CN108218415A - 假蓝宝石质陶瓷及其合成方法 - Google Patents

假蓝宝石质陶瓷及其合成方法 Download PDF

Info

Publication number
CN108218415A
CN108218415A CN201810095084.XA CN201810095084A CN108218415A CN 108218415 A CN108218415 A CN 108218415A CN 201810095084 A CN201810095084 A CN 201810095084A CN 108218415 A CN108218415 A CN 108218415A
Authority
CN
China
Prior art keywords
sapphirine
percentage
rare earth
titanium dioxide
matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810095084.XA
Other languages
English (en)
Other versions
CN108218415B (zh
Inventor
史志铭
王文彬
曹振
王志旭
王晓光
范文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia University of Technology
Original Assignee
Inner Mongolia University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia University of Technology filed Critical Inner Mongolia University of Technology
Priority to CN201810095084.XA priority Critical patent/CN108218415B/zh
Publication of CN108218415A publication Critical patent/CN108218415A/zh
Application granted granted Critical
Publication of CN108218415B publication Critical patent/CN108218415B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了假蓝宝石质陶瓷及其合成方法,假蓝宝石质陶瓷的原料包括如下质量百分比的组分:风积沙35‑40%,氧化铝22‑26%,氧化镁35‑40%,以上各组分的质量百分比之和为百分之百。假蓝宝石质陶瓷的合成方法,按质量比例称取原料和烧结助剂后混合球磨、造粒、烧结、保温,随炉冷却到室温,获得假蓝宝石质陶瓷。采用本发明原料和合成方法烧结合成假蓝宝石陶瓷,烧结温度降低,烧结坯体不易开裂,假蓝宝石相含量大幅提高。此外,合成的假蓝宝石质陶瓷密度高,具有优异的陶瓷使用性能。

