明的特征在于,在由钇源化合物和铝源化合物制造钇·铝·石榴石烧结体时,将氮化铝作为烧结辅助剂使用。
又,本发明涉及以采用上述方法得到为特征的钇·铝·石榴石烧结体。
再有,本发明是关于用钇源化合物和铝源化合物制造钇·铝·石榴石烧结体时的烧结辅助剂,其特征在于含有氮化铝。
本发明人想到:在制造钇·铝·石榴石烧结体时,添加氮化铝作为烧结辅助剂。氮化铝在烧结时与氧化铝或氧化钇反应生成液相,有促进烧结的作用。而且,氮化铝在烧结的过程中化学变化成石榴石相,或者变化成为不影响透光性和耐蚀性的晶体相。所以,能够防止石榴石的耐蚀性或透光性降低。
烧结过程中的氮化铝的行为还不明确,但可认为进行了以下的行为。
(1)向石榴石相的化学变化
AlN与Y2O3、Al2O3两者反应生成液相,有助于液相烧结。其次,AlN与氧反应生成Al2O3和N2,N2在气氛中飞散。生成的Al2O3与石榴石基质(マトリツクス)中的剩余Y2O3反应,生成钇·铝·石榴石烧结体。
(2)发生化学变化,作为化学稳定相残留
生成AlON(γ相)。AlON(γ相)化学上稳定。而且,AlON(γ相)为立方晶,光学上各向同性,因此不损害钇·铝·石榴石的透光性并能维持钇·铝·石榴石烧结体的高透光性。
钇源化合物和铝源化合物可利用氧化物、或者在加热后生成氧化物那样的化合物。作为这样的化合物可列举出硫酸盐、硝酸盐等盐类、醇盐。
烧结体的具体制造方法不限定,但可列举以下方法。
(1)混合钇源化合物和铝源化合物,煅烧(仮焼),生成钇·铝·石榴石的煅烧体(仮焼体)。接着粉碎煅烧体制成粉末,向其中添加氮化铝粉末,混合,烧成。
(2)混合钇源化合物、铝源化合物、氮化铝粉末,烧成。
在(1)、(2)中,以对混合物成形为好。作为成形法可列举出挤出成形、注塑成形、压制成形、凝胶流延法、刮刀法。
烧结方法可列举出常压烧结、热压、热等静压法。
在特别优选的实施方案中,混合氧化铝粉末和氧化钇粉末,加入醇等有机溶剂或蒸馏水,在罐磨机中混合。使此混合的粉末在减压下或常压下干燥。将得到的均匀的混合粉末采用单轴压制机或冷各向同压压制机等成形为所规定的形状。接着,该成形体在1400℃-1550℃煅烧,得到由钇·铝·石榴石构成的煅烧体。接着,粉碎煅烧体,添加氮化铝粉末,添加非水系溶剂和有机粘合剂,在罐磨机中混合12-48小时。使此混合的粉末在减压下或常压下干燥。将得到的均匀的混合粉末采用单轴压制机或冷各向同压压制机等成形为所规定的形状。将此成形体在例如500-1300℃脱脂,在例如1600-1900℃的温度在非氧化性气氛(例如氢气、真空、氮气氛)中烧成5-100小时,得到高密度钇·铝·石榴石烧结体。
在本发明的制造法中,烧成时的气氛优选是还原性气氛。此还原性气氛优选含有氢。另外,在还原性气氛中优选含有氮,剩余部分为还原性气体例如氢也可以。
通过使还原性气氛中的氮的比例为10%以上、60%以下,能够更提高得到的烧结体的直线透射率。可认为,通过使还原性气氛中的氮的比例为10%以上,在烧成时反应系中,使AlN稳定,有通过AlN的作用促进液相烧结的效果。从此观点看,使还原性气氛中的氮的比例优选为20%以上。另外可认为,通过使还原性气氛中的氮的比例为60%以下,AlN适度地氧化,生成氧化铝,更促进石榴石的生成。从此观点看,优选使还原性气氛中的氮的比例为50%以下,更优选为40%以下。
通过使烧成时气氛的露点为-10℃至+10℃,能够进一步提高得到的烧结体的直线透射率。这样,通过使烧成时气氛中存在适量的水分,根据化学平衡向反应系供给适量的氧,促进AlN氧化引起的氧化铝生成,可以促进氧化铝向石榴石基质中的同化。由此观点考虑,更优选烧成时气氛的露点为-5℃以上。或者,更优选烧成时气氛的露点为+5℃以下。
又,在优选的实施方案中,将含有钇源化合物、铝源化合物和氮化铝的成形体在800℃以上、1300℃以下脱脂,可得到脱脂体。一般认为在约700℃以上AlN的氧化(向Al2O3转化)变得显著。因此,含有钇源化合物、铝源化合物和氮化铝的反应系,回避在超过700℃的大气中的热处理是通常的。可是,理由虽不明确,但发现,通过使脱脂温度(煅烧温度)定为超过当初预想的800-1300℃,得到的烧结体的直线透射率提高。
