CN101386519B - 将pca转化为蓝宝石的方法和转化制品 - Google Patents

将pca转化为蓝宝石的方法和转化制品 Download PDF

Info

Publication number
CN101386519B
CN101386519B CN200810212199.9A CN200810212199A CN101386519B CN 101386519 B CN101386519 B CN 101386519B CN 200810212199 A CN200810212199 A CN 200810212199A CN 101386519 B CN101386519 B CN 101386519B
Authority
CN
China
Prior art keywords
ceramic
boron oxide
sapphire
mgo
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200810212199.9A
Other languages
English (en)
Other versions
CN101386519A (zh
Inventor
魏家清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram Sylvania Inc
Original Assignee
Osram Sylvania Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Sylvania Inc filed Critical Osram Sylvania Inc
Publication of CN101386519A publication Critical patent/CN101386519A/zh
Application granted granted Critical
Publication of CN101386519B publication Critical patent/CN101386519B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/115Translucent or transparent products
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • C30B1/04Isothermal recrystallisation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6588Water vapor containing atmospheres

Abstract

本发明涉及将多晶氧化铝(PCA)转化为蓝宝石的方法和转化制品。通过另外用氧化硼掺杂多晶氧化铝(PCA)和烧结引发异常晶粒生长来使已经掺杂氧化镁的PCA转化成蓝宝石。可以通过将硼酸水溶液施加至陶瓷生坯,从而将氧化硼加入到已经成型的PCA陶瓷生坯,并且在空气中加热该陶瓷生坯来使硼酸转化为氧化硼。

Description

将PCA转化为蓝宝石的方法和转化制品
背景技术
在照明工业中,多年来一直使用半透明多晶氧化铝(PCA)作为形成高压钠灯(HPS)和陶瓷金属卤化物灯的电弧放电容器(通常也称为电弧管)的选择材料。一直较少使用透明的蓝宝石作为电弧管材料,主要原因是其成本较高,而且还因为它受限于规则的几何形状,例如管、棒或片材。与可以使用诸如等静压成型、挤塑、粉浆浇铸或注塑成型的多种不同的生产方法从氧化铝粉形成从圆柱形至接近球形的多种形状的PCA容器不同,蓝宝石通常从熔体缓慢生长而成,这将可用于放电容器的可用形状限制为一般管状。因为这些和其它原因,蓝宝石的使用一直局限于需要蓝宝石的透明度以满足严格光学要求的专业灯,例如汽车照明灯。
已经进行了一些尝试将PCA转化成蓝宝石。例如,美国专利号5549746和5451553描述了一种在低于蓝宝石熔点的200℃下将MgO掺杂的PCA转化成蓝宝石的固态晶体转化(SSCC)方法。此外还已经使用Ga2O3掺杂物来增强SSCC的转化。该增强效果的原因在于Ga离子的存在加快了Mg离子沿晶粒边界的扩散。类似地,美国专利No6475942公开了Mo也提高转化。然而,Mo的使用易于使转化的电弧管变黑,这对于光学应用而言是不期望的。
通过用胶体SiO2化学深加将MgO掺杂的PCA转化为蓝宝石也已经得到证实。用SiO2进行局部补偿掺杂(counter doping)预烧制管有助于转化,但不会对烧结至半透明物产生不利影响。补偿掺杂导致局部引发异常晶粒生长,由此控制生长过程的开始。然而,可再现性和转化度一直是补偿掺杂的问题。
发明内容
将PCA完全转化为单晶蓝宝石是非常难以实现的。实际上,可以预计甚至商业生长的蓝宝石管在单个剖面内包含超过几个的非常大的晶粒。类似地,得自转化的PCA的蓝宝石经常会由几个非常大的晶粒构成。具体而言,足够大的PCA转化的蓝宝石部分通常会具有一个或更多个非常大的长度为至少10mm的晶粒,其中15-50μm的小的未转化晶粒截留在非常大的转化蓝宝石晶粒内。参见例如Scott等人的Conversion of Polycrystalline Al2O3into Single-Crystal Sapphire byAbnormal Grain Growth,J.Am.Cer.Soc.,85[5]1275-80(2002)。尽管不是单晶,但是PCA转化的蓝宝石适合于照明应用。由于PCA转化的蓝宝石中的晶粒边界属于低角度稳定型,所以该PCA转化的蓝宝石没有表现出困扰大晶粒(70~200μm)PCA的自裂。然而,优选用于照明应用的单个PCA转化的蓝宝石部分仅由1~4个非常大的晶粒构成。
PCA转化的蓝宝石还能够表现出与商业上熔体生长的蓝宝石基本相当的直线透过率(in-line transmittance)。例如,对蓝宝石的单壁直线透过率为约87%。在未抛光的PCA转化的蓝宝石的情况下,从对转化的毛细管测量估算的直线透过率是约72%。该直线透过率较低,这是因为PCA转化的蓝宝石在转化后保持了原始PCA的表面形态。较粗糙的表面引发散射,其降低直线透过率。然而,在抛光之后,PCA转化的蓝宝石可以获得约81%的直线透过率。限制PCA转化的蓝宝石获得较高直线透过率的其它因素是在PCA转化的蓝宝石中存在残余孔隙。然而,对于照明应用,这些直线透过率水平(抛光和未抛光的)与标准PCA的直线透过率值相比是非常有利的。具体而言,未抛光的PCA通常具有约33%的直线透过率,抛光的PCA具有约40%的直线透过率。
本发明人已经发现,氧化硼提高MgO掺杂的PCA转化为蓝宝石的转化率,并且尤其可用于还包含氧化钇和氧化锆添加剂的MgO掺杂的PCA组合物。通常,后者组合物具有耐异常晶粒生长的晶粒边界。然而,氧化硼掺杂物能够克服这些牢固的边界并引发晶粒生长,从而导致PCA完全转化。而且,与其它已知的转化率增强剂相比,PCA中加入氧化硼没有有害副作用,例如变灰。
氧化硼本身不是使氧化铝压块密实化的烧结助剂。例如,在其它类型的氧化铝陶瓷中,掺杂有氧化硼的氧化铝需要额外的CaO和SiO2烧结助剂来密实化。氧化铝陶瓷中的硼易于在烧结期间保持或甚至增加孔隙率。该作用看起来已用于在制备需要高微孔隙率的催化剂的多孔陶瓷载体中。对于照明应用,需要在PCA中使用MgO掺杂剂。通常地,按重量计,MgO的量为约100ppm至约2000ppm,优选约200至约500ppm。为了将PCA烧结至半透明,MgO是必需的。可以与MgO掺杂物一起加入其它共掺杂剂,例如ZrO2、Y2O3、La2O3、Tb2O3、Sc2O3、Er2O3和其它稀土氧化物,但是必须使用MgO掺杂剂。MgO掺杂剂的关键作用是允许通过氧和铝物质的晶界扩散来消除孔隙。然而,如果在烧结温度下超过MgO在氧化铝中的溶解度,则析出第二尖晶石相。
优选地,加入至MgO掺杂的PCA的百分比重量当量氧化硼为约80ppm至约8000ppm,更优选为约300ppm至约800ppm。在生产PCA转化的蓝宝石方面,诸如硼金属和氮化硼的其它硼源不是有效的,因为它们导致硼化铝的形成,除非在烧结之前通过例如在空气中焙烧将这些物质转化成氧化硼。
通常以前体形式例如硼酸加入氧化硼。然后在空气中通过在约500℃至约1350℃加热约1小时至约24小时将硼酸转变成氧化硼。使用硼酸的原因是它可溶于水,有助于均匀掺杂氧化铝,并允许更多的掺杂方法。例如,可以在形成生坯(green shape)之前将硼酸水溶液加入含MgO的氧化铝粉,或者可以在预烧所述生坯除去有机粘合剂之后加入。在所述方法的一个实施方案中,将含水硼酸溶液喷到氧化铝粉上,然后在与有机粘合剂混合之前干燥粉末。作为一个替代方案,将硼酸加入已经与少量水形成浆的氧化铝粉中。在用例如球磨机充分混合后,通过冷冻干燥除去水以将硼酸均匀分布在氧化铝粉中。然后可以用包括例如等静压成型、注浆成型、凝胶注模、注塑成型或挤塑的传统方法加工掺杂的氧化铝粉以产生生坯。将硼酸转化为氧化硼可以在形成生坯之前或在除去粘合剂的预烧阶段期间进行。在另一实施方案中,将水溶液施加至预烧的氧化铝部件表面并干燥。这可以通过例如喷雾或涂覆溶液到部件上或在溶液中浸泡该部件来实现。为了获得正确的掺杂物水平,可能需要多次施加水溶液。施加溶液后,干燥该部件,并在空气中加热以将硼酸转变为氧化硼。
通过在约1800℃至约1975℃、优选约1850℃至约1950℃的温度下加热掺杂氧化硼的PCA来进行蓝宝石转化。完成转化的时间取决于几个变量,例如温度、部件厚度和掺杂剂的水平。在约1至2小时中可以转化小的毛细管,而直径较大和较长的部件可能费时超过约15至40小时。
因此,根据本发明的一个方面,提供了一种将多晶氧化铝转化为蓝宝石的方法,该方法包括:向由MgO掺杂的多晶氧化铝组成的陶瓷制品掺杂约80ppm至约8000ppm(重量)的氧化硼,以形成掺杂氧化硼的陶瓷制品;并在足以引发晶粒生长并将多晶氧化铝转化为蓝宝石的温度和时间下烧结该掺杂氧化硼的陶瓷制品。
根据本发明的另一方面,提供了一种包括含有氧化硼的PCA转化的蓝宝石的陶瓷制品。
附图说明
图1是低放大倍数的已经浸渍375ppm H3BO3溶液的PCA转化管(组合物B)的反射光图像。图像高度为大约2mm。
图2是低放大倍数的已经浸渍500ppm H3BO3溶液的PCA转化管(组合物B)的反射光图像。图像高度为大约2mm。
具体实施方式
为了更好理解本发明及其其它目的、优点和其能力,结合上述附图参照下列公开内容和所附权利要求。
将一定量的硼酸(H3BO3)形式的硼溶解在去离子水中。制备九种水溶液(5%、0.5%、500ppm、375ppm、250ppm、100ppm、50ppm(重量)H3BO3)。在空气中在850~1350℃下预烧由有机粘合剂和单独掺杂500~800ppm MgO或组合掺杂200~300ppm MgO+10~40ppmY2O3+300~500ppm ZrO2的氧化铝粉的混合物所形成的PCA管以除去有机粘合剂,并赋予额外的机械强度。用硼酸溶液浸渍预烧PCA管并在真空干燥器中干燥。再重复浸渍步骤两次以获得最终的掺杂水平。然后在空气中在900℃下再加热浸渍的预烧管2小时以使硼酸转变为氧化硼。这产生氧化硼形式的硼掺杂物,其中B2O3在PCA中的含量为80ppm至0.8wt%。例如,利用375ppm H3BO3水溶液的浸渍/干燥在PCA中产生600ppm氧化硼。
使用两种尺寸的PCA毛细管:2.0mm OD×1.1mm ID和2.3mmOD×0.7mm ID。还使用35W PCA电弧管(基本上球形几何形状)。这些PCA电弧管元件通过在N2-8%H2流中横穿带式炉中1850~1935℃的热区(在热区中1~2小时)来烧结。5%H3BO3浸泡的PCA(或仅掺杂500ppm的MgO:本文称为组合物A,或掺杂200ppm的MgO、400ppm的ZrO2和20ppm Y2O3:本文称为组合物B)表现出明显的下垂和蠕变。这符合B2O3-Al2O3相图,该相图在470℃下表现出富B2O3的B2O3-Al2O3液相线、B2O3-2Al2O3在1035℃分解为2B2O3-9Al2O3和富B2O3的B2O3-Al2O3液体和2B2O3-9Al2O3在1950℃下熔化。
对于组合物B的PCA,许多部件表现出增强的异常晶粒生长,其中某些晶粒大到1mm。具体地,组合物B的375ppm H3BO3浸泡的PCA以接近完全转化的状态均匀烧结至高直线透过率。与没有浸渍氧化硼的对照组相比,浸渍600ppm氧化硼(使用375ppm H3BO3溶液)的组合物B的烧结毛细管表现出显著较高的透明度。这种PCA转化的毛细管仍然具有某些残留的大晶粒,但是该部件没有裂纹。明显地,当在掺杂氧化硼的组合物B毛细管中进行转化时出现明显的晶粒重排,从而降低晶界能和减少相关的会以其它方式存在于大晶粒边界内的残余应力。
图1显示了掺杂有375ppm H3BO3溶液并在1880℃下(0.06英寸/分钟,N2-8%H2,带式炉)热处理过的毛细管的外表面相当大的长度上的完全转化部分。更浓的H3BO3溶液(>375ppm)增强异常晶粒生长,但是掺杂有高水平氧化硼的大晶粒的晶界相对稳定,并且没有在如图2所示的较大长度上完全转化(1880℃,0.06英寸/分钟,N2-8%H2,带式炉,500ppm H3BO3溶液)。浸渍较低氧化硼含量的组合物B毛细管表现出增强的异常晶粒生长,但是低于掺杂600ppm氧化硼水平的毛细管。对于组合物A的管(仅掺杂有MgO),转化时氧化硼的效果不及组合物B的管。所有的组合物A的掺杂氧化硼的PCA表现出增强的异常晶粒生长,但是其转化度与组合物B的掺杂氧化硼的PCA不同。
此外在静止炉(static furnace)(湿氢,W元件,Mo屏蔽)中在1850℃下进行实验。转化的毛细管的外观是相当的。
虽然已经显示并描述了被视为本发明优选实施方案的内容,但是显而易见,本领域熟练技术人员可以在不脱离本发明所附权利要求范围的情况下进行各种变化和改进。

Claims (18)

1.一种将多晶氧化铝转化为蓝宝石的方法,包括:
用80ppm至8000ppm重量的氧化硼掺杂包含MgO掺杂的多晶氧化铝的陶瓷制品以形成氧化硼掺杂的陶瓷制品;以及
在足以引发晶粒生长并将所述多晶氧化铝转化为蓝宝石的温度和时间下烧结所述掺杂氧化硼的陶瓷制品,
其中通过硼酸水溶液来使所述陶瓷制品掺杂氧化硼,其中所述硼酸在烧结之前通过在空气中加热转变成氧化硼。
2.权利要求1所述的方法,其中所述多晶氧化铝还包含氧化钇和氧化锆。
3.权利要求1所述的方法,其中所述陶瓷制品掺杂有300ppm至800ppm重量的氧化硼。
4.权利要求3所述的方法,其中将所述水溶液施加至所述陶瓷制品的表面。
5.权利要求1所述的方法,其中通过以下步骤用氧化硼掺杂所述陶瓷制品:将硼酸加入含MgO的氧化铝粉中,将所述氧化铝粉与有机粘合剂混合形成混合物,将所述混合物成型为生坯,在空气中加热所述生坯以除去有机粘合剂并形成掺杂氧化硼的陶瓷制品。
6.权利要求1所述的方法,其中所述陶瓷制品包含100ppm至2000ppm重量的MgO。
7.权利要求1所述的方法,其中所述陶瓷制品包含200ppm至500ppm重量的MgO。
8.权利要求7所述的方法,其中所述陶瓷制品掺杂有300ppm至800ppm重量的氧化硼。
9.权利要求1所述的方法,其中在1800℃至1975℃的温度下烧结所述陶瓷制品1小时至40小时。
10.权利要求9所述的方法,其中在1850℃至1950℃的温度下烧结所述陶瓷制品。
11.权利要求1所述的方法,其中在500℃至1350℃的温度下加热将所述硼酸转化成氧化硼。
12.一种将多晶氧化铝转化为蓝宝石的方法,所述方法包括:
用80ppm至8000ppm重量的氧化硼掺杂包含MgO掺杂的多晶氧化铝的陶瓷制品以形成氧化硼掺杂的陶瓷制品,所述陶瓷制品包含100ppm至2000ppm重量的MgO;以及
在1800℃至1975℃的温度下烧结所述氧化硼掺杂的陶瓷制品1小时至40小时,从而使所述多晶氧化铝转变为蓝宝石,
其中通过硼酸水溶液来使所述陶瓷制品掺杂氧化硼,其中所述硼酸在烧结之前通过在空气中加热转变成氧化硼。
13.权利要求12所述的方法,其中所述陶瓷制品包含200ppm至500ppm重量的MgO,并掺杂300ppm至800ppm重量的氧化硼。
14.一种陶瓷制品,包含含有氧化硼的多晶氧化铝转化的蓝宝石,其中通过硼酸水溶液来使所述陶瓷制品掺杂氧化硼,其中所述硼酸在烧结之前通过在空气中加热转变成氧化硼,其中所述多晶氧化铝转化的蓝宝石包含80ppm至8000ppm重量的氧化硼。
15.权利要求14所述的陶瓷制品,其中所述多晶氧化铝转化的蓝宝石包含100ppm至2000ppm重量的MgO。
16.权利要求14所述的陶瓷制品,其中所述多晶氧化铝转化的蓝宝石包含300ppm至800ppm重量的氧化硼和200ppm至500ppm重量的MgO。
17.权利要求14所述的陶瓷制品,其中所述陶瓷制品包含1至4个晶粒。
18.权利要求14所述的陶瓷制品,其中所述多晶氧化铝转化的蓝宝石具有与熔体生长的蓝宝石基本相当的单壁直线透过率。
CN200810212199.9A 2007-09-11 2008-09-09 将pca转化为蓝宝石的方法和转化制品 Expired - Fee Related CN101386519B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/853,392 2007-09-11
US11/853,392 US8157912B2 (en) 2007-09-11 2007-09-11 Method of converting PCA to sapphire and converted article

Publications (2)

Publication Number Publication Date
CN101386519A CN101386519A (zh) 2009-03-18
CN101386519B true CN101386519B (zh) 2013-01-23

Family

ID=39941572

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810212199.9A Expired - Fee Related CN101386519B (zh) 2007-09-11 2008-09-09 将pca转化为蓝宝石的方法和转化制品

Country Status (5)

Country Link
US (1) US8157912B2 (zh)
EP (1) EP2037010B1 (zh)
JP (1) JP2009067673A (zh)
CN (1) CN101386519B (zh)
DE (1) DE602008003371D1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108218415A (zh) * 2018-01-31 2018-06-29 内蒙古工业大学 假蓝宝石质陶瓷及其合成方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102060507B (zh) * 2010-11-17 2014-07-02 昆明理工大学 一种放电等离子体再造翡翠的制备工艺
CN102060506B (zh) * 2010-11-17 2014-07-02 昆明理工大学 一种高压水热再造翡翠的制备工艺
US10052848B2 (en) 2012-03-06 2018-08-21 Apple Inc. Sapphire laminates
JP2013245149A (ja) * 2012-05-28 2013-12-09 Sumitomo Chemical Co Ltd サファイア単結晶製造用原料アルミナ及びサファイア単結晶の製造方法
US9221289B2 (en) 2012-07-27 2015-12-29 Apple Inc. Sapphire window
US9232672B2 (en) 2013-01-10 2016-01-05 Apple Inc. Ceramic insert control mechanism
RU2525096C1 (ru) * 2013-03-12 2014-08-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) ШИХТА ДЛЯ ОПТИЧЕСКОЙ КЕРАМИКИ НА ОСНОВЕ ШПИНЕЛИ MgAl2O4, СПОСОБ ЕЕ ПОЛУЧЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ ОПТИЧЕСКОЙ НАНОКЕРАМИКИ НА ОСНОВЕ ШПИНЕЛИ MgAl2O4
US9632537B2 (en) 2013-09-23 2017-04-25 Apple Inc. Electronic component embedded in ceramic material
US9678540B2 (en) 2013-09-23 2017-06-13 Apple Inc. Electronic component embedded in ceramic material
US9154678B2 (en) 2013-12-11 2015-10-06 Apple Inc. Cover glass arrangement for an electronic device
US9225056B2 (en) 2014-02-12 2015-12-29 Apple Inc. Antenna on sapphire structure
TWI553723B (zh) * 2014-05-27 2016-10-11 Crystalwise Technology Sapphire wafer processing methods and their processing in the process of intermediates
US10406634B2 (en) 2015-07-01 2019-09-10 Apple Inc. Enhancing strength in laser cutting of ceramic components
CN107829132A (zh) * 2017-10-10 2018-03-23 上海应用技术大学 一种制备氧化铝单晶的方法
GB2593950A (en) 2020-04-08 2021-10-13 Corning Inc Solid state conversion of polycrystalline material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1095360A (zh) * 1993-04-13 1994-11-23 住友化学工业株式会社 α-氧化铝粉末及其生产方法
CN1103680A (zh) * 1993-09-24 1995-06-14 通用电气公司 采用籽晶使多晶氧化铝到蓝宝石的固态热转换
CN1103679A (zh) * 1993-09-24 1995-06-14 通用电气公司 多晶氧化铝到蓝宝石的固态热转换
CN1113523A (zh) * 1994-02-14 1995-12-20 通用电气公司 将掺杂的多晶材料转化成单晶材料
US5579427A (en) * 1994-12-15 1996-11-26 Ceram Optec Industries, Inc. Graded index single crystal optical fibers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4177321A (en) * 1972-07-25 1979-12-04 Semiconductor Research Foundation Single crystal of semiconductive material on crystal of insulating material
JPS59174591A (ja) * 1983-03-24 1984-10-03 Seiko Epson Corp F・z法によるルビ−人工結晶合成法
US5427051A (en) 1993-05-21 1995-06-27 General Electric Company Solid state formation of sapphire using a localized energy source
US5540182A (en) 1993-09-24 1996-07-30 General Electric Company Conversion of polycrystalline material to single crystal material using bodies having a selected surface topography
US6048394A (en) * 1997-08-14 2000-04-11 Competitive Technologies Of Pa, Inc. Method for growing single crystals from polycrystalline precursors
US6214427B1 (en) * 1998-08-28 2001-04-10 General Electric Company Method of making an electronic device having a single crystal substrate formed by solid state crystal conversion
US6475942B1 (en) * 2000-09-05 2002-11-05 General Electric Company Conversion of polycrystalline alumina to single crystal sapphire using molybdenum doping

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1095360A (zh) * 1993-04-13 1994-11-23 住友化学工业株式会社 α-氧化铝粉末及其生产方法
CN1103680A (zh) * 1993-09-24 1995-06-14 通用电气公司 采用籽晶使多晶氧化铝到蓝宝石的固态热转换
CN1103679A (zh) * 1993-09-24 1995-06-14 通用电气公司 多晶氧化铝到蓝宝石的固态热转换
CN1113523A (zh) * 1994-02-14 1995-12-20 通用电气公司 将掺杂的多晶材料转化成单晶材料
US5579427A (en) * 1994-12-15 1996-11-26 Ceram Optec Industries, Inc. Graded index single crystal optical fibers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Curtis Scott et al."Conversion of Polycrystalline Al2O3 into Single-Crystal Sapphire by Abnormal Grain Growth".《Journal of the American Ceramic Society》.2002,第85卷(第5期),1275-1280.
Curtis Scott et al."Conversion of Polycrystalline Al2O3 into Single-Crystal Sapphire by Abnormal Grain Growth".《Journal of the American Ceramic Society》.2002,第85卷(第5期),1275-1280. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108218415A (zh) * 2018-01-31 2018-06-29 内蒙古工业大学 假蓝宝石质陶瓷及其合成方法

Also Published As

Publication number Publication date
US20090069168A1 (en) 2009-03-12
CN101386519A (zh) 2009-03-18
JP2009067673A (ja) 2009-04-02
EP2037010B1 (en) 2010-11-10
DE602008003371D1 (de) 2010-12-23
EP2037010A1 (en) 2009-03-18
US8157912B2 (en) 2012-04-17

Similar Documents

Publication Publication Date Title
CN101386519B (zh) 将pca转化为蓝宝石的方法和转化制品
CA2255983C (en) A corrosion resistant ceramic and a production method thereof
CN107338053B (zh) 有余辉的磷光复合材料
US6844285B1 (en) Transparent polycrystalline yttrium aluminum garnet
US20080108496A1 (en) Composition Used to Make a Transparent Ceramic Material and Method of Manufacturing the Same
US7081425B2 (en) Aluminum nitride sintered body
EP0667322B1 (en) Light-permeable ceramic material and method of manufacturing the same
US20080283522A1 (en) Translucent polycrystalline alumina ceramic
JP4783560B2 (ja) 窒化アルミニウム焼結体及びその製造方法
KR20080104158A (ko) 질화알루미늄 소결체의 제조 방법
US5780377A (en) Light-transmissive ceramics and method of manufacturing same
US7884550B2 (en) Arc tube composed of yttrium aluminum garnet ceramic material
JPH06236749A (ja) アルミナ製品およびナトリウムアーク放電ランプ
US20080106010A1 (en) Transparent Ceramic Material and Method of Manufacturing the Same
CN110386807A (zh) 一种大通量高强度的无机陶瓷膜支撑体及其制备方法
US7678725B2 (en) Translucent polycrystalline alumina ceramic
CN114853464B (zh) 一种高光学质量的绿色荧光陶瓷及其制备方法
KR100970155B1 (ko) 질화알루미늄 소결체
JP4390185B2 (ja) イットリウム・アルミニウム・ガーネット焼結体の製造方法
KR20180036352A (ko) 어븀과 툴륨이 공동도핑된 다결정 투광성 업컨버팅 알파사이알론 세라믹스 및 그 제조방법
KR101792943B1 (ko) 다결정 투광성 업컨버팅 알파사이알론 세라믹스 및 그 제조방법
JP3575344B2 (ja) 透光性セラミック発光管及びその製造方法
US20120306365A1 (en) Polycrystalline transluscent alumina for high intensity discharge lamps
JP2671539B2 (ja) 窒化珪素焼結体の製造方法
JP3700176B2 (ja) 透光性セラミックス及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130123

Termination date: 20140909

EXPY Termination of patent right or utility model