Description

假蓝宝石质陶瓷及其合成方法
技术领域:
本发明涉及一种陶瓷及其合成方法,特别是涉及一种假蓝宝石质陶瓷及其合成方法。
背景技术:
假蓝宝石(4MgO·5Al2O3·2SiO2)在MgO-Al2O3-SiO2三元系统中是稳定相,具有较高的化学稳定性、硬度和适中的热膨胀性能,可用于金属与陶瓷的封接以及制造防护材料和装饰材料等。但是,采用石英、氧化铝和氧化镁等原料烧结合成假蓝宝石陶瓷非常困难,主要表现在,能够形成假蓝宝石晶体的化学组成范围很窄;假蓝宝石相的含量低,经常伴生有尖晶石、堇青石等中间相以及残留的石英相,残留石英容易引起陶瓷坯体开裂。即使在1450℃烧结6小时,假蓝宝石相的含量最高只能达到70%;此外,陶瓷坯体烧结致密化困难,合成的假蓝宝石陶瓷密度低,密度只能达到2.0-2.3g/cm3,显著降低陶瓷的力学性能,弯曲强度低于50MPa,维氏硬度不超过450HV,另外陶瓷表面的平整度、光洁度也较差,严重影响陶瓷的使用范围。
发明内容:
本发明的第一个目的在于提供一种假蓝宝石晶体含量高、密度高、烧结容易的假蓝宝石质陶瓷。
本发明的第二个目的在于提供一种假蓝宝石晶体含量高、密度高、烧结容易的假蓝宝石质陶瓷的合成方法。
本发明的第一个目的由如下技术方案实施:假蓝宝石质陶瓷,其原料包括如下质量百分比的组分:风积沙35-40%,氧化铝22-26%,氧化镁35-40%,以上各组分的质量百分比之和为百分之百。风积沙中石英的质量百分含量为80-85%。
所述的假蓝宝石质陶瓷,其原料还包括有质量百分比为不大于6%的高岭土,且各原料组分的质量百分比之和为百分之百。
所述的假蓝宝石质陶瓷,其烧结助剂为占所述原料质量总和的百分比不大于6%的钛白粉;或者为占所述原料质量总和的百分比不大于6%的稀土氧化物;或者为钛白粉和稀土氧化物的组合物,其中,钛白粉占所述原料质量总和的百分比不大于6%,稀土氧化物占所述原料质量总和的百分比不大于6%。
优选的,所述的假蓝宝石质陶瓷,其烧结助剂为占所述原料质量总和的百分比为2-4%的钛白粉;或者为占所述原料质量总和的百分比为2-4%的稀土氧化物;或者为钛白粉和稀土氧化物的组合物,其中,钛白粉占所述原料质量总和的百分比为2-4%,稀土氧化物占所述原料质量总和的百分比为2-4%。
具体的,所述稀土氧化物为氧化镧、氧化铈、氧化钕、氧化钇或氧化钆中的任意一种。
本发明的第二个目的由如下技术方案实施:假蓝宝石质陶瓷的合成方法,按质量比例称取原料和烧结助剂后混合球磨2-5小时,然后造粒并在50-90MPa的压力下成型制得坯体;将所述坯体在1250-1450℃烧结2-6小时后,降温到950-1100℃并保温1-3小时,随炉冷却到室温,获得假蓝宝石质陶瓷。
具体的,所述原料包括如下质量百分比的组分:风积沙35-40%,氧化铝22-26%,氧化镁35-40%,以上各组分的质量百分比之和为百分之百。
优选的,所述原料还包括有质量百分比为不大于6%的高岭土,且各原料组分的质量百分比之和为百分之百。
具体的,所述烧结助剂为占所述原料质量总和的百分比不大于6%的钛白粉;或者为占所述原料质量总和的百分比不大于6%的稀土氧化物;或者为钛白粉和稀土氧化物的组合物,其中,钛白粉占所述原料质量总和的百分比不大于6%,稀土氧化物占所述原料质量总和的百分比不大于6%。
优选的,所述烧结助剂为占所述原料质量总和的百分比为2-4%的钛白粉;或者为占所述原料质量总和的百分比为2-4%的稀土氧化物;或者为钛白粉和稀土氧化物的组合物,其中,钛白粉占所述原料质量总和的百分比为2-4%,稀土氧化物占所述原料质量总和的百分比为2-4%;所述稀土氧化物为氧化镧、氧化铈、氧化钕、氧化钇或氧化钆中的任意一种。
与石英砂相比,沙漠风积沙中的石英含量相对较低,而且石英含量也随其所处地域有所差别。除了石英成分外,风积沙通常伴随有长石、云母、石灰石等化合物,而且石英晶体中固溶有铝、镁、钛、铁、钙等金属离子。风积沙中的长石、云母、石灰石等化合物具有较低的熔点,它们在烧结过程中容易形成液相,有利于坯体的收缩从而提高坯体致密度。液相烧结同时促进了离子扩散,加快各组分之间的化合反应以及向假蓝宝石晶体结构的转变。另一方面,固溶于石英晶格中的铝、镁、钛、铁、钙等离子削弱了石英晶格中的Si-O键合力,在高温下引起石英晶格更大的膨胀畸变以及在较低烧结温度下的石英软化,促进氧化铝、氧化镁和高岭土原料中的铝、镁离子向石英晶格中固溶,加快石英晶格向假蓝宝石晶体的转化。
添加的稀土氧化物中的稀土离子几乎不固溶于假蓝宝石、石英等晶体,在烧结过程中主要参与液相形成,可起到改变液相物理化学性质以及影响离子扩散速度的作用。由于稀土离子具有较高的离子场强度,它使得液相中游离的铝、镁离子与其配位的氧离子的结合力降低,铝、镁离子容易挣脱束缚而加快迁移速度,从而进一步加快它们向石英晶格的固溶,也即向假蓝宝石晶体的转变。重稀土比轻稀土具有更高的离子场强度,因此促进烧结的作用更显著。
高温烧结结束后坯体中还存在一定比例的液相,或者液相已经转变为玻璃相。将烧结结束后的坯体降温到特定温度并保温一定时间,液相或玻璃相在含钛、铁、稀土等离子的形核剂的诱发下析出假蓝宝石、堇青石、尖晶石和顽火辉石等相,可减少陶瓷中玻璃相的含量,提高陶瓷密度和力学性能。
假蓝宝石晶体的四面体间隙及八面体间隙尺寸较大,允许较多杂质离子以置换或者间隙的方式进入假蓝宝石晶格。由于杂质离子起初大多存在于液相中,在烧结后的冷却和保温过程中,这些离子可进入已形成的假蓝宝石晶格,降低陶瓷中玻璃相的含量,提高陶瓷密度和力学性能。
适量的稀土离子还会改善陶瓷中残留玻璃相的微结构,即它们能够将玻璃网络中的非桥氧连接起来,提高玻璃相非规则网络结构的致密度,进一步起到提高陶瓷密度和强度的作用。
本发明的优点:本发明假蓝宝石质陶瓷,烧结温度范围在1250–1450℃;陶瓷中假蓝宝石相的含量大于80%,密度为3.0–3.3g/cm3,弯曲强度为90-110MPa,维氏硬度为650-750HV。
采用本发明原料和合成方法烧结合成假蓝宝石陶瓷,烧结温度范围较大,烧结坯体不易开裂,易于烧结合成假蓝宝石陶瓷。合成的假蓝宝石质陶瓷中,假蓝宝石相含量高,密度高,具有优异的陶瓷使用性能。
具体实施方式:
实施例1:假蓝宝石质陶瓷,其原料包括如下质量百分比的组分:风积沙35%,氧化铝25%,氧化镁39%,高岭土1%,以上各组分的质量百分比之和为百分之百。风积沙中石英的质量百分含量为81%。在按上述质量比例称取原料后混合球磨5小时,然后造粒并在90MPa的压力下成型制得坯体;将坯体在1450℃烧结6小时后,降温到1100℃并保温3小时,随炉冷却到室温,获得假蓝宝石质陶瓷,假蓝宝石相的含量82%,密度为3.06g/cm3,弯曲强度为93MPa,维氏硬度为665HV。
实施例2:假蓝宝石质陶瓷,其原料包括如下质量百分比的组分:风积沙37%,氧化铝22%,氧化镁38%,高岭土3%,以上各组分的质量百分比之和为百分之百。风积沙中石英的质量百分含量为84%(钛白粉占上述原料质量总和的百分比含量为1%,氧化镧占上述原料质量总和的百分比含量为6%。按上述质量比例称取原料和烧结助剂后混合球磨4小时,然后造粒并在80MPa的压力下成型制得坯体;将坯体在1300℃烧结3小时后,降温到1000℃并保温2小时,随炉冷却到室温,获得假蓝宝石质陶瓷,假蓝宝石相的含量86%,密度为3.12g/cm3,弯曲强度为98MPa,维氏硬度为6924HV。
实施例3:假蓝宝石质陶瓷,其原料包括如下质量百分比的组分:风积沙35%,氧化铝26%,氧化镁35%,高岭土4%,以上各组分的质量百分比之和为百分之百。风积沙中石英的质量百分含量为85%。钛白粉占上述原料质量总和的百分比含量为4%,氧化铈占上述原料质量总和的百分比含量为2%。按上述质量比例称取原料和烧结助剂后混合球磨3小时,然后造粒并在70MPa的压力下成型制得坯体;将坯体在1350℃烧结4小时后,降温到1050℃并保温2小时,随炉冷却到室温,获得假蓝宝石质陶瓷,假蓝宝石相的含量92%,密度为3.28g/cm3,弯曲强度为107MPa,维氏硬度为746HV。
实施例4:假蓝宝石质陶瓷,其原料包括如下质量百分比的组分:风积沙40%,氧化铝23%,氧化镁35%,高岭土2%,以上各组分的质量百分比之和为百分之百。风积沙中石英的质量百分含量为82%。钛白粉占上述原料质量总和的百分比含量为6%,氧化铈占上述原料质量总和的百分比含量为3%。按上述质量比例称取原料和烧结助剂后混合球磨2小时,然后造粒并在60MPa的压力下成型制得坯体;将坯体在1250℃烧结3小时后,降温到950℃并保温2小时,随炉冷却到室温,获得假蓝宝石质陶瓷,假蓝宝石相的含量82%,密度为3.16g/cm3,弯曲强度为96MPa,维氏硬度为694HV。
实施例5:假蓝宝石质陶瓷,其原料包括如下质量百分比的组分:风积沙36%,氧化铝24%,氧化镁40%,以上各组分的质量百分比之和为百分之百。风积沙中石英的质量百分含量为80%。钛白粉占上述原料质量总和的百分比含量为2%,氧化钆占上述原料质量总和的百分比含量为4%。按上述质量比例称取原料和烧结助剂后混合球磨5小时,然后造粒并在70MPa的压力下成型制得坯体;将坯体在1400℃烧结4小时后,降温到1000℃并保温2小时,随炉冷却到室温,获得假蓝宝石质陶瓷,假蓝宝石相的含量88%,密度为3.22g/cm3,弯曲强度为102MPa,维氏硬度为710HV。
实施例6:假蓝宝石质陶瓷,其原料包括如下质量百分比的组分:风积沙35%,氧化铝23%,氧化镁36%,高岭土6%,以上各组分的质量百分比之和为百分之百。风积沙中石英的质量百分含量为83%。钛白粉占上述原料质量总和的百分比含量为2%,氧化钇占上述原料质量总和的百分比含量为5%。按上述质量比例称取原料和烧结助剂后混合球磨4小时,然后造粒并在60MPa的压力下成型制得坯体;将坯体在1300℃烧结2小时后,降温到950℃并保温1小时,随炉冷却到室温,获得假蓝宝石质陶瓷,假蓝宝石相的含量89%,密度为3.22g/cm3,弯曲强度为106MPa,维氏硬度为735HV。
实施例7:假蓝宝石质陶瓷,其原料包括如下质量百分比的组分:风积沙37%,氧化铝23%,氧化镁38%,高岭土2%,以上各组分的质量百分比之和为百分之百。风积沙中石英的质量百分含量为85%。钛白粉占上述原料质量总和的百分比含量为4%,氧化钕占上述原料质量总和的百分比含量为4%。按上述质量比例称取原料和烧结助剂后混合球磨2小时,然后造粒并在50MPa的压力下成型制得坯体;将坯体在1250℃烧结4小时后,降温到1000℃并保温3小时,随炉冷却到室温,获得假蓝宝石质陶瓷,假蓝宝石相的含量85%,密度为3.18g/cm3,弯曲强度为100MPa,维氏硬度为700HV。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.假蓝宝石质陶瓷,其特征在于,其原料包括如下质量百分比的组分:风积沙35-40%,氧化铝22-26%,氧化镁35-40%,以上各组分的质量百分比之和为百分之百。
2.根据权利要求1所述的假蓝宝石质陶瓷,其特征在于,其原料还包括有质量百分比为不大于6%的高岭土,且各原料组分的质量百分比之和为百分之百。
3.根据权利要求1或2所述的假蓝宝石质陶瓷,其特征在于,其烧结助剂为占所述原料质量总和的百分比不大于6%的钛白粉;或者为占所述原料质量总和的百分比不大于6%的稀土氧化物;或者为钛白粉和稀土氧化物的组合物,其中,钛白粉占所述原料质量总和的百分比不大于6%,稀土氧化物占所述原料质量总和的百分比不大于6%。
4.根据权利要求3所述的假蓝宝石质陶瓷,其特征在于,其烧结助剂为占所述原料质量总和的百分比为2-4%的钛白粉;或者为占所述原料质量总和的百分比为2-4%的稀土氧化物;或者为钛白粉和稀土氧化物的组合物,其中,钛白粉占所述原料质量总和的百分比为2-4%,稀土氧化物占所述原料质量总和的百分比为2-4%。
5.根据权利要求4所述的假蓝宝石质陶瓷,其特征在于,所述稀土氧化物为氧化镧、氧化铈、氧化钕、氧化钇或氧化钆中的任意一种。
6.假蓝宝石质陶瓷的合成方法,其特征在于,按质量比例称取原料和烧结助剂后混合球磨2-5小时,然后造粒并在50-90MPa的压力下成型制得坯体;将所述坯体在1250-1450℃烧结2-6小时后,降温到950-1100℃并保温1-3小时,随炉冷却到室温,获得假蓝宝石质陶瓷。
7.根据权利要求6所述的假蓝宝石质陶瓷的合成方法,其特征在于,所述原料包括如下质量百分比的组分:风积沙35-40%,氧化铝22-26%,氧化镁35-40%,以上各组分的质量百分比之和为百分之百。
8.根据权利要求7所述的假蓝宝石质陶瓷的合成方法,其特征在于,所述原料还包括有质量百分比为不大于6%的高岭土,且各原料组分的质量百分比之和为百分之百。
9.根据权利要求6-8任意一项所述的假蓝宝石质陶瓷的合成方法,其特征在于,所述烧结助剂为占所述原料质量总和的百分比不大于6%的钛白粉;或者为占所述原料质量总和的百分比不大于6%的稀土氧化物;或者为钛白粉和稀土氧化物的组合物,其中,钛白粉占所述原料质量总和的百分比不大于6%,稀土氧化物占所述原料质量总和的百分比不大于6%。
10.根据权利要求9所述的假蓝宝石质陶瓷的合成方法,其特征在于,所述烧结助剂为占所述原料质量总和的百分比为2-4%的钛白粉;或者为占所述原料质量总和的百分比为2-4%的稀土氧化物;或者为钛白粉和稀土氧化物的组合物,其中,钛白粉占所述原料质量总和的百分比为2-4%,稀土氧化物占所述原料质量总和的百分比为2-4%;所述稀土氧化物为氧化镧、氧化铈、氧化钕、氧化钇或氧化钆中的任意一种。
CN201810095084.XA 2018-01-31 2018-01-31 假蓝宝石质陶瓷及其合成方法 Active CN108218415B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810095084.XA CN108218415B (zh) 2018-01-31 2018-01-31 假蓝宝石质陶瓷及其合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810095084.XA CN108218415B (zh) 2018-01-31 2018-01-31 假蓝宝石质陶瓷及其合成方法

Publications (2)

Publication Number Publication Date
CN108218415A true CN108218415A (zh) 2018-06-29
CN108218415B CN108218415B (zh) 2020-12-29

Family

ID=62670355

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810095084.XA Active CN108218415B (zh) 2018-01-31 2018-01-31 假蓝宝石质陶瓷及其合成方法

Country Status (1)

Country Link
CN (1) CN108218415B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221794A (ja) * 1985-07-17 1987-01-30 Matsushima Kogyo Co Ltd 集光加熱装置によるブル−サフアイア単結晶の製造方法
CN1202469A (zh) * 1998-06-16 1998-12-23 中国科学院上海硅酸盐研究所 一种高频低损耗微晶玻璃材料的制造方法
CN1362384A (zh) * 2002-01-11 2002-08-07 烟台北极星华晶宝石有限责任公司 一种合成蓝宝石及其生产工艺
CN101386519B (zh) * 2007-09-11 2013-01-23 奥斯兰姆施尔凡尼亚公司 将pca转化为蓝宝石的方法和转化制品
CN103755332A (zh) * 2013-12-30 2014-04-30 内蒙古工业大学 利用沙漠风积沙制备堇青石质陶瓷的方法
CN104556701A (zh) * 2013-10-23 2015-04-29 中国科学院上海硅酸盐研究所 一种含氧化镧的高频低损耗微晶玻璃及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221794A (ja) * 1985-07-17 1987-01-30 Matsushima Kogyo Co Ltd 集光加熱装置によるブル−サフアイア単結晶の製造方法
CN1202469A (zh) * 1998-06-16 1998-12-23 中国科学院上海硅酸盐研究所 一种高频低损耗微晶玻璃材料的制造方法
CN1362384A (zh) * 2002-01-11 2002-08-07 烟台北极星华晶宝石有限责任公司 一种合成蓝宝石及其生产工艺
CN101386519B (zh) * 2007-09-11 2013-01-23 奥斯兰姆施尔凡尼亚公司 将pca转化为蓝宝石的方法和转化制品
CN104556701A (zh) * 2013-10-23 2015-04-29 中国科学院上海硅酸盐研究所 一种含氧化镧的高频低损耗微晶玻璃及其制备方法
CN103755332A (zh) * 2013-12-30 2014-04-30 内蒙古工业大学 利用沙漠风积沙制备堇青石质陶瓷的方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HUI-JUAN WANG ET AL.: "Crystallization and microstructural evolution of MgO-Al2O3-SiO2-TiO2-La2O3 glass-ceramics", 《JOURNAL OF MATERIALS SCIENCE》 *
SMART R.M. ET AL: "The subsolidus phase equilibria and melting temperature of MgO-Al2O3-SiO2 compositions", 《CERAMICS INTERNATIONAL》 *
WILFRID R.FOSTER: "Synthesis sapphirine and its stability relations in the system MgO-Al2O3-SiO2", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *
潘裕柏等: "《稀土陶瓷材料》", 31 May 2016, 冶金工业出版社 *
谢希德: "《当代科技新学科》", 30 April 1993, 重庆出版社 *
赵永红等: "MgO-Al2O3-SiO2系高强度微晶玻璃的晶化行为与力学性能", 《硅酸盐学报》 *