通过使脱脂温度为800℃以上,脱脂体的强度变高,容易操作,同时能提高得到的烧结体的直线透射率。从此观点看,优选脱脂温度为900℃以上,更优选为1000℃以上。又,通过使脱脂温度为1300℃以下,能提高得到的烧结体的直线透射率。从此观点看,更优选脱脂温度为1200℃以下,进一步优选为1100℃以下。
在优选的实施方案中,钇源化合物和铝源化合物中的钇与铝的摩尔比率(Y/Al)为0.59-0.62。换言之,使钇源化合物和铝源化合物中的钇与铝的摩尔比率(Y/Al)基本上为石榴石相中的化学计量比。再者,所谓钇与铝的摩尔比率(Y/Al)为0.59-0.62意味着调制值。通过取为这样的摩尔比率,即使对于烧成后的烧结体也基本上为石榴石相中的化学计量组成物。
在其他优选的实施方案中,钇源化合物、铝源化合物和氮化铝中的钇与铝的摩尔比率(Y/Al)为0.59-0.62。换言之,使钇源化合物、铝源化合物和氮化铝全体中的钇与铝的摩尔比率(Y/Al)基本上为石榴石相中的化学计量比。在此场合,AlN的基本上总量化学变化成构成石榴石的铝源的场合,烧结体中的石榴石的组成为化学计量比。
在其他优选的实施方案中,钇源化合物和铝源化合物中的钇与铝的摩尔比率(Y/Al)为0.61-0.63,钇源化合物、铝源化合物和氮化铝中的钇与铝的摩尔比率(Y/Al)为0.59-0.62。
在本实施方案中,化学变化为AlON的场合,AlON以外的烧结体中的钇与铝的摩尔比率(Y/Al)变为0.59-0.62。与此相对,当氮化铝总量变换为构成石榴石的铝源时,烧结体中的钇与铝的摩尔比率(Y/Al)变为0.60-0.63。因此,氮化铝的一部分化学变化为AlON,同时氮化铝的一部分化学变化为石榴石相的场合,能够使构成烧结体的石榴石相的Al/Y比率基本上为化学计量比。
在优选的实施方案中,在钇·铝·石榴石烧结体中基本上不存在氮化铝。这是因为,当存在氮化铝相时,有透光性降低的倾向。
又,在优选的实施方案中,在钇·铝·石榴石烧结体中存在AlON相。AlON相不给予石榴石烧结体的透光性和耐蚀性以坏影响。
氮化铝相、AlON相的存在,例如通过透射电镜和EPMA的组合能够确认。
另外,由钇源化合物和铝源化合物制造钇·铝·石榴石烧结体时,可将YF3利用作为烧结辅助剂,据此,能将烧成温度降低为例如1900℃以下。在烧成过程中,YF3与氧化铝反应,生成YOF。YOF再与氧化铝反应如下。
这样,YF3之中,Y进入到石榴石相中,F作为气相蒸发。因此,在烧结体中未生成给予透光性和耐蚀性以影响的异相。
实施例
(实施例1)
混合Y2O3粉末(“BB”(信越化学株式会社制))和Al2O3粉末(“UA-5100”(昭和电工株式会社制)),在1500℃加热混合粉末,得到由钇·铝·石榴石构成的煅烧体。粉碎该煅烧体得到粉末,外配并添加0.5重量%AlN粉末(“Fグレ-ド”トクヤマ制),添加非水系溶剂和粘合剂,在树脂罐中用球磨机混合48小时。在Y2O3粉末、Al2O3粉末和AlN粉末中,(Y/Al)(摩尔比)取为0.600。将得到的混合物用凝胶流延法成形,在500-600℃脱脂,在非氧化性气氛中在1850℃烧成3小时。
加工得到的烧结体,得到直径10mm、厚度1mm的圆盘状试样。此圆盘状试样的直线透射率为65%。在石英安瓿瓶中封入圆盘状试样、Dy-Tl-Na-I系卤化物气体和水银,在1100℃加热2000小时。接着从安瓿瓶取出试样,测定直线透射率,为52%。在烧结体中未确认出氮化铝相。在此,显示了在Y2O3粉末、Al2O3粉末和AlN粉末中(Y/Al)(摩尔比)取为0.600的例子,但即使是0.60也得到同样的结果。
(比较例1)
与实施例1同样地制造烧结体。但是,烧结辅助剂为SiO2,添加量外配取为0.1重量%。Y2O3粉末和Al2O3粉末的混合比率取为对应于石榴石组成的化学计量比。
加工得到的烧结体,得到直径10mm、厚度1mm的圆盘状试样。此圆盘状试样的直线透射率为63%。在石英安瓿瓶中封入圆盘状试样、Dy-Tl-Na-I系卤化物气体和水银,在1100℃加热2000小时。接着从安瓿瓶取出试样,测定直线透射率,为15%。
(实施例2)
