CN1221471C - 高固体含量的SiO2分散液、其制造方法及用途 - Google Patents

高固体含量的SiO2分散液、其制造方法及用途 Download PDF

Info

Publication number
CN1221471C
CN1221471C CNB00812728XA CN00812728A CN1221471C CN 1221471 C CN1221471 C CN 1221471C CN B00812728X A CNB00812728X A CN B00812728XA CN 00812728 A CN00812728 A CN 00812728A CN 1221471 C CN1221471 C CN 1221471C
Authority
CN
China
Prior art keywords
dispersion liquid
particulate
amorphous
section bar
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB00812728XA
Other languages
English (en)
Other versions
CN1373737A (zh
Inventor
弗里茨·施韦特费格
约翰·魏斯
彼得·里特
阿基姆·莫尔特
沃尔夫冈·施韦雷恩
福尔克尔·弗赖
汉斯-彼得·舍尔姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7921359&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1221471(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Publication of CN1373737A publication Critical patent/CN1373737A/zh
Application granted granted Critical
Publication of CN1221471C publication Critical patent/CN1221471C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • C03B19/066Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction for the production of quartz or fused silica articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0064Multimodal pore size distribution
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicon Compounds (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Powder Metallurgy (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Catalysts (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及高固体含量的SiO2分散液、其制造方法以及由该分散液制造具有极高固体含量的多孔性无定形SiO2型材(Formkoerper)的制备方法。本发明的分散液是一种均匀的、容易浇注的、分散于分散介质中的无定形SiO2微粒的分散液。所说分散液的特征是其固体含量为至少80wt%的无定形SiO2微粒,且所述无定形SiO2微粒具有双模态粒径分布。