Also Published As

Publication number Publication date
CN108218415B (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
Cheng et al. Fabrication and characterization of anorthite-based ceramic using mineral raw materials
Chen et al. Preparation of mullite by the reaction sintering of kaolinite and alumina
Camerucci et al. Mechanical behavior of cordierite and cordierite–mullite materials evaluated by indentation techniques
Chen et al. Synthesis and characterization of CBS glass/ceramic composites for LTCC application
Soares et al. New Sintered Li 2 O–Al 2 O 3–SiO 2 Ultra‐Low Expansion Glass‐Ceramic
KR101925439B1 (ko) 침출된 멀라이트 및 이의 형성방법
Salamon Advanced ceramics
KR100262181B1 (ko) 고강도고내열충격성도자기소지의제조방법
Waetzig et al. The Effect of Composition on the Optical Properties and Hardness of Transparent Al‐rich MgO· nA l2O3 Spinel Ceramics
Benameur et al. Sintering analysis of a fine‐grained alumina–magnesia spinel powder
JP4944610B2 (ja) 改良された気泡発生挙動を有する焼結耐火物製品の製造を目的としたグリーン部材
Zhang et al. Effect of Al2O3 addition on the flexural strength and light‐transmission properties of bone china
Zhao et al. Influence of yttrium oxide addition and sintering temperature on properties of alumina‐based ceramic cores
Chen et al. Preparation of mullite ceramics with equiaxial grains from powders synthesized by the sol-gel method
Liu et al. Phase formation, microstructure development, and mechanical properties of kaolin‐based mullite ceramics added with Fe2O3
Ju et al. Advanced Al2O3–SiC–SiO2–C refractories with B2O3 addition
CN108218415A (zh) 假蓝宝石质陶瓷及其合成方法
Jing et al. Influence of presintering temperature on magnesium aluminate spinel transparent ceramics fabricated by solid‐state reactive sintering
JP2844100B2 (ja) ジルコニア耐火物とその製造方法
Huang et al. Sintering and characterization of aluminum titanate ceramics with enhanced thermomechanical properties
Tulyaganov et al. The influence of incorporation of ZnO-containing glazes on the properties of hard porcelains
Feng et al. Effect of Al 2 O 3+ 4SiO 2 additives on sintering behavior and thermal shock resistance of MgO-based ceramics
KR101325509B1 (ko) 고가소성과 고강도를 나타내는 도자기의 제조방법
JP2015040149A (ja) ジルコニア粉末及びその焼結体並びにその用途
Bakr et al. Fabrication and characterization of multi phase ceramic composites based on zircon–alumina–magnesia mixtures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant