CN1225507A - 双栅氧化层双功函数cmos的制造方法 - Google Patents

双栅氧化层双功函数cmos的制造方法 Download PDF

Info

Publication number
CN1225507A
CN1225507A CN99100913A CN99100913A CN1225507A CN 1225507 A CN1225507 A CN 1225507A CN 99100913 A CN99100913 A CN 99100913A CN 99100913 A CN99100913 A CN 99100913A CN 1225507 A CN1225507 A CN 1225507A
Authority
CN
China
Prior art keywords
grid
layer
oxide
forms
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN99100913A
Other languages
English (en)
Other versions
CN1134061C (zh
Inventor
G·B·布龙纳
B·埃尔科勒
S·E·舒斯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Google LLC
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN1225507A publication Critical patent/CN1225507A/zh
Application granted granted Critical
Publication of CN1134061C publication Critical patent/CN1134061C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823842Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

形成同一芯片上包括两种不同NFET和/或两种不同PFET的集成电路芯片的方法,两种不同FET例如为厚和薄栅氧化物FET。DRAM阵列可以由厚氧化物FET构成,而逻辑电路可以由同一芯片上的薄氧化物FET构成。首先,在晶片上形成包括第一厚栅SiO2层的栅叠层。该叠层包括栅氧化层上的掺杂多晶硅层、多晶硅层上的硅化物层及硅化物层的氮化物层。选择地去掉部分叠层,再暴露将要形成逻辑电路的晶片。在再暴露的晶片上形成较薄氧化层。接着,在较薄氧化层形成栅,并以该栅形成薄氧化物NFET和PFET。选择地硅化薄氧化物器件区后,由厚氧化物器件区中的叠层腐蚀栅。最后注入和扩散厚栅氧化物器件的源和漏区。

Description

双栅氧化层双功函数CMOS的制造方法
本发明一般涉及半导体芯片的制造工艺,特别涉及双栅氧化层双功函数场效应晶体管的制造工艺,该工艺适用于制造合并逻辑电路和动态随机存取存储器芯片。
动态随机存取存储器(DRAM)和逻辑电路设计有不同的设计点和设计要求。一般逻辑电路设计的关键点在于通过增加功率来提高速度。因此,可以容许高器件漏电流。相反,DRAM设计最主要一点是使漏电流最小,否则将减少存储单元数据的保持时间。
IC芯片技术必须能够允许较宽范围的芯片上电压,同时提高电路的性能和设计灵活性。
例如,在DRAM的设计中,必须将字线电压升高到电路电源电压之上,以增加存储于存储节点的电荷,并改善从这里读取的所得信号。
然而,升高字线电压增大了连接在字线上的转移器件的栅介质上的电场。因此,为满足栅介质可靠性的要求,要增厚转移栅的介质。关于一般具有均匀栅氧化物厚度的DRAM芯片,增厚的栅氧化层降低了外围电路和输入/输出(I/O)电路的性能。尽管这种降低对DRAM性能的影响可以接受,但在DRAM与高性能逻辑电路合并时,逻辑电路变得相当慢。因此,在将高性能逻辑电路与DRAM单元合并到一个芯片上时,因为处理复杂性不可避免地增大,所以不愿意这样做。
另一个问题是由于I/O电压的过量和不足导致对I/O器件栅氧化物的瞬时电压尖峰。这种电压尖峰需要特殊的去耦,以减小尖峰的幅度。这种去耦结构占据了附加的芯片面积,增大了设计复杂性。所以提出了一种已知为双栅工艺的技术,在同一芯片上提供两种不同的栅氧化层厚度,以提高逻辑电路性能,增加电路设计灵活性。
在这种最简单的双栅氧化工艺中,生长初始栅氧化层。然后,光刻构图栅氧化层,以保护厚栅氧化区,并暴露薄栅氧化区。然后,从暴露区腐蚀氧化层。去掉掩模,并在薄氧化区上生长氧化层,同时在初始保护的栅氧化区中加厚氧化层。
该方法的主要缺点是,用光刻胶涂敷第一栅氧化层,然后剥离此光刻胶,这样会降低芯片的成品率和可靠性。
Doyle,B.、Saleimani,H.R.和Philiposian A.等在IEEE ElectronDevice Letters第16卷第7期pp.301-1(1995)中的“在硅CMOS处理中同时生长不同厚度的栅氧化物”,公开了另一种在一个芯片上生长双栅氧化物的方法。Doyle等人指出将氮选择性地注入薄栅氧化区的衬底表面内。氮的存在延缓了薄氧化物区的氧化物生长。然后,在两个区同时生长氧化物,氧化物在薄氧化区生长得较慢。结果,在除注入了氮的区域之外的地方生长了厚氧化物。尽管已表明Doyle等人的技术是可行的,但仍需要证明可以得到重复的结果。
使合并DRAM/逻辑电路工艺复杂的另一问题是需要形成双功函数栅导体,即在P型场效应晶体管(PFET)中形成P型和在N型场效应晶体管(NFET)中形成N型,并且不会扰乱DRAM单元中多晶硅-钨-氮化物栅叠层。这在不增加整个工艺的复杂性方面尤其困难。同样很难避免减少DRAM单元的保持时间,和减少按要求只在逻辑电路电路上选择地形成硅化物而产生的金属污染物。
所以要求一种可靠的合并DRAM/逻辑电路工艺,能选择地形成栅氧化厚度。
因此,本发明的目的是将高性能逻辑电路与DRAM合并于一个集成电路芯片上。
本发明的另一目的是在一个芯片上生长两种不同场效应晶体管栅氧化层厚度。
本发明还一目的是增加在集成电路芯片形成结的灵活性。
本发明再一目的是增加在合并DRAM/逻辑电路集成电路芯片上形成结的灵活性。
本发明又一目的是选择地减小集成电路芯片中源/漏和栅电阻。
本发明又再一目的是在动态随机存取集成电路芯片上的FET中选择地形成双功函数栅。
本发明是一种形成集成电路芯片的方法,所说芯片包括同一芯片上两种不同的NFET和/或两种不同的PFET,例如具有厚和薄栅氧化物的FET。该方法包括以下步骤:在半导体晶片上选择地形成包括第一厚栅介质层的栅叠层,最好是在硅晶片上形成SiO2;然后,在晶片上形成薄栅介质层;接着,在较薄的介质层上形成栅;由所说叠层限定厚氧化物栅;形成薄栅氧化物器件的源和漏区,并掺杂该栅;最后,形成厚栅氧化物器件的源和漏区,并掺杂该栅。所说叠层最好是包括栅氧化层上的多晶硅层、多晶硅层上的硅化物层及硅化物层上的氮化物层。
通过以下结合附图对优选实施例的详细说明,可以更好地理解本发明的上述和其它目的、方案及优点,各附图中:
图1展示根据本发明优选实施例形成的厚氧化物栅叠层;
图2展示了叠层上及薄栅氧化层之上的第二多晶硅层;
图3展示了限定薄氧化物FET的抗蚀层;
图4展示了与叠层隔开的薄氧化物FET栅;
图5展示了已构图的厚氧化物栅和薄氧化物掩蔽掩模;
图6展示了晶片上的厚氧化物FET栅和薄氧化物栅;
图7展示了图6结构上的氮化物和氧化物层;
图8展示了薄氧化物器件限定期间厚氧化物区上的掩蔽掩模;
图9展示了根据本发明优选实施例同一晶片上的厚和薄氧化物FET。
参见各附图,具体参见图1,该图展示了本发明的优选实施例形成的第一栅叠层100。本发明的优选实施例是一种用正常情况下在分立的IC芯片上形成的多种类型的器件形成集成电路(IC)芯片的方法。
例如,优选的IC器件可以包括利用DRAM特定工艺形成的动态随机存取存储器(DRAM)单元,和根据逻辑电路工艺形成的高性能微处理器。两种工艺被充分地分解,以允许包括针对要形成的特殊类型器件需要的各技术。于是,可以有效地利用两种工艺在同一芯片形成根据优选实施例形成的IC芯片。
如为了例示所作的说明,这种用于DRAM的第一类型的器件由这里称为厚氧化区的第一栅叠层100形成。这种用于逻辑电路的第二类型的器件由这里称为薄氧化区的第二类型的器件形成。而且,这些厚区和薄区可以被隔离于特定的芯片区中,例如逻辑电路和RAM区,或混杂于一起,选择地增大电压处理能力,例如在芯片I/O中,或选择地提高栅容量。
于是,对于第一种类型在形成了浅沟槽隔离(STI)区(图1中未示出)后,在硅衬底102上形成厚氧化物叠层100。在衬底102上形成最好是8.2纳米(nm)的第一厚栅介质或栅氧化层104。在介质层104上形成掺杂的多晶硅层106,最好是50-100nm厚的N型多晶硅。在多晶硅层106上形成最好是50nm的硅化钨层108。
最后,在叠层上形成帽盖层110。优选的帽盖层110为100-200nm的厚氮化硅层,最好是200nm厚。所属领域的技术人员应理解,如何替换上述的叠层材料,并且层的厚度也可以根据特殊应用的要求而改变,而不背离本发明的精神或范围。
形成了叠层100后,将之构图,并选择性地去除,再暴露薄氧化区112的衬底。叠层100最好是利用常规的光刻掩蔽工艺构成。去掉所选的叠层部分的步骤最好是利用反应离子刻蚀(RIE)进行。随后腐蚀叠层100,去掉上氮化层110、硅化钨层108和多晶硅层106的某些部分,腐蚀终止于栅氧化层104。然后,腐蚀掉暴露的栅氧化层104,再暴露出衬底表面114。
限定了薄氧化区112后,在暴露的衬底表面114上生长图2中的薄栅氧化物116。氧化物形成于硅化钨层108和多晶硅层106的暴露侧壁上。在薄栅氧化物116上淀积未掺杂的多晶硅层118。未掺杂的多晶硅层118最好厚100-200nm。
接着,如图3所示,光刻构图薄氧化区112中的未掺杂多晶硅层118。在形成掩模119后,直接腐蚀未掺杂的多晶硅层118,得到如图4所示的栅120。
图4还示出了栅叠层100外围左侧的所谓“纵梁”122。可以通过如各向同性腐蚀等的过腐蚀去掉纵梁122。然而,为了避免通常不希望的过腐蚀,在随后的步骤中去掉纵梁122。另外,可以通过首先腐蚀栅叠层100,使其余的叠层部分具有锥形侧壁形状,减轻去掉纵梁122所需的过腐蚀。
接着,在晶片上形成掩蔽层,并构图成图5所示的样子。在随后的腐蚀步骤,掩模图形124保护薄氧化栅区120,同时掩模图形126限定厚氧化栅。腐蚀步骤后,如图6所示,在表面上在预先限定的薄氧化物FET栅120旁边留下了由叠层100腐蚀得到的厚氧化物FET栅128。
如图7所示,在衬底上形成薄牺牲氧化层130。并在多晶硅栅120上和沿其侧壁,及沿栅128的层106和108的暴露侧壁形成薄牺牲氧化层130。利用合适的掩模和注入步骤,向源和漏扩展区注入掺杂剂,即对于NFET注入N型掺杂剂,对于PFET注入P型掺杂剂。然后,淀积氮化物层132,覆盖牺牲氧化物层130,该氮化物层还淀积于栅128上的帽盖层110上。在氮化层132上淀积氧化层134。
然后,如图8所示,施加掩蔽掩模136,用于在限定薄氧化物器件时保护厚氧化物器件。选择地依次直接腐蚀层132、134的暴露部分,沿栅120的侧壁留下间隔层138。该腐蚀对氮化物和氧化物有选择性,使得腐蚀停止于氧化层116。包括氮化物部分132’和氧化物部分134’的间隔层138用于确保薄氧化物FET的各沟道和它们的源/漏结的较深部分与表面硅化物之间的安全距离。
形成间隔层138后,通过注入相同类型的另外的掺杂剂,在源/漏的扩展区形成较深的结。用N型开始,将掺杂剂注入到图9的器件的源/漏区140、142,同时掺杂多晶硅栅120。然后,对第二类型(P型)FET重复此腐蚀和注入步骤。这些隔离的薄氧化物器件的限定步骤允许独立于其它的较厚氧化物FET,在这些薄氧化物器件区形成深结和形成双功函数栅。
形成薄氧化物器件后,利用浸渍腐蚀去掉其余的暴露氧化物116和间隔氧化物134’,暴露源/漏结140、142和N阱接触(未示出)。利用合适的剥离工艺去掉掩蔽掩模136。其余氮化物间隔层132’有一个小氮化物环144,该环能够将栅导体120与随后所形成的硅化物间隔安全距离,以防上短路。
同时在PFET和NFET的源/漏140、142和薄氧化物(逻辑电路)多晶硅栅120上形成硅化物146。并可以在此时硅化N阱接触(未示出)。氮化物层132和其余氧化物膜132可以防止在栅128上形成硅化物。
最后,在同一芯片上这样形成了两个独特的FET结构后,采用合适的半导体加工步骤完成IC芯片的形成。在随后的填充和热周期中一个重要的问题是热周期必须与硅化物稳定性要求相吻合。所以优选利用高密度等离子体填充技术的低温BPSG填充,进行随后的填充,并然后在≤750℃的温度下在图9所示的完成的结构100上进行回流。
另外,上述的氧化物间隔层134可以由如BPSG等掺杂的玻璃形成。如上所述,不去掉这样形成的间隔层,但取而代之的是,变成随后填充的部分,以简化整个工艺流程。
所得的优选实施例IC芯片是一种成功地合并了RAM和逻辑电路,但没有通常发生于这种合并中的不利后果的芯片。
尽管以一个优选实施例说明了本发明,但所属领域的技术人员可以认识到,可以在改形的情况下实施本发明,而不背离所附权利要求书的精神和范围。

Claims (12)

1.一种形成集成电路芯片的方法,所说方法包括以下步骤:
a)在半导体晶片上选择地形成栅叠层,所说叠层包括第一介质层,所说第一介质层有第一厚度;
b)在所说半导体晶片上形成第二介质层,所说第二介质层有不同于所说第一厚度的第二厚度;
c)在所说第二介质层上至少形成一个第一栅;
d)选择地去掉所说栅叠层的某些部分以至少限定一个第二栅;
e)邻近所说第一类型的栅形成导电区;及
f)邻近所说第二类型的栅形成导电区。
2.如权利要求1所述的方法,其特征在于,所说至少一个第一栅是多个第一栅,所说至少一个第二栅是多个第二栅,所说多个第一栅中至少一个为第一导电类型,所说多个第二栅中至少一个为所说第一导电类型。
3.如权利要求2所述的方法,其特征在于,所说多个第一栅中的至少一个是第二导电类型,所说多个第二栅中的至少一个是所说第二导电类型。
4.如权利要求2所述的方法,其特征在于,所说第一厚度大于第二厚度。
5.如权利要求4所述的方法,其特征在于,选择地形成栅叠层的步骤(a)包括以下步骤:
1)在所说半导体晶片上形成所说第一介质层;
2)在所说第一介质层上形成层状导体;
3)选择地去掉所说层状导体,再暴露选择区的所说第一介质层;及
4)去掉暴露的所说第一介质层。
6.如权利要求5所述的方法,其特征在于,所说半导体晶片是硅,第一介质层和第二介质层是氧化层。
7.如权利要求6所述的方法,其特征在于,形成层状导体的步骤(2)包括以下步骤:
ⅰ)在所说第一氧化层上形成一层多晶硅;及
ⅱ)在所说多晶硅层上形成硅化物层。
8.如权利要求7所述的方法,其特征在于,形成层状导体的步骤(2)还包括以下步骤:
ⅲ)在所说硅化物层上形成氮化物层。
9.如权利要求7所述的方法,其特征在于,选择地去掉所说层状导体的步骤(3)包括反应离子腐蚀所说层状导体,再暴露较厚的第一氧化层。
10.如权利要求6所述的方法,其特征在于,形成第一栅的步骤(c)以下步骤:
1)在所说晶片上形成多晶硅层;及
2)选择性去掉所说多晶硅层,保留形成所说第一栅的所说多晶硅层。
11.如权利要求10所述的方法,其特征在于,形成第一栅的导电区的步骤e)包括以下步骤:
1)在所说晶片上淀积层状介质;
2)选择地腐蚀所说层状介质,邻近确定的第一导电类型的第一栅形成侧壁间隔层;
3)向所说确定的第一栅及所说确定的第一栅的导电区注入所说第一导电类型的掺杂剂;
4)选择地腐蚀所说层状介质,邻近所说确定的第二导电类型的第一栅形成侧壁间隔层;及
5)向所说确定的第一栅及所说确定的第一栅的导电区注入所说第二导电类型的掺杂剂。
12.如权利要求11所述的方法,其特征在于,形成第一栅的导电区的步骤e)包括以下步骤:
6)在所说第一栅和所说第一栅的导电区上淀积硅化物。
CNB991009134A 1998-02-05 1999-01-04 一种形成集成电路芯片的方法 Expired - Fee Related CN1134061C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/018,939 US6087225A (en) 1998-02-05 1998-02-05 Method for dual gate oxide dual workfunction CMOS
US018,939/09 1998-02-05
US09/018939 1998-02-05

Publications (2)

Publication Number Publication Date
CN1225507A true CN1225507A (zh) 1999-08-11
CN1134061C CN1134061C (zh) 2004-01-07

Family

ID=21790519

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB991009134A Expired - Fee Related CN1134061C (zh) 1998-02-05 1999-01-04 一种形成集成电路芯片的方法

Country Status (8)

Country Link
US (1) US6087225A (zh)
EP (1) EP0935285A1 (zh)
JP (1) JP3111059B2 (zh)
KR (1) KR100331527B1 (zh)
CN (1) CN1134061C (zh)
MY (1) MY118598A (zh)
SG (1) SG70150A1 (zh)
TW (1) TW368734B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100533709C (zh) * 2005-01-27 2009-08-26 国际商业机器公司 改进器件性能的双硅化物工艺
CN101483154B (zh) * 2008-01-07 2010-08-25 中芯国际集成电路制造(上海)有限公司 一种双栅氧器件的栅极侧墙制造方法
CN101620994B (zh) * 2008-06-30 2011-01-12 中芯国际集成电路制造(北京)有限公司 掺杂栅介质层、多晶硅层及叠层顶层的最小厚度确定方法
CN101151724B (zh) * 2003-11-28 2012-02-01 国际商业机器公司 金属碳化物栅极结构和制造方法
CN103871855A (zh) * 2012-12-17 2014-06-18 北大方正集团有限公司 一种集成电路双栅氧的制备方法
CN104952734A (zh) * 2015-07-16 2015-09-30 矽力杰半导体技术(杭州)有限公司 半导体结构及其制造方法
CN112053719A (zh) * 2019-06-07 2020-12-08 南亚科技股份有限公司 次字线驱动电路、半导体存储元件及其形成方法

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3349937B2 (ja) * 1997-12-22 2002-11-25 沖電気工業株式会社 半導体装置の製造方法
US6555455B1 (en) * 1998-09-03 2003-04-29 Micron Technology, Inc. Methods of passivating an oxide surface subjected to a conductive material anneal
EP1005079B1 (en) * 1998-11-26 2012-12-26 STMicroelectronics Srl Process for integrating in a same chip a non-volatile memory and a high-performance logic circuitry
US6228708B1 (en) * 1998-12-10 2001-05-08 United Microelectronics Corp. Method of manufacturing high voltage mixed-mode device
JP2000311992A (ja) 1999-04-26 2000-11-07 Toshiba Corp 不揮発性半導体記憶装置およびその製造方法
JP2001060630A (ja) * 1999-08-23 2001-03-06 Nec Corp 半導体装置の製造方法
JP2001210726A (ja) * 2000-01-24 2001-08-03 Hitachi Ltd 半導体装置及びその製造方法
KR100364599B1 (ko) * 2001-02-13 2002-12-16 삼성전자 주식회사 반도체 소자 제조방법
US6297103B1 (en) * 2000-02-28 2001-10-02 Micron Technology, Inc. Structure and method for dual gate oxide thicknesses
US6686276B2 (en) * 2000-03-09 2004-02-03 Tower Semiconductor Ltd. Semiconductor chip having both polycide and salicide gates and methods for making same
FR2822293B1 (fr) * 2001-03-13 2007-03-23 Nat Inst Of Advanced Ind Scien Transistor a effet de champ et double grille, circuit integre comportant ce transistor, et procede de fabrication de ce dernier
US6335248B1 (en) 2001-04-30 2002-01-01 International Business Machines Corporation Dual workfunction MOSFETs with borderless diffusion contacts for high-performance embedded DRAM technology
US6518106B2 (en) * 2001-05-26 2003-02-11 Motorola, Inc. Semiconductor device and a method therefor
US6888198B1 (en) 2001-06-04 2005-05-03 Advanced Micro Devices, Inc. Straddled gate FDSOI device
DE10135870C1 (de) * 2001-07-24 2003-02-20 Infineon Technologies Ag Verfahren zum Herstellen einer integrierten Halbleiterschaltung mit einem Speicher- und einem Logikbereich
DE10137678A1 (de) * 2001-08-01 2003-02-27 Infineon Technologies Ag Verfahren zur Herstellung eines Halbleiterprodukts mit einem Speicher- und einem Logikbereich
DE10140047B4 (de) 2001-08-16 2006-05-04 Infineon Technologies Ag Verfahren zur Herstellung von Transistoren in integrierten Halbleiterschaltungen
KR100449246B1 (ko) * 2001-12-24 2004-09-18 주식회사 하이닉스반도체 반도체소자의 게이트전극 형성방법
US6664153B2 (en) * 2002-02-08 2003-12-16 Chartered Semiconductor Manufacturing Ltd. Method to fabricate a single gate with dual work-functions
US6709926B2 (en) * 2002-05-31 2004-03-23 International Business Machines Corporation High performance logic and high density embedded dram with borderless contact and antispacer
US6709932B1 (en) * 2002-08-30 2004-03-23 Texas Instruments Incorporated Method for improving gate oxide integrity and interface quality in a multi-gate oxidation process
US6787416B2 (en) * 2002-09-24 2004-09-07 Macronix International Co., Ltd. Non volatile embedded memory with poly protection layer
US6906398B2 (en) * 2003-01-02 2005-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor chip with gate dielectrics for high-performance and low-leakage applications
US6828181B2 (en) * 2003-05-08 2004-12-07 International Business Machines Corporation Dual gate material process for CMOS technologies
KR100956598B1 (ko) 2003-06-30 2010-05-11 주식회사 하이닉스반도체 듀얼 게이트 산화막 구조의 게이트 형성방법
BE1015723A4 (nl) 2003-10-17 2005-07-05 Imec Inter Uni Micro Electr Werkwijze voor het vervaardigen van halfgeleiderinrichtingen met gesilicideerde elektroden.
US7160771B2 (en) * 2003-11-28 2007-01-09 International Business Machines Corporation Forming gate oxides having multiple thicknesses
US7115947B2 (en) * 2004-03-18 2006-10-03 International Business Machines Corporation Multiple dielectric finfet structure and method
JP4205079B2 (ja) * 2005-06-03 2009-01-07 株式会社東芝 半導体装置およびその製造方法
US20070007531A1 (en) * 2005-07-08 2007-01-11 Ho Kwak S Semiconductor device and manufacturing method thereof
JP2007096060A (ja) * 2005-09-29 2007-04-12 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
US7833849B2 (en) * 2005-12-30 2010-11-16 International Business Machines Corporation Method of fabricating a semiconductor structure including one device region having a metal gate electrode located atop a thinned polygate electrode
US8399310B2 (en) 2010-10-29 2013-03-19 Freescale Semiconductor, Inc. Non-volatile memory and logic circuit process integration
US8658497B2 (en) 2012-01-04 2014-02-25 Freescale Semiconductor, Inc. Non-volatile memory (NVM) and logic integration
US8669158B2 (en) 2012-01-04 2014-03-11 Mark D. Hall Non-volatile memory (NVM) and logic integration
US8906764B2 (en) * 2012-01-04 2014-12-09 Freescale Semiconductor, Inc. Non-volatile memory (NVM) and logic integration
US8951863B2 (en) 2012-04-06 2015-02-10 Freescale Semiconductor, Inc. Non-volatile memory (NVM) and logic integration
US9087913B2 (en) 2012-04-09 2015-07-21 Freescale Semiconductor, Inc. Integration technique using thermal oxide select gate dielectric for select gate and apartial replacement gate for logic
US8722493B2 (en) 2012-04-09 2014-05-13 Freescale Semiconductor, Inc. Logic transistor and non-volatile memory cell integration
US8728886B2 (en) 2012-06-08 2014-05-20 Freescale Semiconductor, Inc. Integrating formation of a replacement gate transistor and a non-volatile memory cell using a high-k dielectric
US9111865B2 (en) 2012-10-26 2015-08-18 Freescale Semiconductor, Inc. Method of making a logic transistor and a non-volatile memory (NVM) cell
US8716089B1 (en) 2013-03-08 2014-05-06 Freescale Semiconductor, Inc. Integrating formation of a replacement gate transistor and a non-volatile memory cell having thin film storage
US8741719B1 (en) 2013-03-08 2014-06-03 Freescale Semiconductor, Inc. Integrating formation of a logic transistor and a non-volatile memory cell using a partial replacement gate technique
US9006093B2 (en) 2013-06-27 2015-04-14 Freescale Semiconductor, Inc. Non-volatile memory (NVM) and high voltage transistor integration
US9129996B2 (en) 2013-07-31 2015-09-08 Freescale Semiconductor, Inc. Non-volatile memory (NVM) cell and high-K and metal gate transistor integration
US8871598B1 (en) 2013-07-31 2014-10-28 Freescale Semiconductor, Inc. Non-volatile memory (NVM) and high-k and metal gate integration using gate-first methodology
US8877585B1 (en) 2013-08-16 2014-11-04 Freescale Semiconductor, Inc. Non-volatile memory (NVM) cell, high voltage transistor, and high-K and metal gate transistor integration
US9082837B2 (en) 2013-08-08 2015-07-14 Freescale Semiconductor, Inc. Nonvolatile memory bitcell with inlaid high k metal select gate
KR102055379B1 (ko) 2013-08-08 2019-12-13 삼성전자 주식회사 트라이-게이트를 포함하는 반도체 소자 및 그 제조 방법
US9252246B2 (en) 2013-08-21 2016-02-02 Freescale Semiconductor, Inc. Integrated split gate non-volatile memory cell and logic device
US9082650B2 (en) 2013-08-21 2015-07-14 Freescale Semiconductor, Inc. Integrated split gate non-volatile memory cell and logic structure
US9275864B2 (en) 2013-08-22 2016-03-01 Freescale Semiconductor,Inc. Method to form a polysilicon nanocrystal thin film storage bitcell within a high k metal gate platform technology using a gate last process to form transistor gates
US8932925B1 (en) 2013-08-22 2015-01-13 Freescale Semiconductor, Inc. Split-gate non-volatile memory (NVM) cell and device structure integration
US8901632B1 (en) 2013-09-30 2014-12-02 Freescale Semiconductor, Inc. Non-volatile memory (NVM) and high-K and metal gate integration using gate-last methodology
US9129855B2 (en) 2013-09-30 2015-09-08 Freescale Semiconductor, Inc. Non-volatile memory (NVM) and high-k and metal gate integration using gate-first methodology
US9136129B2 (en) 2013-09-30 2015-09-15 Freescale Semiconductor, Inc. Non-volatile memory (NVM) and high-k and metal gate integration using gate-last methodology
US9231077B2 (en) 2014-03-03 2016-01-05 Freescale Semiconductor, Inc. Method of making a logic transistor and non-volatile memory (NVM) cell
US9112056B1 (en) 2014-03-28 2015-08-18 Freescale Semiconductor, Inc. Method for forming a split-gate device
US9252152B2 (en) 2014-03-28 2016-02-02 Freescale Semiconductor, Inc. Method for forming a split-gate device
US9472418B2 (en) 2014-03-28 2016-10-18 Freescale Semiconductor, Inc. Method for forming a split-gate device
US9379222B2 (en) 2014-05-30 2016-06-28 Freescale Semiconductor, Inc. Method of making a split gate non-volatile memory (NVM) cell
US9257445B2 (en) 2014-05-30 2016-02-09 Freescale Semiconductor, Inc. Method of making a split gate non-volatile memory (NVM) cell and a logic transistor
US9343314B2 (en) 2014-05-30 2016-05-17 Freescale Semiconductor, Inc. Split gate nanocrystal memory integration
US9570555B1 (en) 2015-10-29 2017-02-14 International Business Machines Corporation Source and drain epitaxial semiconductor material integration for high voltage semiconductor devices
US9972540B2 (en) 2016-08-07 2018-05-15 International Business Machines Corporation Semiconductor device having multiple thickness oxides
US11791396B2 (en) 2021-07-09 2023-10-17 International Business Machines Corporation Field effect transistor with multiple gate dielectrics and dual work-functions with precisely controlled gate lengths

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2583920B1 (fr) * 1985-06-21 1987-07-31 Commissariat Energie Atomique Procede de fabrication d'un circuit integre et notamment d'une memoire eprom comportant deux composants distincts isoles electriquement
JPH0383375A (ja) * 1989-08-25 1991-04-09 Sony Corp 半導体装置
JPH04103162A (ja) * 1990-08-23 1992-04-06 Toshiba Corp 絶縁膜を有する半導体装置の製造方法
JP3189284B2 (ja) * 1991-02-14 2001-07-16 ソニー株式会社 半導体装置の製造方法
JPH04276655A (ja) * 1991-03-05 1992-10-01 Olympus Optical Co Ltd Cmos半導体装置の製造方法
JPH07335883A (ja) * 1994-06-15 1995-12-22 Toshiba Corp 半導体装置の製造方法
US5480828A (en) * 1994-09-30 1996-01-02 Taiwan Semiconductor Manufacturing Corp. Ltd. Differential gate oxide process by depressing or enhancing oxidation rate for mixed 3/5 V CMOS process
JP3101515B2 (ja) * 1995-01-20 2000-10-23 三洋電機株式会社 Cmos半導体装置の製造方法
JP3243151B2 (ja) * 1995-06-01 2002-01-07 東芝マイクロエレクトロニクス株式会社 半導体装置の製造方法
EP0751560B1 (en) * 1995-06-30 2002-11-27 STMicroelectronics S.r.l. Process for forming an integrated circuit comprising non-volatile memory cells and side transistors of at least two different types, and corresponding IC
JPH09148449A (ja) * 1995-11-20 1997-06-06 Fujitsu Ltd 半導体装置の製造方法
US5712201A (en) * 1996-06-07 1998-01-27 Taiwan Semiconductor Manufacturing Company, Ltd. Fabrication method for integrating logic and single level polysilicon DRAM devices on the same semiconductor chip
US5668035A (en) * 1996-06-10 1997-09-16 Taiwan Semiconductor Manufacturing Company Ltd. Method for fabricating a dual-gate dielectric module for memory with embedded logic technology
US5953599A (en) * 1997-06-12 1999-09-14 National Semiconductor Corporation Method for forming low-voltage CMOS transistors with a thin layer of gate oxide and high-voltage CMOS transistors with a thick layer of gate oxide
US5960289A (en) * 1998-06-22 1999-09-28 Motorola, Inc. Method for making a dual-thickness gate oxide layer using a nitride/oxide composite region

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101151724B (zh) * 2003-11-28 2012-02-01 国际商业机器公司 金属碳化物栅极结构和制造方法
CN100533709C (zh) * 2005-01-27 2009-08-26 国际商业机器公司 改进器件性能的双硅化物工艺
CN101483154B (zh) * 2008-01-07 2010-08-25 中芯国际集成电路制造(上海)有限公司 一种双栅氧器件的栅极侧墙制造方法
CN101620994B (zh) * 2008-06-30 2011-01-12 中芯国际集成电路制造(北京)有限公司 掺杂栅介质层、多晶硅层及叠层顶层的最小厚度确定方法
CN103871855A (zh) * 2012-12-17 2014-06-18 北大方正集团有限公司 一种集成电路双栅氧的制备方法
CN103871855B (zh) * 2012-12-17 2016-08-03 北大方正集团有限公司 一种集成电路双栅氧的制备方法
CN104952734A (zh) * 2015-07-16 2015-09-30 矽力杰半导体技术(杭州)有限公司 半导体结构及其制造方法
CN104952734B (zh) * 2015-07-16 2020-01-24 矽力杰半导体技术(杭州)有限公司 半导体结构及其制造方法
CN112053719A (zh) * 2019-06-07 2020-12-08 南亚科技股份有限公司 次字线驱动电路、半导体存储元件及其形成方法
CN112053719B (zh) * 2019-06-07 2023-03-07 南亚科技股份有限公司 次字线驱动电路、半导体存储元件及其形成方法

Also Published As

Publication number Publication date
JP3111059B2 (ja) 2000-11-20
US6087225A (en) 2000-07-11
JPH11317459A (ja) 1999-11-16
CN1134061C (zh) 2004-01-07
KR19990072249A (ko) 1999-09-27
KR100331527B1 (ko) 2002-04-06
TW368734B (en) 1999-09-01
EP0935285A1 (en) 1999-08-11
SG70150A1 (en) 2000-01-25
MY118598A (en) 2004-12-31

Similar Documents

Publication Publication Date Title
CN1134061C (zh) 一种形成集成电路芯片的方法
US6432776B1 (en) Method of manufacturing semiconductor device
US6281064B1 (en) Method for providing dual work function doping and protective insulating cap
US4536944A (en) Method of making ROM/PLA semiconductor device by late stage personalization
US4536947A (en) CMOS process for fabricating integrated circuits, particularly dynamic memory cells with storage capacitors
US5439846A (en) Self-aligned method for forming contact with zero offset to gate
US5721165A (en) Method of forming CMOS circuitry
US5470776A (en) Method for fabricating stacked dynamic random access memory cell
US6335248B1 (en) Dual workfunction MOSFETs with borderless diffusion contacts for high-performance embedded DRAM technology
KR100636461B1 (ko) 반도체 소자내 게이트-유도된 드레인 누설을 감소시키는방법
US7919379B2 (en) Dielectric spacer removal
JP3545768B2 (ja) Soi型トランジスタの製造方法
US6281058B1 (en) Method of forming DRAM circuitry on a semiconductor substrate
US10490645B2 (en) Semiconductor devices comprising nitrogen-doped gate dielectric, and methods of forming semiconductor devices
KR100455541B1 (ko) 제어된 게이트 디플리션을 이용한 혼합 hv/lvcmos 를 위한 방법 및 구조물
US5373178A (en) MOSFET with sidewall spacer on gate section
JPH07176626A (ja) 半導体集積回路の形成方法
US6432787B1 (en) Method and apparatus for providing low-GIDL dual workfunction gate doping with borderless diffusion contact
KR100951272B1 (ko) 반도체 집적 회로 장치의 제조 방법
KR960005249B1 (ko) 반도체 집적 소자의 디램(dram) 제조방법
KR100469760B1 (ko) 복합 반도체 소자의 게이트 산화막 형성 방법
KR100232228B1 (ko) 반도체 소자의 제조 방법
KR100934828B1 (ko) 반도체 소자의 모스펫 형성방법
KR100322891B1 (ko) 복합반도체 소자의 게이트 전극 제조방법
KR100660832B1 (ko) 플라즈마 데미지를 감소시키는 반도체 소자 및 그 제조방법

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: GOOGLE INC.

Free format text: FORMER OWNER: INTERNATIONAL BUSINESS MACHINES CORP.

Effective date: 20120521

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20120521

Address after: American California

Patentee after: Google Inc.

Address before: American New York

Patentee before: International Business Machines Corp.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040107

Termination date: 20150104

EXPY Termination of patent right or utility model