混合Y2O3粉末和Al2O3粉末,加热混合粉末,得到由钇·铝·石榴石构成的煅烧体。Y2O3粉末和Al2O3粉末的混合比率取为对应于石榴石组成的化学计量比。粉碎该煅烧体得到粉末,添加AlN粉末,添加非水系溶剂和粘合剂,用球磨机混合。对得到的混合物进行成形,在500-600℃脱脂,在非氧化性气氛中烧成。在得到的烧结体中未确认出氮化铝相,但确认出了AlON。
(实施例3)
混合Y2O3粉末(“BB”(信越化学株式会社制))和Al2O3粉末(“UA-5100”(昭和电工株式会社制)),在1500℃加热混合粉末,得到由钇·铝·石榴石构成的煅烧体。粉碎该煅烧体得到粉末,外配并添加0.5重量%AlN粉末(“Fグレ-ド”トクヤマ制),添加非水系溶剂和粘合剂,在树脂罐中用球磨机混合48小时。在Y2O3粉末、Al2O3粉末和AlN粉末中使(Y/Al)(摩尔比)变为0.600。将得到的混合物用凝胶流延法成形,在1100℃脱脂1小时。
将得到的脱脂体在由氢和氮构成的气氛中在1850℃烧成2小时。气氛的露点取为+3℃。气氛中的氢和氮的比例如表1所示那样地变更。抛光研磨加工各试样,得到直径10mm、厚度1mm的圆盘状试样。各试样的直线透射率的测定值示于表1。表1中的“判定”,将直线透射率49%以下记为“△”,将直线透射率50%以上、59%以下记为“○”,将直线透射率60%以上记为“◎”。此结果判明,通过使氮比例为10-60%,烧结体的直线透射率显著提高。在此,显示了在Y2O3粉末、Al2O3粉末和AlN粉末中(Y/Al)(摩尔比)为0.600的例子,但即使是0.60也得到同样的结果。
表1
H2/N2(%)   直线透射率(%)   判定
  100/0   40   △
  90/10   55   ○
  80/20   70   ◎
  70/30   70   ◎
  60/40   70   ◎
  50/50   65   ◎
  40/60   55   ○
  30/70   45   △
  20/80   35   △
(实施例4)
与实施例3同样地制造烧结体。但是,在烧结工序中,在最高温度1850℃烧成2小时,烧成时气氛为氢70%/氮30%气氛。如表2所示那样地变更烧成时气氛的露点。关于各试样,与实施例3同样地测定直线透射率,测定结果示于表2。此结果,通过使烧成时气氛的露点为-10℃以上、+10℃以下,得到的烧结体的直线透射率显著提高。
【表2】
露点(℃)   直线透射率(%) 判定
  -20   45   △
  -10   55   ○
  -5   70   ◎
  0   70   ◎
  +5   70   ◎
  +10   55   ○
  +15   40   △
  +20   35   △
(实施例5)
与实施例3同样地制造烧结体。但是,在脱脂工序中,如表3所示那样地变更脱脂温度。在各脱脂温度下的保持时间为1小时。在烧成工序中,在最高温度1850℃烧成2小时,烧成时气氛为氢70%/氮30%气氛。烧成时气氛的露点定为-3℃。关于各试样,与实施例3同样地测定直线透射率,测定结果示于表3。
另外,如下述那样地测定各脱脂体的操作性,测定结果示于表3。
即,使直径φ13mm×厚度2mm的脱脂后的切料落到厚度5mm的橡胶板上,将破损的高度记为L(cm)。按照以下的基准判断。
判断:0≤L<2:×;2≤L<5:△;5≤L<7:○;7≤L:◎
表3
脱脂温度(℃)   直线透射率(%)   脱脂体的操作性(cm)/判定
  600   50   1/×
  700   55   1/×
  800   55   3/△
  900   60   5/○
  1000   65   6/○
  1100   65   8/◎
  1200   60   10/◎
  1300   55   12/◎
  1400   40   15/◎
通过使脱脂温度为800℃以上,能够预想以外地较高地保持烧结体的直线透射率,同时脱脂体的操作性显著提高。通过使脱脂温度为1300℃以下,能够较高地保持烧结体的直线透射率。
如上述那样,根据本发明,能够使钇·铝·石榴石烧结体的烧成温度低温化,同时使烧结体的耐蚀性提高,防止透光性降低。

Claims (10)

1.成形体烧成后的厚度1mm的直线透过率为50%以上的钇·铝·石榴石烧结体的制造方法,其特征在于,在由钇源化合物和铝源化合物制造钇·铝·石榴石烧结体时,将氮化铝作为烧结辅助剂使用。
2.根据权利要求1记载的方法,其特征在于,所述钇源化合物是氧化钇,所述铝源化合物是氧化铝。
3.根据权利要求1记载的方法,其特征在于,所述钇源化合物和所述铝源化合物中的钇与铝的摩尔比率Y/Al为0.59-0.62。
4.根据权利要求1记载的方法,其特征在于,所述钇源化合物、所述铝源化合物和氮化铝中的钇与铝的摩尔比率Y/Al为0.59-0.62。
5.根据权利要求1记载的方法,其特征在于,所述钇源化合物和所述铝源化合物中的钇与铝的摩尔比率Y/Al为0.61-0.63,所述钇源化合物、所述铝源化合物和氮化铝中的钇与铝的摩尔比率Y/Al为0.59-0.62。
6.根据权利要求1记载的方法,其特征在于,在所述钇·铝·石榴石烧结体中不存在氮化铝。
7.根据权利要求1记载的方法,其特征在于,在所述钇·铝·石榴石烧结体中存在γ相A1ON。
8.根据权利要求1记载的方法,其特征在于,烧成时的气氛是含有氮10%以上60%以下的还原性气氛。
9.根据权利要求1记载的方法,其特征在于,烧成时气氛的露点为-10℃以上、+10℃以下。
10.根据权利要求1记载的方法,其特征在于,具有以下工序:将含有所述钇源化合物、所述铝源化合物和氮化铝的成形体在800℃以上、1300℃以下脱脂,得到脱脂体的脱脂工序;烧成上述脱脂体的烧成工序。
CNB2003101131774A 2002-12-25 2003-12-25 钇·铝·石榴石烧结体及其制法、该烧结体的烧结辅助剂 Expired - Fee Related CN1269767C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP373525/2002 2002-12-25
JP2002373525 2002-12-25
JP373525/02 2002-12-25
JP2003365837 2003-10-27
JP365837/2003 2003-10-27
JP365837/03 2003-10-27

Publications (2)

Publication Number Publication Date
CN1510010A CN1510010A (zh) 2004-07-07
CN1269767C true CN1269767C (zh) 2006-08-16

Family

ID=32473728

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003101131774A Expired - Fee Related CN1269767C (zh) 2002-12-25 2003-12-25 钇·铝·石榴石烧结体及其制法、该烧结体的烧结辅助剂

Country Status (4)

Country Link
US (1) US7371704B2 (zh)
EP (1) EP1433764B1 (zh)
CN (1) CN1269767C (zh)
DE (1) DE60308988T2 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7503825B2 (en) * 2004-05-21 2009-03-17 Osram Sylvania Inc. Aluminum nitride arc discharge vessel having high total transmittance and method of making same
JP2006282447A (ja) * 2005-03-31 2006-10-19 Fuji Photo Film Co Ltd 透光性材料およびその製造方法
JP4860368B2 (ja) * 2006-06-27 2012-01-25 富士フイルム株式会社 ガーネット型化合物とその製造方法
US7833924B2 (en) * 2007-03-12 2010-11-16 Ngk Insulators, Ltd. Yttrium oxide-containing material, component of semiconductor manufacturing equipment, and method of producing yttrium oxide-containing material
CN101284733B (zh) * 2007-04-10 2013-03-13 中国科学院上海硅酸盐研究所 钇铝石榴石和氧化钇双晶相透明陶瓷及其制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4841195A (en) * 1983-04-29 1989-06-20 U.S. Philips Corporation Discharge lamp having a yttrium aluminum garnet discharge envelope
US4745091A (en) * 1983-11-09 1988-05-17 Landalloy, Inc. Novel compositions for oxide ceramics
US4609631A (en) * 1985-09-12 1986-09-02 The United States Of America As Represented By The Secretary Of The Army Oxynitride glass fibers
US5314850A (en) * 1985-10-31 1994-05-24 Kyocera Corporation Aluminum nitride sintered body and production thereof
JP2899893B2 (ja) * 1989-06-07 1999-06-02 京セラ株式会社 窒化アルミニウム質焼結体およびその製造方法
US4940678A (en) * 1989-07-27 1990-07-10 Corning Incorporated Rare earth oxynitride glasses
US5298470A (en) * 1989-09-22 1994-03-29 The Carborundum Company Silicon carbide bodies having high toughness and fracture resistance and method of making same
JPH05286761A (ja) 1992-04-10 1993-11-02 Kurosaki Refract Co Ltd 固体レーザ用多結晶透明yagセラミックスの製造方法
JP3285620B2 (ja) 1992-09-28 2002-05-27 京セラ株式会社 透光性イットリウム−アルミニウム−ガーネット焼結体の製造方法
JP3513736B2 (ja) 1997-08-22 2004-03-31 東芝セラミックス株式会社 AlN焼結体用接合剤、その製造方法及びそれを用いたAlN焼結体の接合方法
JP4003907B2 (ja) * 1998-07-08 2007-11-07 コバレントマテリアル株式会社 窒化アルミニウム焼結体からなる半導体製造装置関連製品及びその製造方法並びに静電チャック、サセプタ、ダミーウエハ、クランプリング及びパーティクルキャッチャー
JP3012925B2 (ja) 1998-07-27 2000-02-28 科学技術庁無機材質研究所長 易焼結性のイットリウムアルミニウムガーネット粉末の製造方法
US6383964B1 (en) * 1998-11-27 2002-05-07 Kyocera Corporation Ceramic member resistant to halogen-plasma corrosion
JP2001089225A (ja) 1999-07-19 2001-04-03 Sumitomo Chem Co Ltd イットリウム−アルミニウム−ガーネット焼結体およびその原料の製造方法
JP2001064079A (ja) * 1999-08-25 2001-03-13 Sumitomo Electric Ind Ltd 窒化アルミニウム焼結体及びその製造方法
JP3906352B2 (ja) 2000-03-27 2007-04-18 独立行政法人物質・材料研究機構 Yag透明焼結体の製造方法
US6454822B1 (en) * 2000-07-19 2002-09-24 3M Innovative Properties Company Fused aluminum oxycarbide/nitride-Al2O3·Y2O3 eutectic abrasive particles, abrasive articles, and methods of making and using the same

Also Published As

Publication number Publication date
DE60308988D1 (de) 2006-11-23
DE60308988T2 (de) 2007-06-06
EP1433764A2 (en) 2004-06-30
US7371704B2 (en) 2008-05-13
EP1433764B1 (en) 2006-10-11
US20040135295A1 (en) 2004-07-15
EP1433764A3 (en) 2004-09-22
CN1510010A (zh) 2004-07-07

Similar Documents

Publication Publication Date Title
CN101386519B (zh) 将pca转化为蓝宝石的方法和转化制品
JP5836522B2 (ja) 窒化ケイ素基板の製造方法
US7081425B2 (en) Aluminum nitride sintered body
CN1269767C (zh) 钇·铝·石榴石烧结体及其制法、该烧结体的烧结辅助剂
JPH06211573A (ja) 透明なy2o3焼結体の製造方法
JP4280914B2 (ja) 高純度窒化アルミニウム粉末及びその製造方法ならびに高純度窒化アルミニウム焼結体
JP2001064079A (ja) 窒化アルミニウム焼結体及びその製造方法
JP4783560B2 (ja) 窒化アルミニウム焼結体及びその製造方法
WO2007105728A1 (ja) 窒化アルミニウム焼結体の製造方法
CN1059652C (zh) 氮化硅烧结体及其制造方法
CN1311513C (zh) 接合体、发光容器以及高压放电灯用组装体
JP4390185B2 (ja) イットリウム・アルミニウム・ガーネット焼結体の製造方法
CN1337929A (zh) 氧化镁部分稳定的高强度氧化锆
JP5750142B2 (ja) 改質窒化アルミニウム焼結体の製造方法
CN1894171A (zh) 陶瓷烧结体、陶瓷烧结体的制造方法及金属气相淀积用发热体
JP2003128465A (ja) 透光性酸化スカンジウム焼結体及びその製造方法
WO2007018140A2 (ja) 窒化アルミニウム焼結体
JP2005170728A (ja) Y2o3焼結体およびその製造方法
EP1036779B1 (en) Aluminium nitride sintered product and process for its production
JP2742600B2 (ja) 窒化アルミニウム質焼結体およびその製造方法
JPH0840773A (ja) 窒化アルミニウムセラミックスおよびその製造方法
JP3575344B2 (ja) 透光性セラミック発光管及びその製造方法
JPH0912370A (ja) 窒化アルミニウム焼結体およびその製造方法
JPH09183648A (ja) アルミナ質焼結体
JP2024053480A (ja) 窒化ケイ素焼結体の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060816

Termination date: 20101225