Description

高固体含量的SiO2分散液、其制造方法及用途
本发明涉及高固体含量的SiO2分散液、其制造方法以及由该分散液制造具有极高固体含量的多孔性无定形SiO2型材(Formkoerper)的方法、这些型材及其制备。
多孔性、无定形SiO2型材在工业界的用途非常广泛,例如用作过滤材料、绝热材料及防热板。
此外,借助烧结和/或熔化作用可由无定形、多孔性SiO2型材制成各种石英制品。例如,高纯度多孔性SiO2型材可用作玻璃纤维或光纤维的“预制件”。另外,用以抽拉硅单晶体的坩埚也可以此方式制造。
无论此类多孔性型材用作何种用途,总是致力于将型材制成尽可能接近最终产品的尺寸。这意味着在制造型材过程中仅有轻微收缩或没有收缩。
原则上,制造多孔性SiO2型材可采用挤压适当的SiO2粉末法或湿化学方法。
在陶瓷界挤压粉末的已知方法中(例如冷成熟均压法),为制得强固坏体,通常需添加有机粘合剂。在随后的步骤内,此类粘合剂必须加以沥除或烧掉。该类工作在技术上非常复杂、成本极高而且会引进不良杂质,尤其在制造用以抽拉硅单晶体的坩埚时,必须不含不良杂质。
所以,制造多孔性SiO2型材的适合方法是湿化学方法。文献上曾公开的一种方法是溶胶-凝胶法。该方法从溶解于溶剂中的含硅单体(溶胶)出发,借助于水解作用和/或聚缩合作用,将其转化成纳米孔的三维SiO2网(凝胶)。随后,借助次临界或起临界烘干制得多孔性型材。该方法除起始原料昂贵之的外,所制得凝胶的固体含量仅约10至20wt%。所以,次临界烘干会造成极高度的收缩作用,因而无法重复制造接近最终产品尺寸的型材。若实施超临界烘干,型材虽不收缩,但其固体含量仅达10至20wt%。
欧洲专利EP 705797中公开了一种制备较高固体含量SiO2型材的方法。在该方法中,在溶胶内添加细粉状石英微粒(烟石英)。如此可获得约40wt%的固体含量。但是,该溶胶的制备方法仍极其昂贵,且烘干方法也很复杂。
欧洲专利EP 318100公开了另一种方法。在该方法中,先制得一粒径10至500纳米的细粉状石英(烟石英)在水中的分散液;将该分散液成形及固化之后,烘干制得相应的型材。所得型材的固体含量高达60wt%。
欧洲专利EP 653381及德国专利DE-A2218766中公开了一种滑移浇注方法,其中先制得一粒径0.45至70微米(尤以1至10微米更佳)的熔融石英微粒在水中的分散液。该分散液的固体含量为78至79wt%。随后于一多孔性模具内,缓缓抽取水分,将该分散液加以固化,自模具中取出再予以烘干。虽然用此方法可制得固体含量极高的型材,但由于滑移浇注方法的脱水与扩散作用有关,所以非常耗时,而且仅可用以制造薄壁型材。再者,多孔性模具脱水的固化作用可导致型材内不良的密度梯度,在随后烧结过程中该密度梯度可造成不同的烧结温度、烧结时间以及密度差异。
若避开使用复杂的滑移浇注方法,而且使所得型材尽可能接近最终产品尺寸,分散液必须具有极高的固体含量。实际上,这样会带来极大得问题,因为经分散的SiO2微粒具有强烈的摇溶效果。在实施分散作用的过程中,产生一膨胀(加压增粘)物相。当悬浮液的粘度上升及剪切力增加时而显示出来。为制得一固体含量高,而且仍可浇注的分散液,需要采用一复杂的方法,其中搅入过程中的低剪切力可变为均质化过程中的高剪切力。由于高固体含量悬浮液的固化作用非常快速,在达到分散液均匀成形方面也会遭遇到许多问题。
英国专利GB-B-2329893中公开了一种制造透明石英的组合物,该组合物含有平均粒径为5×10-3至1×10-1微米、比表面积为50至400平方米/克的热解石英,以及平均粒径为2至15微米及比表面积较热解石英较低的热处理石英(热解石英的粘聚物),连同增塑剂(例如氢氧化四甲铵)、分散剂(例如聚乙基恶唑啉、甘油)及粘合剂(例如甲酸甲酯)。由于含有不同有机和/或无机添加剂,该组合物不适于制造高纯度的烧结体。再者,该文献所揭示组合物及由其制得的坯体中的固体含量仅高达51wt%。
日本专利JP 5294610中公开了一种制造固体含量高达80wt%的无定形SiO2型材的方法。在该方法中,所用SiO2微粒的平均粒径为0.1至100微米。为达到如此高的固体含量,必须长时间施以高剪切力(例如球磨机),将所述微粒分散于碱性水内(pH值>10,例如借助于氢氧化四甲铵)。在长时间而且密集地施以剪切力的过程中,使用碱性物质及磨蚀剂(SiO2微粒的磨蚀性能)会造成不可避免的污染,因而这样的组合物完全不适于制造高纯度的SiO2型材。
美国专利US-A-4,929,579中公开了一种方法,借助于该方法,利用含有具有三模态粒径分布的无定形SiO2微粒的分散液,由石英制造耐火物品。该分散液的制造方法非常复杂。此外,由于较大微粒(平均粒径>300微米)的比例偏高,以致分散液内发生不均匀及沉淀现象。如此则导致分散液或型材内的密度起伏变化,因而造成随后成形加工及烧结过程中有关形状精度及等向(各向同性)收缩的重大困难。
本发明的目的在提供一SiO2粒子固体含量高且没有现有技术中已知缺点的、均匀的、极易浇注的分散液。
将一无定形SiO2微粒均匀分散在一分散介质中,可达到上述目标,其中所述分散液的固体含量为至少80wt%的无定形SiO2微粒,且此无定形SiO2微粒具有双模态粒径分布。
该分散液的固体含量优选为至少83wt%的无定形SiO2微粒。
该分散液的固体含量更优选为至少86wt%的无定形SiO2微粒。
若用水作为分散介质,无定形SiO2微粒固体含量的上限以约95wt%为佳,若用其他不同密度的分散介质,则为一相应值。
分散介质可能为极性或非极性有机溶剂,例如醇类、醚类、酯类、有机酸类、饱和或非饱和烃类或水或其混合物。
分散介质优选为甲醇、乙醇或丙醇等醇类或丙酮或水或其混合物。但更优选为丙酮及水或其混合物,尤以水为最佳。
所用上述分散介质最好具有高纯度,可按文献上公开的方法制得或可商购。
所用的水最好是经特别纯化的水,其电阻≥18百万欧姆*厘米。
水中优选添加矿物酸(例如;HCl、HF、H3PO4、H2SO4或硅酸),或无机添加物(例如氟化盐类)。但以添加HCl或HF较佳,尤以HF最佳。也可以使用前述化合物的混合物。所得分散液的酸度值应为2至7,尤以3至5更佳。
另一适当的类似变通方式是:水中可添加一矿物碱(例如NH3、NaOH或KOH)。但以NH3及NaOH较佳,尤以NH3最佳。亦可使用前述化合物的混合物。所得酸度值应为7至11,尤以9至10更佳。
酸度值的减小或增大导致摇溶的降低,所以可达到高固体含量,且该分散液更容易流动及更容易成形。
例如,由图1可看出,较大无定形SiO2微粒基本上呈圆形,亦即为球形且具有致密形态。
此类较大无定形SiO2微粒的粒径分布d50以1至200微米为佳,但以1至100微米较佳,尤以10至50微米更佳及10至30微米最佳。而且,狭窄的粒径分布更为有利。
无定形SiO2微粒的BET比表面积以0.001平方米/克至50平方米/克为佳,但以0.001平方米/克至5平方米/克较佳,尤以0.01平方米/克至0.5平方米/克最佳。
借助于混入如下粒径的无定形SiO2微粒(例如熔融或烟石英),可获得双模态微粒粒径分布;所述SiO2微粒粒径为1至400纳米,但以10至200纳米较佳,尤以50至130纳米最佳;其量为0.1至50wt%(以分散液的总固体含量为基准),但以1至30wt%较佳,尤以1至10wt%最佳,。
此类无定形SiO2微粒的BET比表面积以30至400平方米/克为佳,尤以130至300平方米/克更佳。
纳米大小的无定形SiO2微粒具有作为较大型SiO2微粒间一种无机粘合剂的功能,但并非作为填料以大幅提高固体含量。此类纳米大小的无定形SiO2微粒可完成在制造强固型材时所忽略的除水作用。另外,此类SiO2微粒影响分散液的粘度或其可塑性性能。
无定形SiO2微粒的比密度以1.0至2.2克/立方厘米为佳,但以1.8至2.2克/立方厘米较佳,尤以2.0至2.2克/立方厘米最佳。
再者,所述无定形SiO2微粒外表面上以有≤3个羟基/平方纳米为佳,但以≤2个羟基/平方纳米较佳,尤以≤1个羟基/平方纳米最佳。
所述无定形SiO2微粒所含晶形物质最好不超过1%。再者,其与分散介质的相互作用最好非常低。
来源不同的无定形SiO2微粒均显示有此类性能,例如后-烧结石英(熔融石英)及任何类型无定形的烧结或致密SiO2。所以这些无定形SiO2微粒适合用于制造本发明的分散液。
适当的材料可以已知的方式于一氢/氧焰内制造。亦可商购,例如日本床山公司出品的商名为Excelica的产品。
若符合上述标准,亦可能使用不同来源的微粒,例如天然石英、熔融石英砂、透明石英、磨碎熔融石英或磨碎熔融石英小片,及化学方法制造的透明石英,例如沉淀石英、细粉状石英(借助于焰内热解制得的烟石英)、干凝胶或气凝胶。
较大型无定形SiO2微粒以沉积石英、细粉状石英、熔融石英或致密SiO2微粒为佳,但以细粉状石英或熔融石英较佳,尤以熔融石英最佳。前述不同SiO2微粒的混合物亦同样可能而且适合。
在一特别具体实施例中,上述微粒是呈高纯度形式,亦即:外来原子含量(尤其金属)≤300ppmw(百万之一重量份),但以≤100ppmw较佳,尤以≤10ppmw更佳及≤1ppmw最佳。
在另一适合具体实施例中,分散液内亦可添加玻璃纤维、压碎玻璃或玻璃微粒等添加剂。尤以添加熔融石英纤维更佳。
在另一特定具体实施例中,分散液内可另外含有金属微粒、金属化合物或金属盐类。其中以可溶于分散介质的化合物为佳,尤以水溶性金属盐类更佳。
作为添加剂的金属微粒、金属化合物成金属盐类可于分散液制造期间或之后加入。
本发明还提供了一种以很简单方式制造本发明分散液的方法。在本发明的方法中,圆形或致密形的无定形SiO2微粒掺入一带有初始电荷的分散介质内。在该过程中,最好将膨胀性能的形成大部分加以抑致。
在该方法中,可完全省略流化剂,尤其含有有机成分的流化剂。
例如,缓缓地添加SiO2微粒于初始带有电荷的分散介质内,添加开始时仅极慢地搅拌该混合物:随后加快,至添加工作终止,可压抑膨胀(加压增粘)性能的形成。但是,因剪切力磨耗分散液的器具及磨擦发热,对固体含量发生负面影响,所以在制造分散液的整个过程中应避免相对高的剪切力。
在制造分散液过程中,首先使分散介质带有电荷,随后缓缓地及最好连续地将SiO2微粒加入。但SiO2微粒亦可分为多次加入(每次加入少许)。
用选定目标的方法,适当选择调节SiO2微粒大小及颗粒大小,可确定由分散液所制型材内的微粒大小及分布。
本领域熟练人员所已知的器具及装备皆可能用作分散液的器具。为防止因磨耗作用而造成金属污染,所用器具最好没有致接触分散液的金属零件。
分散液制造应于0℃至50℃温度下实施为佳,尤以5℃至30℃更佳。
制造分散液之前和/或期间和/或之后,分散液内所含任何气体(例如空气)可借助于本领域熟练人员已知的方法(例如真空作用)予以移除。该项气体移除工作可在分散液制造期间和/或制造完成之后实施。
如此制造、固体含量至少80wt%、83wt%较佳及86wt%优佳的安定均匀分散液,保持可浇注的时间为至少2小时,但以30分钟较佳,尤以至少10分钟最佳。
本发明的另一目的是提供一简单、快速且廉价的方法,借助该方法可由本发明的分散液制得固体含量极高的多孔性无定形SiO2型材,而无现有技术已知的缺点。
借助于包括下列诸步骤的方法可达到该目的:
1)制造一SiO2微粒的分散液,
2)将该分散液送入模具内,
3)于该分散液固化后将型材自模具中取出,
4)将该型材烘干,
其中,在制造SiO2微粒分散液时所达到的固体含量至少为80wt%。
所述分散液进入模具(步骤2)之前,可借助于矿物酸或碱另将其酸度值加以改变。
优选的酸是:HCl、HF、H3PO4、H2SO4或硅酸,优选的碱是:NH3、NaOH及KOH。但以HCl、HF或NH3及NaOH较佳,尤以HF及NH3最佳。添加酸或碱应使酸度值成为2至7或7至11,尤以3至5或9至10更佳。
将分散液送入一模具内是采用本领域技术人员所已知的方式,例如倾倒入一模具内。
成形的温度为0℃至分散介质沸点。但以20℃至30℃较佳。
原则上适当的模具乃本领域熟练人员所已知的所有模具。视预期型材而定,可能使用有砂心或无砂心模具。再者,该导模具可能是一件式者或由许多零件组成者。坩埚型模具最好呈至少1°角的圆锥形,以便有助于铸件自模内取出。
原则上陶瓷界常用的所有材料均是适当材料。其中以不粘附分散液的材料为佳,例如塑料、聚硅氧烷、玻璃、熔融石英或石墨。但以聚乙烯(PE)、聚丙烯(PP)、聚四氟乙烯(PTFE)、聚酰胺、聚硅氧橡胶及石墨较佳。尤以PTFE及石墨最佳。
亦可以使用经涂覆的材料,例如涂以PTFE的金属。
所述模具的表面最好非常平滑,例如经抛光的表面。
所述模具可能是多孔或非多孔性及透气或不透气。再者,该模具可能是具有弹性或无弹性。
在一特别具体实施例中,模具包括一薄膜或一薄膜管。如欧洲专利EP 318100中所述,该类模具特别适于制造棒状物及管状物。
作为薄膜,原则上可能使用任何类型的薄膜。其中以由PE、PP、聚酯、聚四氟乙烯、纤维素、纤维-加强的纤维素或聚酰胺等材料制成的薄膜为佳。
在一特别具体实施例中,模具自分散液中移除部分分散介质。例如德国专利DE-OS 2218766中所述,本领域熟练人员已知的所有类型的滑移浇注法均可实施。如此,在成形过程中成形部分的固体含量可增加至高达95wt%。
再者,借助于本领域熟练人员已知的成形法,例如翻转法、滚转法或旋转铸造法,亦可制得旋转对称型的型材。
亦可用陶瓷界领域熟练人员已知的压力铸造法。
再者,型材亦可于一现有型材上由内部和/或外部加以成形。如欧洲专利EP 473104中所述,本领域熟练人员已知的所有方法均可作此用途。例如,如此可制造具有多孔性内部和/或外部区域的透明石英管或棒。用此方法亦可制造由不同层次组成的型材。
在步骤3)内,自模具中取出的固化分散液是一形状稳定的型材。悬浮液的固化时间视分散液的固体含量、微粒分布、温度及酸度值而定。固化温度以-196℃至分散介质的沸点为佳,但以-76℃至50℃较佳,尤以-20℃至30℃更佳及0℃至30℃最佳。
通常,固化成为形状稳定型材所花时间为1分钟至24小时;但以1分钟至6小时较佳,尤以1分钟至30分钟最佳。
在分散液固化成为一形状稳定型材的过程中,未发生显著收缩现象。线缩量以0至0.5%为佳。
若少部分分散介质藉蒸发作用亦可自模具中逸出,如此将加速分散液的固化作用。
为使型材更容易自模具中取出而不损坏或不形成破裂,在装填本发明分散液之前,模具内可放入本领域熟练人员已知的适当脱模剂。例如,石墨是一适合的脱模剂。
自模具中取出成形品的实际操作同本领域熟练人员已知的方式。
再者,例如,藉施以拉力而于型材及模具间产生一水层,借助于该水层亦可能将成形盐自模具中取出。例如,如美国专利US 5578101曾指出本领域已知的所有方法均属可能。
在步骤4)中,将自步骤3)制得型材加以烘干。实施烘干是使用本领域熟练人员已知的方法,例如真空烘干、热气(例如氮或空气)烘干或接触烘干。各个烘干方法结合使用亦属可能。其中以热气烘干较佳。
借助于微波或红外线辐射能也很适合。
依照本发明,按不同顺序实施步骤3)及4)原则上自然亦属可能。
烘干工作是在型材内温度25℃至型材中微孔内分散介质沸点之间实施。
烘干时间则视烘干型材的体积、最大厚度、分散介质及型材的微孔结构而定。
烘干型材时略有收缩现象。收缩程度则视湿型材的固体含量而定。固体含量为80wt%时,体积收缩量≤2.5%及线缩量≤0.8%。固体含量愈高,收缩率愈低。
在一特别具体实施例中,实施所有步骤时是用高纯度材料,型材的外来原子含量(尤其金属)≤300ppmw,但以≤100ppmw较佳,尤以≤10ppmw更佳及≤1ppmw最佳。
如此制得的型材是一无定形的、开孔型的、接近最终尺寸的任何尺寸及形状的SiO2型材。
如此制得型材密度的各向异性比现有技术制得的型材低。
此类型材的特征是:包括的SiO2微粒为至少64vol%(尤以至少70vol%更佳),其孔体积(借助于水银测孔仪测得)为1毫升/克至0.01毫升/克,但以0.9毫升/克至0.1毫升/克较佳,尤以0.4毫升/克至0.1毫升/克最佳,且所含微孔的孔径为1至10微米,尤以3至6微米更佳,此类微孔耐受烧结的温度高达1000℃,或所有微孔具有一双模态孔径分布:其一,最大孔径为0.01至0.05微米,尤以0.018至0.022微米更佳;其二,最大孔径为1至5微米,尤以1.8至2.2微米更佳。
本发明的型材亦可含有具一双模态孔径分布的微孔:其一,最大孔径为0.01至0.05微米,尤以0.018至0.022微米更佳;其二,最大孔径为1至5微米,尤以1.8至2.2微米更佳,但经适当加热,在1000℃温度下孔径分布变成一单模态孔径分布,且在此温度下孔径为2.2微米至5.5微米,尤以3.5至4.5微米更佳,而且该型材内部的比表面积为100平方米/克至0.1平方米/克,尤以50平方米/克至0.1平方米/克更佳。
本发明型材的体积耐受烧结而不变的温度最好高达1000℃。
分散液中使用较大微粒将在型材内形成较大微孔,且分散液中的狭窄粒径分布将在型材内造成狭窄的孔径分布。
添加少量(约1至4wt%)纳米尺寸微粒,对型材内低微米区孔径的单模态孔径分布影响不大。
添加较多(约5至50wt%)的纳米尺寸微粒,将在型材内造成一双模态孔径分布,其中不仅含有前述的微孔,而且含有低纳米范围内的微孔。
型材的总固体含量总是不变。
本发明型材的密度为1.4克/立方厘米至1.8克/立方厘米。
在高达1000℃温度下,上述具有一单模态孔径分布的型材可耐受烧结至少24小时。再者,此类型材可耐热且其热膨胀系数甚低。
本发明型材的弯曲强度以0.1牛顿/平方毫米至20牛顿/平方毫米为佳,但以0.5至10牛顿/平方毫米较佳,尤以0.8至10牛顿/平方毫米最佳。所以,如现有技术已知,此类型材的弯曲强度比具有单模态粒径分布的坯体高。再者,藉热处理可增加弯曲强度。
由于其特殊性能,前述型材可具有多种用途,例如作为过滤材料、绝热材料、防热挡板、催化剂载体材料以及作为玻璃纤维、光纤维、光学玻璃或各类石英产品的“预制件”。
在另一特定具体实施例中,此类多孔性型材可用许多种不同的分子、材料及物质加以完全或部分地处理。其中以具有催化活性的分子、材料及物质为佳。例如,如美国专利US 5655046中所述,本领域熟练人员已知的所有分子均可能采用。
在另一特定具体实施例中,开孔坯体内的微孔是在较高纳米至较低微米范围内,尤以0至10微米范围内更佳。如此则可能实施快速真空烧结,因为此类条件均在努德森(Knudsen)范围之外。
在另一特定具体实施例中,在较高纳米至较低微米范围内(尤以在上至20纳米及1至10微米的范围内更佳)开孔坯体的微孔具有一双模态分布。
在一特定具体实施例中,如此制得的型材可另外再实施烧结。此处可能使用本领域熟练人员已知的所有方法,例如真空烧结、区间烧结、电弧烧结、等离子体或激光烧结、感应烧结或气环境或气流动体内烧结。其中,以真空烧结或气流动体内烧结为佳。尤以在10至5毫巴或10至3毫巴压力下的真空烧结最佳。
烧结所需温度为1400℃至1700℃,尤以1500℃至1650℃更佳。
在烧结过程中可藉本领域熟练人员已知的任何方法使型材自由竖立、平卧或将其加以悬吊或支撑。于一耐烧结模具内实施烧结亦属可能。此处所用模具以由不致造成烧结中型材后污染的材料所制模具为佳。尤以石墨和/或碳化硅和/或氮化硅制模具更佳。例如,如德国专利DE 2218766中所述,若待烧结型材是坩埚,于包括石墨的心轴上实施烧结亦属可能。
再者,为达到烧结中型材的后纯化作用和/或充以特别原子或分子,型材亦可在氦或四氟化硅的特别环境中实施烧结作用。例如,如美国专利US 4979971中所述,此处亦可使用本领于域已知的所有方法。
再者,例如,亦可使用知欧洲专利EP 199787中所述的方法实施后纯化作用。
适于后纯化作用的物质是容易与杂质形成挥发性化合物(例如金属卤化物)者为佳。此类适合的物质是:活性高的气体,如:Cl2或HCl,以及容易分解的材料,例如亚硫酰二氯。其中,以在超过分解温度的情况下使用亚硫酰二氯为佳。
如此可以得到100%无定形(无方英石)、透明、不透气、密度至少为2.15克/立方厘米(尤以2.2克/立方厘米更佳)的烧结透明石英型材。
在一特别具体实施例中,该烧结透明石英型材不含气体且其OH基的浓度以≤1个ppm为佳。
在一特别具体实施例中,所有步骤内均采用高纯度材料,经烧结的型材含有外来原子(尤其金属原子)的浓度≤300个百万分之一重量份(ppmw),但以≤100ppmw较佳,尤以≤10ppmw更佳及≤1ppmw最佳。
原则上,如此制得的透明石英型材可以用于透明石英的所有应用场合。适合的应用场合是:各种类型的石英产品、玻璃纤维、光学纤维及光学玻璃。
一种特别适合的应用场合是用以抽拉硅单晶体的高纯度透明石英坩埚。
在另一特别具体实施倒中,可用能赋予各个型材另外特性的分子、材料及物质处理此类分散液和/或多孔型型材和/或经烧结的透明石英体。
例如,如美国专利US 4033780及US 4047966中所述,掺入硅微粒和/或氧化铝和/或氧化钛,并减少SiOH基的数目及减少水含量,将改变烧结型材的光学性能。再者,硅微粒会减少烧结型材的氧含量。
此外,在烧结过程中或在烧结型材施以热应力过程中,形状的稳定性可加以增高或受到影响。在另一特别具体实施例中,利用可促进或影响方英石形成的化合物,将分散液和/或多孔性型材加以全部或部分处理。例如,如欧洲专利EP 0753605、美国专利US 5053359或英国专利GB 1428788中所述,亦可能使用本领域熟练人员已知的所有化合物以促进和/或影响方英石的形成。其中,以Ba(OH)2和/或铝化合物较佳。
再者,如美国专利US 4018615中所述,将结晶SiO2微粒加入分散液和/或多孔性型材可形成全部或部分方英石。此类结晶微粒应具有以上所详述无定形微粒的粒径。
烧结一型材所制成的型材,其内侧和/或外侧有一方英石层或整个由方英石组成。尤其若经烧结的型材是用以抽拉硅单晶体的坩埚时,此类坩埚特别适用于晶体抽拉,因为此类坩埚的热稳定性较高,且对硅熔融体的污染程度较低。如此在晶体抽拉时可获致较高产率。
如德国专利DE 19710672中所述,在抽拉单晶体过程中,若抽位坩埚内含有铝或含铝物质,亦可减少杂质的迁移。将适当微粒或溶解的物质加入分散液和/或多孔性型材可达到此目的。
下面利用实施例及对比例对本发明加以说明。
实施例1:
将170克二次蒸馏水置入一600毫升塑胶杯内。利用一商购螺旋搅拌器首先将45克烟石英(德古萨公司出品的AerosilOx50、BET比表面积:50平方米/克)搅入,历时15分钟。随后添加845克熔融石英(德山公司出品的ExcelicaSE-15、平均粒径:15微米),最初快速及最后分作小份添加,数分钟内予以分散。在此过程中,搅拌器的转速由初始的400转/分钟逐渐增至2000转/分钟。
待固体完全分散之后,将分散液施以略微减压(0.8巴)10分钟以除去任何包涵的气泡。
如此制得的分散液含有890克固体,相当于固体含量83.96wt%(其中94.94%是熔融石英及5.06%是烟石英)。
将部分分散液倒入两个聚四氟乙烯以及上方开口的矩形模具内(5厘米×15厘米×2厘米)。4小时之后,拆卸这些模具,将两个型材取出并在200℃温度下于一烘干炉内加以烘干。该烘干型材的密度为1.62克/立方厘米。
借助于水银测孔仪测得孔体积为0.20毫升/克,内部比表面积30平方米/克。
于一高度真空(10-5毫巴)环境内,以2℃/分钟的加热速率加热至1620℃将一个型材加以烧结,并保持在该温度下1分钟。
如此制得的烧结型材的密度为2.2克/立方厘米,且包括100%无定形的、透明的、不透气的透明石英,该石英不夹带气体,且OH基含量低于1(借助于透射红外线光谱法定量测定)。
与多孔性型材相较,可量度的体收缩为26.37%,相当于线缩率10%。
于一高度真空(10-5毫巴)环境内,以2℃/分钟的加热速率将第二个型材加热至1620℃。在温度达400℃、600℃、800℃、1000℃、1200℃、1400℃及1600℃时,总是将该型材的密度加以测定。如此测得的型材密度随烧结温度变化如表1所示。
表1:型材密度随烧结温度的变化
温度(℃) 密度(克/立方厘米)
 200  1.62
 400  1.61
 600  1.63
 800  1.62
 1000  1.63
 1200  1.68
 1400  1.81
 1600  2.20
图1所示是在200℃温度下烘干型材的扫瞄电子显微镜照片。
此外,在200℃、600℃、1000℃、1200℃及1400℃温度下所完成的型材孔径分布总是用水银测孔计测定。其孔径分布如图2所示。
此外,在前述温度下此类试样的孔体积及内部微孔的比表面积也进行了测定。所得结果如表2所示。
表2:孔体积及内部微孔比表面积(用水银测孔计测定)
试样 孔体积(毫升/克) 内部比表面积(平方米/克)
 200℃ 0.24  33.23
 600℃ 0.22  33.068
 1000℃ 0.21  27.78
 1200℃ 0.18  8.217
 1400℃ 0.097  2.01
实施例2a至c:
a)(对比例)将170克二次蒸馏水置入一600毫升塑胶杯内。在藉肋于商购螺旋桨式搅拌器不停搅拌的情况下,将890克熔融石英(德山公司出品的ExcelicaSE-15,平均粒径:15微米)加入,最初快速及最后分作小份添加,并于数分钟内加以分散。
b)将170克二次蒸馏水置入一600毫升塑胶杯内,利用一商购螺旋桨型搅拌器,首先将45克烟石英(德古萨公司出品的AerosilOx50、BET比表面积:50平方米/克)搅入,历时15分钟。随后将845克熔融石英(德山公司出品的ExcelicaSE-15,平均粒径:15微米)加入,最初快速及最后分作小份添加,并于数分钟内加以分散。
c)将170克二次蒸馏水置入一600毫升塑胶杯内。利用一商购螺旋桨型搅摔器,首先将90克烟石英(德古萨公司出品的AerosilOx50、BET比表面积:50平方米/克)搅入,历时15分钟。随后将800克熔融石英(德山公司出品的ExcelicaSE-15,平均粒径:15微米)加入,最初快速及最后分作小份添加,并于数分钟内加以分散。
在所有三种变通方法中,搅拌器的转速由初始的400转/分钟逐渐增至2000转/分钟。
待固体经完全分散之后,将所有这三种分散液施以略微减压(0.8巴),历时10分钟,以移除任何包涵的气泡。
如此制得的分散液含有890克固体,相当于固体含量83.96wt%。其中烟石英所占的比例:在分散液a)中为0wt%,在b)中为5.06wt%及在c)中为10.12wt%。
将每种此类分散液倒入10个聚四氟乙烯制及上方开口的矩形模具内(5厘米×15厘米×2厘米)。4小时之后,拆卸这些模具,将此类型材取出,并在200℃温度下于一烘干炉内加以烘干。烘干后,总是在800℃及1100℃温度下将若干试样作进一步热处理1小时。
随后借助于3-点弯曲试验测定弯曲强度。
表3:弯曲强度(牛顿/平方毫米)随纳米尺寸无定形SiO2微粒及热处理(1小时)的变化
热处理
200℃  800℃ 1100℃
0%纳米尺寸微粒(参阅实施例2a) 0.2牛顿/平方毫米 1.2牛顿/平方毫米 1.6牛顿/平方毫米
5%纳米尺寸微粒(参阅实施例2b) 0.8牛顿/平方毫米 1.9牛顿/平方毫米 4.2牛顿/平方毫米
10%纳米尺寸微粒(参阅实施例2c) 0.8牛顿/平方毫米 1.7牛顿/平方毫米 3.9牛顿/平方毫米
由表3可看出,双模态粒径分布导致弯曲强度的增加。若将表3内型材的强度与日本专利JP 5-294610(试样是在300℃温度下烘干)中所报告的强度相比,现有技术(在分散液相当酸度值约6.5的情况下)所得的强度为0.01牛顿/平方毫米,而利用本发明方法(实施例2b、2c)所得的强度高达0.8牛顿/平方毫米,相当于高出80倍。
对比例1:
利用欧洲专利EP 653381中的方法,于一球磨机内将二氧化硅研磨为粒径>0.45微米至<50微米,其中约60%的主要部分是1微米至10微米。如同实施例1,试图制造一固体含量≥80wt%的分散液,该分散液在固体含量为79wt%时突然变成固体。拟将该物料送入模具中已不可能。
对比例2:
利用欧洲专利EP 318100中的方法,试图将BET比表面积为50平方米/克的热解石英加以分散。如同实施例1,于试图制造一固体含量≥80wt%的分散液时,该分散液在固体含量只为42wt%时即变成一固体。拟将该块料送入模具中巳不可能。即使利用氟化铵作为流化剂,分散液内仅能得到48wt%的固体含量。拟将所得块料送入模具中亦不可能。

Claims (12)

1、一种均匀的的分散液,该分散液的分散介质中含有无定形SiO2微粒,其特征在于,该分散液的固体含量为至少80wt%的无定形SiO2微粒,且所述无定形SiO2微粒具有一由较大无定形SiO2微粒和较小无定形SiO2微粒形成的双模态粒径分布,所述分散介质为水,其电阻为≥18兆欧·厘米,所述的较大无定形SiO2微粒呈圆形且是致密形态的。
2、如权利要求1所述的分散液,其特征在于,所述的较大无定形SiO2微粒的粒径分布值d50为1至200微米。
3、如权利要求2所述的分散液,其特征在于,所述的较大无定形SiO2微粒的BET表面积为0.001平方米/克至50平方米/克。
4、如权利要求1或2所述的分散液,其特征在于,所述的较小无定形SiO2微粒的含量为0.1至50wt%。
5、如权利要求1或2所述的分散液,其特征在于,所述的无定形SiO2微粒的比密度为1.0至2.2克/立方厘米。
6、如权利要求1或2所述的分散液,其特征在于,所述的无定形SiO2微粒表面上具有≤3个OH基/平方纳米。
7、如权利要求1或2所述的分散液,其特征在于,所述的较大无定形SiO2微粒是后-烧结石英或无定形的烧结或致密SiO2
8、如权利要求1或2所述的分散液,其特征在于,所述的SiO2微粒具有的外来原子含量≤300ppmw。
9、一种制造如权利要求1所述的分散液的方法,其特征在于,将呈圆形的、致密的无定形SiO2微粒掺入初进料的分散介质内。
10、一种制造固体含量高、多孔性及无定形SiO2型材的方法,其包括下列步骤:
1)制造权利要求1的SiO2微粒分散液,
2)将该分散液送入模具内,
3)分散液固化后将型材取出,
4)将该型材烘干,
其特征在于,在制造SiO2微粒分散液时,所述分散液中固体含量为至少80wt%的SiO2,并且,所述分散介质为水,其电阻为≥18兆欧姆*厘米。
11、一种根据权利要求101所述方法制得的无定形的、接近成品尺寸的、开孔的SiO2型材。
12、根据权利要求11所述的无定形的、接近成品尺寸的、开孔的SiO2型材,其特征在于,其弯曲强度为0.1牛顿/平方毫米至20牛顿/平方毫米的。
CNB00812728XA 1999-09-09 2000-09-07 高固体含量的SiO2分散液、其制造方法及用途 Expired - Fee Related CN1221471C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19943103A DE19943103A1 (de) 1999-09-09 1999-09-09 Hochgefüllte SiO2-Dispersion, Verfahren zu ihrer Herstellung und Verwendung
DE19943103.5 1999-09-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNA2005100992830A Division CN1736861A (zh) 1999-09-09 2000-09-07 高固体含量的SiO2分散液、其制造方法及用途

Publications (2)

Publication Number Publication Date
CN1373737A CN1373737A (zh) 2002-10-09
CN1221471C true CN1221471C (zh) 2005-10-05

Family

ID=7921359

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB00812728XA Expired - Fee Related CN1221471C (zh) 1999-09-09 2000-09-07 高固体含量的SiO2分散液、其制造方法及用途
CNA2005100992830A Pending CN1736861A (zh) 1999-09-09 2000-09-07 高固体含量的SiO2分散液、其制造方法及用途

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNA2005100992830A Pending CN1736861A (zh) 1999-09-09 2000-09-07 高固体含量的SiO2分散液、其制造方法及用途

Country Status (12)

Country Link
US (1) US6699808B1 (zh)
EP (2) EP1506947A3 (zh)
JP (1) JP2003508334A (zh)
KR (1) KR100517814B1 (zh)
CN (2) CN1221471C (zh)
AT (1) ATE295335T1 (zh)
CA (1) CA2384288A1 (zh)
DE (2) DE19943103A1 (zh)
DK (1) DK1210294T3 (zh)
ES (1) ES2240171T3 (zh)
PT (1) PT1210294E (zh)
WO (1) WO2001017902A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109720016A (zh) * 2017-05-24 2019-05-07 中国建筑材料科学研究总院有限公司 发动机用抗振动隔热层及其制备方法

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6679945B2 (en) * 2000-08-21 2004-01-20 Degussa Ag Pyrogenically prepared silicon dioxide
DE10044163A1 (de) * 2000-09-07 2002-04-04 Wacker Chemie Gmbh Elektrophoretisch nachverdichtete SiO2-Formkörper, Verfahren zu ihrer Herstellung und Verwendung
DE10114484C2 (de) * 2001-03-24 2003-10-16 Heraeus Quarzglas Verfahren für die Herstellung eines Komposit-Werkstoffs mit einem SiO¶2¶-Gehalt von mindestens 99 Gew.-%, und Verwendung des nach dem Verfahren erhaltenen Komposit-Werkstoffs
DE10131494A1 (de) * 2001-07-02 2003-05-28 Nanogate Technologies Gmbh Partikuläre Beschichtung
DE10156137B4 (de) * 2001-11-15 2004-08-19 Wacker-Chemie Gmbh Verfahren zur Herstellung eines Kieselglastiegels mit kristallinen Bereichen aus einem porösen Kieselglasgrünkörper
DE10158521B4 (de) * 2001-11-29 2005-06-02 Wacker-Chemie Gmbh In Teilbereichen oder vollständig verglaster SiO2-Formkörper und Verfahren zu seiner Herstellung
WO2003072525A1 (de) * 2002-02-28 2003-09-04 Siemens Aktiengesellschaft Keramische massen mit hohem feststoffanteil zur herstellung keramischer werkstoffe und produkte mit geringem schwund
DE10211958A1 (de) 2002-03-18 2003-10-16 Wacker Chemie Gmbh Hochreines Silica-Pulver, Verfahren und Vorrichtung zu seiner Herstellung
DE10221498A1 (de) * 2002-05-14 2003-12-04 Basf Ag Kondensatoren hoher Energiedichte
DE10243954B3 (de) * 2002-09-20 2004-07-08 Heraeus Quarzglas Gmbh & Co. Kg Verfahren für die Herstellung eines opaken Quarzglas-Kompositwerkstoffs sowie Verwendung desselben
KR100688300B1 (ko) * 2002-11-22 2007-03-02 닛폰 에어로실 가부시키가이샤 고농도 실리카 슬러리
DE10256267A1 (de) * 2002-12-03 2004-06-24 Degussa Ag Dispersion, Streichfarbe und Aufnahmemedium
DE10260320B4 (de) * 2002-12-20 2006-03-30 Wacker Chemie Ag Verglaster SiO2-Formkörper, Verfahren zu seiner Herstellung und Vorrichtung
DE10319300B4 (de) * 2003-04-29 2006-03-30 Wacker Chemie Ag Verfahren zur Herstellung eines Formkörpers aus Kieselglas
JP2005053728A (ja) * 2003-08-01 2005-03-03 Dsl Japan Co Ltd 高吸油性および高い構造性を有する非晶質シリカ粒子
FR2858611B1 (fr) * 2003-08-07 2006-11-24 Saint Gobain Ct Recherches Procede de fabrication d'une piece en silice amorphe frittee, moule et barbotine mis en oeuvre dans ce procede
DE10339676A1 (de) * 2003-08-28 2005-03-24 Wacker-Chemie Gmbh SiO2-Formkörper, Verfahren zu ihrer Herstellung und Verwendung
JP2005097103A (ja) * 2003-09-22 2005-04-14 Heraeus Quarzglas Gmbh & Co Kg 複合材料からキャスティングを製造する方法とセラミックもしくはガラス質の複合材料のキャスティング
DE10358065A1 (de) * 2003-12-11 2005-07-28 Wacker-Chemie Gmbh Vorrichtung zur Herstellung von Fused Silica
DE10360464A1 (de) * 2003-12-22 2005-07-14 Wacker-Chemie Gmbh Dispersion die mindestens 2 Arten von Partikeln enthält
EP2213620B1 (en) * 2004-05-04 2017-01-25 Cabot Corporation Aqueous dispersion of aggregate silica particles
DE102004030093A1 (de) * 2004-06-22 2006-01-12 Degussa Ag Metalloxid-Sol, damit hergestellte Schicht und Formkörper
DE102004036602A1 (de) * 2004-07-28 2006-03-23 Degussa Ag Hochgefüllte, wässerige Metalloxid-Dispersion
KR100843057B1 (ko) 2004-07-28 2008-07-01 에보니크 데구사 게엠베하 고도로 충전된 수성 금속 산화물 분산액
US20060141486A1 (en) * 2004-12-29 2006-06-29 Coonan Everett W Porous substrates and arrays comprising the same
AT504168B1 (de) * 2006-09-14 2008-08-15 Montanuniv Leoben Verfahren zur herstellung eines insbesondere porösen keramischen formkörpers und damit hergestellter formkörper
DE102006046619A1 (de) * 2006-09-29 2008-04-03 Heraeus Quarzglas Gmbh & Co. Kg Streichfähiger SiO2-Schlicker für die Herstellung von Quarzglas, Verfahren zur Herstellung von Quarzglas unter Einsatz des Schlickers
DE102006052512A1 (de) * 2006-11-06 2008-05-08 Heraeus Quarzglas Gmbh & Co. Kg Verfahren zur Herstellung von opakem Quarzglas, nach dem Verfahren erhaltenes Halbzeug sowie daraus hergestelltes Bauteil
DE102006058799A1 (de) * 2006-12-13 2008-06-19 Wacker Chemie Ag Verfahren zur Herstellung von stabilen Binder-freien hochreinen Formkörpern aus Metalloxiden und deren Anwendung
DE102006058800A1 (de) * 2006-12-13 2008-06-19 Wacker Chemie Ag Verfahren zur Herstellung von Katalysatoren und deren Verwendung für die Gasphasenoxidation von Olefinen
DE102006058813A1 (de) * 2006-12-13 2008-06-19 Wacker Chemie Ag Verfahren zur Herstellung von stabilen, hochreinen Formkörpern aus pyrogenen Metalloxiden ohne Zusatz von Bindemitteln
DE102008008219A1 (de) * 2008-02-08 2009-10-01 EMPA Eidgenössische Materialprüfungs-und Forschungsanstalt Biokompatibles Bauteil und Verfahren zu dessen Herstellung
JP2010100460A (ja) * 2008-10-22 2010-05-06 Olympus Corp 光学素子の製造方法
JP5426224B2 (ja) * 2009-04-20 2014-02-26 タテホ化学工業株式会社 寸法精度に優れたセラミック焼結体及びその製造方法
DE102009049032B3 (de) * 2009-10-10 2011-03-24 Heraeus Quarzglas Gmbh & Co. Kg Verfahren zur Herstellung eines beschichteten Bauteils aus Quarzglas
WO2011046910A2 (en) 2009-10-14 2011-04-21 Arizona Board Of Regents For And On Behalf Of Arizona State University Fabricating porous materials using thixotropic gels
US9242900B2 (en) 2009-12-01 2016-01-26 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Porous geopolymer materials
GB201006821D0 (en) 2010-04-23 2010-06-09 Element Six Production Pty Ltd Polycrystalline superhard material
US9365691B2 (en) 2010-08-06 2016-06-14 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Fabricating porous materials using intrepenetrating inorganic-organic composite gels
DE102011004744A1 (de) * 2011-02-25 2012-08-30 Wacker Chemie Ag Vorrichtung und Verfahren zur Bestimmung einer Gaskonzentration in einem strömenden Gasgemisch
WO2012113670A1 (de) * 2011-02-25 2012-08-30 Evonik Degussa Gmbh VERFAHREN ZUR HERSTELLUNG VON SiO2-FORMKÖRPERN
KR102060844B1 (ko) 2011-09-21 2019-12-30 아리조나 보드 오브 리전트스, 아리조나주의 아리조나 주립대 대행법인 지오폴리머 수지 재료, 지오폴리머 재료, 및 그에 의해 제조된 재료
DE102011120932A1 (de) 2011-12-14 2013-06-20 Heraeus Quarzglas Gmbh & Co. Kg Verfahren für die Herstellung eines Quarzglasbauteils miteiner transparenten Oberflächenschicht
US10370304B2 (en) 2012-11-29 2019-08-06 Corning Incorporated Fused silica based cellular structures
US10170759B2 (en) 2013-06-21 2019-01-01 Arizona Board Of Regents On Behalf Of Arizona State University Metal oxides from acidic solutions
US9957431B2 (en) * 2013-11-11 2018-05-01 Heraeus Quarzglas Gmbh & Co. Kg Composite material, heat-absorbing component, and method for producing the composite material
US10926241B2 (en) 2014-06-12 2021-02-23 Arizona Board Of Regents On Behalf Of Arizona State University Carbon dioxide adsorbents
EP2982780B1 (de) 2014-08-04 2019-12-11 Heraeus Quarzglas GmbH & Co. KG Verfahren zur herstellung eines siliziumblocks, zur verfahrensdurchführung geeignete kokille aus quarzglas oder quarzgut sowie verfahren für deren herstellung
DE102015216505A1 (de) 2015-08-28 2017-03-02 Wacker Chemie Ag Silica Formkörper mit geringer thermischer Leitfähigkeit
KR101774334B1 (ko) * 2015-12-30 2017-09-04 서울벤처대학원대학교 산학협력단 다공성 복합 세라믹스의 제조방법 및 이에 의해 제조된 다공성 복합 세라믹스
US10562804B2 (en) 2016-03-18 2020-02-18 Corning Incorporated Burner design for particle generation
DE102016012003A1 (de) 2016-10-06 2018-04-12 Karlsruher Institut für Technologie Zusammensetzung und Verfahren zur Herstellung eines Formkörpers aus hochreinem, transparentem Quarzglas mittels additiver Fertigung
JP6878829B2 (ja) * 2016-10-26 2021-06-02 東ソー株式会社 シリカ粉末及び高流動性シリカ造粒粉末並びにその製造方法
US11111172B2 (en) * 2016-11-30 2021-09-07 Corning Incorporated Basic additives for silica soot compacts and methods for forming optical quality glass
EP3339256A1 (de) * 2016-12-23 2018-06-27 Heraeus Quarzglas GmbH & Co. KG Verfahren zur herstellung von opakem quarzglas, und rohling aus dem opaken quarzglas
US10829382B2 (en) 2017-01-20 2020-11-10 Skysong Innovations Aluminosilicate nanorods
JP7352769B2 (ja) * 2018-10-05 2023-09-29 パナソニックIpマネジメント株式会社 断熱材とその製造方法とそれを用いた電子機器と自動車
JP7157932B2 (ja) * 2019-01-11 2022-10-21 株式会社Sumco シリカガラスルツボの製造装置および製造方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239049B1 (zh) * 1970-04-30 1977-10-03
CA965590A (en) 1971-04-19 1975-04-08 Walter W. Combs Full density silica glass and process and apparatus for making same
GB1428788A (en) 1973-09-18 1976-03-17 Rolls Royce Method of producing a refractory article
GB1466801A (en) 1974-11-20 1977-03-09 Rolls Royce Method of manufacturing a refractory material containing fused silica and crystalline phase silica
SE404412B (sv) * 1975-09-18 1978-10-02 Volvo Ab Slitagevarnare vid en servomanovrerad lamellkoppling
US4033780A (en) 1976-04-26 1977-07-05 Corning Glass Works Method of enhancing the refractoriness of high purity fused silica
US4047966A (en) 1976-04-26 1977-09-13 Corning Glass Works Method of enhancing the refractoriness of high purity fused silica
US4162179A (en) * 1976-12-08 1979-07-24 Campana Patsie C Refractory article and method of making the same
JPS60239337A (ja) 1984-05-15 1985-11-28 Sumitomo Electric Ind Ltd 光フアイバ−用ガラス母材の製造法
GB8427915D0 (en) 1984-11-05 1984-12-12 Tsl Thermal Syndicate Plc Vitreous silica products
US5389582A (en) 1985-11-06 1995-02-14 Loxley; Ted A. Cristobalite reinforcement of quartz glass
US5053359A (en) 1989-03-24 1991-10-01 Pyromatics, Inc. Cristobalite reinforcement of high silica glass
DE3739907A1 (de) * 1987-11-25 1989-06-08 Philips Patentverwaltung Verfahren zur herstellung von glaskoerpern
DE3741393A1 (de) * 1987-12-07 1989-06-15 Siemens Ag Verfahren zum herstellen von aus hochreinem sio(pfeil abwaerts)2(pfeil abwaerts) bestehenden formkoerpern
US4929579A (en) 1988-06-29 1990-05-29 Premier Refractories & Chemicals Inc. Method of manufacturing cast fused silica articles
US5096865A (en) * 1990-02-13 1992-03-17 Ferro Corporation High density fused silica process and product
CA2049898C (en) 1990-08-27 1996-06-25 Tsuguo Satoh Method for manufacturing a silica glass base material
JPH05294610A (ja) 1992-04-16 1993-11-09 Tokuyama Soda Co Ltd 非晶質シリカ成形体の製造方法
FR2691456B1 (fr) * 1992-05-22 1994-08-19 Produits Refractaires Nouveau procédé de production d'un matériau réfractaire en silice vitreuse frittée, nouveau mélange de grains et particules de silice vitreuse, et nouveau matériau en silice vitreuse frittée.
DE4338807C1 (de) * 1993-11-12 1995-01-26 Heraeus Quarzglas Formkörper mit hohem Gehalt an Siliziumdioxid und Verfahren zur Herstellung solcher Formkörper
IT1270628B (it) 1994-10-06 1997-05-07 Enichem Spa Manufatti in ossido di silicio e/o altri ossidi metallici misti e procedimento per la loro preparazione in dimensioni finali o quasi finali
US5655046A (en) 1994-12-14 1997-08-05 Nippon Telegraph And Telephone Corporation Glass composition, optical fiber made of same, and method for preparing glasses
WO1996035651A1 (en) * 1995-05-10 1996-11-14 Saint-Gobain Industrial Ceramics, Inc. High solids silicon nitride slurries
US5980629A (en) 1995-06-14 1999-11-09 Memc Electronic Materials, Inc. Methods for improving zero dislocation yield of single crystals
US5578101A (en) 1995-09-01 1996-11-26 Lucent Technologies Inc. Method of making a sol-gel glass body and removing same from mold
JP3764776B2 (ja) 1996-03-18 2006-04-12 信越石英株式会社 単結晶引き上げ用石英ガラスるつぼ及びその製造方法
FR2766170B1 (fr) 1997-07-17 1999-09-24 Alsthom Cge Alcatel Procede ameliore de fabrication d'une poudre de silice
KR100230457B1 (ko) 1997-10-02 1999-11-15 윤종용 실리카 글래스 조성물 및 이를 이용한 실리카 글래스 제조방법
DE19750238A1 (de) * 1997-11-13 1999-05-27 Degussa Preßlinge auf Basis von pyrogen hergestelltem Siliciumdioxid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109720016A (zh) * 2017-05-24 2019-05-07 中国建筑材料科学研究总院有限公司 发动机用抗振动隔热层及其制备方法
CN109720016B (zh) * 2017-05-24 2020-10-13 中国建筑材料科学研究总院有限公司 发动机用抗振动隔热层及其制备方法

Also Published As

Publication number Publication date
ES2240171T3 (es) 2005-10-16
WO2001017902A1 (de) 2001-03-15
EP1506947A2 (de) 2005-02-16
JP2003508334A (ja) 2003-03-04
DK1210294T3 (da) 2005-08-15
PT1210294E (pt) 2005-08-31
CN1373737A (zh) 2002-10-09
DE19943103A1 (de) 2001-03-15
ATE295335T1 (de) 2005-05-15
US6699808B1 (en) 2004-03-02
CN1736861A (zh) 2006-02-22
EP1210294B1 (de) 2005-05-11
KR100517814B1 (ko) 2005-09-29
DE50010303D1 (de) 2005-06-16
CA2384288A1 (en) 2001-03-15
EP1506947A3 (en) 2005-03-02
KR20020048402A (ko) 2002-06-22
EP1210294A1 (de) 2002-06-05

Similar Documents

Publication Publication Date Title
CN1221471C (zh) 高固体含量的SiO2分散液、其制造方法及用途
CN1807344A (zh) 一种空心铸件陶瓷型芯及其制备方法
CN1886350A (zh) 隔热材料
CN1269765C (zh) 利用电泳进一步致密的SiO2成形体、其制造方法及用途
JPH11130417A (ja) SiO▲2▼粒状物質の製造方法
CN1845881A (zh) 烧结的无定形二氧化硅部件的制造方法,在这种方法中使用的模具和淤浆
CN104671670A (zh) 制造透明或不透明熔融二氧化硅的涂覆部件的方法
JP2008508169A (ja) 高充填の水性金属酸化物分散液
US10532953B2 (en) Precursor material for additive manufacturing of low-density, high-porosity ceramic parts and methods of producing the same
CN1269749C (zh) 制造成型二氧化硅玻璃坯体的方法
JP4417679B2 (ja) 不透明石英ガラス複合材の製造方法、前記方法による複合材、およびその利用法
JP2004131378A (ja) 不透明石英ガラス材の製造方法
JP5108803B2 (ja) シリカ容器の製造方法
JP2002145633A (ja) 石英ガラス前駆体及びその製造方法
JPH04219333A (ja) 石英ガラスの製造方法
CN1835894A (zh) SiO2成型体、其制造方法及其用途
JP5487259B2 (ja) シリカ容器
JP4484748B2 (ja) シリカガラス製品の製造方法
CN1934056A (zh) 陶瓷多孔体及成型体的制造方法
JP4504036B2 (ja) 非晶質シリカ成形体およびその製造方法
JP2015205782A (ja) シリカゲル粒子及びその製造方法
JP4286549B2 (ja) ムライトウィスカーの製造方法
JP5499118B2 (ja) シリカ容器の製造方法
JP2007277030A (ja) ヒータ用炭化ケイ素焼結体及びその製造方法
JPH05139782A (ja) 多孔質ガラス物品の製造方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee