CN1131111C - 混合金属催化剂组合物、其制备和用途 - Google Patents

混合金属催化剂组合物、其制备和用途 Download PDF

Info

Publication number
CN1131111C
CN1131111C CN00803876A CN00803876A CN1131111C CN 1131111 C CN1131111 C CN 1131111C CN 00803876 A CN00803876 A CN 00803876A CN 00803876 A CN00803876 A CN 00803876A CN 1131111 C CN1131111 C CN 1131111C
Authority
CN
China
Prior art keywords
metal
group vib
viii family
carbon monoxide
olefin polymeric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN00803876A
Other languages
English (en)
Other versions
CN1339985A (zh
Inventor
S·艾杰斯博茨
B·G·奥格恩
H·W·霍曼弗里
M·B·瑟弗恩泰恩
K·L·赖利
S·L·索莱德
S·米瑟奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Albemarle Netherlands BV
Original Assignee
Akzo Nobel NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akzo Nobel NV filed Critical Akzo Nobel NV
Publication of CN1339985A publication Critical patent/CN1339985A/zh
Application granted granted Critical
Publication of CN1131111C publication Critical patent/CN1131111C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/392Metal surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/04Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing nickel, cobalt, chromium, molybdenum, or tungsten metals, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明涉及一种制备包括含有至少一种VIII族非贵金属和至少两种VIB族金属的本体催化剂颗粒的金属催化剂组合物的方法,该方法包括,将至少一种VIII族非贵金属成分和至少两种VIB族金属成分在质子液体的存在下进行混合并反应,其中至少一种金属成分在整个工艺过程中至少部分地保持固态。本发明还涉及一种可通过所述方法得到的催化剂组合物及其在加氢处理场合中的应用。

Description

混合金属催化剂组合物、其制备和用途
本发明的领域
本发明涉及一种制备包括含有至少一种VIII族非贵金属和至少两种VIB族金属的本体催化剂颗粒的混合金属催化剂组合物的方法、可通过所述方法得到的催化剂组合物、以及所述组合物作为催化剂在加氢处理场合中的应用。
本发明的背景
在烃原料的加氢处理中,原料在氢气的存在下加氢处理和/或加氢裂化。加氢处理包括其中将烃进料与氢气在高温高压下进行反应的所有工艺,包括氢化、加氢脱硫、加氢脱氮、加氢脱金属、加氢脱芳构化、加氢异构化、加氢脱蜡、加氢裂化和在轻度压力条件下的加氢裂化之类的工艺,后者常称作轻度加氢裂化。
一般来说,加氢处理催化剂由载体与沉积在其上的VIB族金属成分和VIII族非贵金属成分组成。一般来说,这些催化剂通过用所述金属的化合物的水溶液浸渍载体,然后利用一个或多个干燥和煅烧步骤而制成。这种催化剂制备方法描述于例如美国专利2873257和EP0469675。
制备上述催化剂的另一技术描述于美国专利4113605,其中例如将碳酸镍与例如MoO3反应形成结晶钼酸镍,随后与矾土混合并挤出。
类似方法描述于DE3029266,其中将碳酸镍与WO3进行混合,然后将所得组合物与浸渍有例如硝酸镍和钨酸铵的矾土进行混合。
由于载体本身没有或具有很少的催化活性,所以上述含载体的催化剂在加氢处理时的活性相当温和。因此,本发明的一个目的是提供一种可在没有载体的情况下使用的催化剂。这种无载体的催化剂一般称作本体催化剂。
本体催化剂的制备例如得知于GB836936和EP0014218。EP0014218的催化剂例如通过将碳酸钾、二铬酸钾、氧化钒、氧化铁、硅酸盐水泥、甲基纤维素和石墨的含水淤浆进行喷雾干燥而制成。
可以看出,上述催化剂包含一种VIII族非贵金属和一种VIB族金属。这些催化剂在加氢处理时仅具有温和的活性。因此,本发明的一个目的是提供具有增强催化活性的催化剂。
最新进展是包含一种VIII族非贵金属和两种VIB族金属的催化剂的应用。
这种催化剂例如公开于JP09000929、美国专利4596785、美国专利4820677、美国专利3678124、美国专利4153578和未出版的国际专利申请WO9903578。
JP09000929的催化剂是一种含载体的催化剂,通过用作为VIII族非贵金属的钴或镍以及作为VIB族金属的钼和钨浸渍无机载体而制成。
美国专利4596785的催化剂包含至少一种VIII族非贵金属和至少一种VIB族金属的二硫化物。美国专利4820677的催化剂是一种无定形硫化物,包含铁作为VIII族非贵金属和选自钼、钨或其混合物的金属作为VIB族金属、以及多齿配体如乙二胺。在这两个参考文件中,催化剂利用一种VIII族非贵金属和两种VIB族金属的水溶性源在硫化物存在下共沉淀而制成。将沉淀物分离、干燥并煅烧。所有工艺步骤必须在惰性气氛下进行,这意味着需要复杂的技术来进行该工艺。另外,由于这种共沉淀技术,出现大量废水。
因此,本发明的另一目的是提供一种技术上简单而稳定且在制备催化剂时无需在惰性气氛下进行任何处理且其中可避免大量废水的方法。
美国专利3678124公开了用于链烷烃氧化脱氢的氧化态本体催化剂。这些催化剂通过相应金属的水溶性成分的共沉淀而制成。同样,共沉淀技术导致大量的废水。
美国专利4153578的催化剂是一种用于丁炔二醇的氢化的Raney镍催化剂。该催化剂通过在水的存在下将视需要包含例如钨的Raney镍与钼成分接触而制成。通过在室温下搅拌所得悬浮液,将钼吸附到Reney镍上。
最后,在未出版的国际专利申请WO9903578中,催化剂通过在没有硫化物的情况下共沉淀一定量的镍、钼、和钨源而制成。
本发明的综述
现已发现,上述目的可通过这样的方法而满足,该方法包括,将至少一种VIII族非贵金属成分和至少两种VIB族金属成分在质子液体的存在下进行混合并反应,其中至少一种金属成分在整个工艺过程中至少部分地保持固态。
本发明的另一方面是一种新型催化剂组合物。
本发明的再一方面是上述组合物用于加氢处理烃原料的应用。
本发明的详细描述
本发明的工艺
(A)本体催化剂颗粒的制备
本发明涉及一种制备包括含有至少一种VIII族非贵金属和至少两种VIB族金属的本体催化剂颗粒的催化剂组合物的方法,该方法包括,将至少一种VIII族非贵金属成分和至少两种VIB族金属成分在质子液体的存在下进行混合并反应,其中至少一种金属成分在整个工艺过程中至少部分地保持固态。
因此对本发明方法重要的是,至少一种金属成分在本发明的整个工艺过程中至少部分地保持固态。该工艺包括将金属成分进行混合并反应。更尤其是,它包括,相互加入金属成分并同时和/或随后将它们进行反应。因此对本发明重要的是,至少一种金属成分至少部分地以固态加入,而且该金属成分在整个反应过程中至少部分地保持固态。本文中的术语“至少部分地为固态”是指,至少部分的金属成分作为固体金属成分而存在,且视需要,另一部分的金属成分作为该金属成分在质子液体中的溶液而存在。其典型例子是金属成分在质子液体中的悬浮液,其中该金属至少部分地作为固体存在,且视需要部分溶解在质子液体中。
可以首先制备出金属成分在质子液体中的悬浮液,然后同时或相继加入包含溶解和/或悬浮在质子液体中的金属成分的溶液和/或其它悬浮液。也可首先将溶液同时或相继混合,然后同时或相继加入其它悬浮液和视需要选择的溶液。
在所有这些情况下,包含金属成分的悬浮液通过将固体金属成分悬浮在质子液体中而制成。
但也可通过将一种或多种金属成分进行(共)沉淀来制备悬浮液。所得悬浮液可按原样用于本发明工艺,即,可将处于溶液中、处于淤浆中的其它金属成分或自身加入所得悬浮液中。所得悬浮液也可在固液分离之后和/或在视需要干燥之后和/或在视需要热处理之后和/或在视需要在质子液体中润湿或再制浆之后使用。
除了金属成分的悬浮液,可以使用处于润湿或干燥态的金属成分。
必须注意,上述工艺的选择仅是用于说明向反应混合物中加入金属成分的某些例子。一般来说,所有的加料顺序都是可能的。优选地,将所有的VIII族非贵金属成分同时混合并将所有的VIB族金属成分同时混合,然后将所得两种混合物进行混合。
只要至少一种金属成分在本发明工艺过程中至少部分地为固态,至少部分为固态的金属成分的数目并不重要。即,要在本发明工艺中混合的所有金属成分可在使用时至少部分为固态。另外,至少部分为固态的金属成分可与处于溶质态的金属成分进行混合。例如,将金属成分之一至少部分以固态加入,并将至少两种、优选两种金属成分以溶质态加入。在另一实施方案中,两种金属成分至少部分以固态加入,并将至少一种、优选一种金属成分以溶质态加入。
金属成分以“溶质态”加入是指,整个量的该金属成分作为该金属成分在质子液体中的溶液而加入。
不愿局限于任何理论,申请人相信,在本发明的工艺过程中加入的金属成分至少部分地相互作用:质子液体用于输送溶解的金属成分。由于这种输送,金属成分相互接触并可反应。据信,即使在所有金属成分基本上完全处于固态时,该反应也可能发生。由于存在质子液体,所以少部分的金属成分可能仍然溶解并因此按照上述进行反应。因此认为,质子液体在本发明工艺过程中的存在是重要的。
该反应可通过常规的技术,如IR光谱或拉曼光谱来监控。该反应在这种情况下由信号变化来表示。在某些情况下,也可通过调节反应混合物的pH值来监控反应。这时的反应由pH值变化来表示。另外,反应的完成程度可通过X-射线衍射来监控。这更详细地描述于标题“本发明的催化剂组合物”中。
显然,首先制备出一种包含制备某种催化剂组合物所需的所有金属成分的溶液并随后将这些成分进行共沉淀是不适宜的。本发明工艺也不适合将金属成分至少部分以固态加入并选择工艺条件,如温度、pH值或质子液体的量,使得所有加入的金属成分至少在某些阶段完全处于溶质态。相反,正如以上所指出,至少部分以固态加入的至少一种金属成分必须在整个反应过程中至少部分地保持固态。
优选在本发明工艺过程中,以固态加入基于所有VIB族和VIII族非贵金属成分的总重的至少1%重量,甚至更优选至少10%重量,进一步优选至少15%重量的金属成分,以金属氧化物计算。如果需要得到高产率,即大量的最终催化剂组合物,在本发明工艺过程中使用大量保持固态的金属成分可能是优选方法。在该情况下,低量的金属成分保持溶解在母液中,而在随后固液分离过程中最终存在于废水中的金属成分的量下降。如果将来自固液分离的母液在本发明工艺中进行再循环,可以完全避免任何的金属成分损失。可以看出,这是本发明工艺与基于共沉淀工艺的催化剂制备方法相比的一个特殊优点,可以明显降低废水的量。
根据金属成分的反应性,优选基于所有金属成分总重的至少0.01%重量,更优选至少0.05%重量,最优选至少0.1%重量的起始用于本发明工艺的所有金属成分作为溶液加入,以金属氧化物计算。这样可保证金属成分的适当接触。如果要加入的特定金属成分的反应性低,建议以溶液形式加入大量的这种金属成分。
用于本发明工艺的质子液体可以是任何的质子液体。其例子为水、羧酸、和醇如甲醇、乙醇或其混合物。优选地,包含水的液体,如醇与水的混合物,更优选水可用作本发明工艺中的质子液体。也可在本发明工艺中同时使用不同的质子液体。例如,可以将金属成分在乙醇中的悬浮液加入另一金属成分的水溶液中。在某些情况下,可以使用溶解在其自身结晶水中的金属成分。该结晶水用作此时的质子液体。当然,质子液体必须选择不影响反应。
将至少一种VIII族非贵金属成分和至少两种VIB族金属成分应用于本发明的工艺。合适的VIB族金属包括铬、钼、钨或其混合物,最优选钼与钨的组合。合适的VIII族非贵金属包括铁、钴、镍或其混合物,优选钴和/或镍。优选用于本发明工艺的金属成分组合包含镍、钼和钨,或镍、钴、钼和钨,或钴、钼和钨。
优选的是,镍和钴占VIII族非贵金属成分总量的至少50%重量,以氧化物计算,更优选至少70%重量,更加优选至少90%重量。VIII族非贵金属成分可特别优选基本上由镍和/或钴组成。
优选的是,钼和钨占VIB族金属成分总量的至少50%重量,以三氧化物计算,更优选至少70%重量,更加优选至少90%重量。VIB族金属成分可特别优选基本上由钼和钨组成。
用于本发明工艺的VIB族与VIII族非贵金属的摩尔比一般为10∶1至1∶10,优选3∶1至1∶3。不同的VIB族金属相互间的摩尔比一般并不重要。如果使用一种以上的VIII族非贵金属,这同样适用。如果使用钼和钨作为VIB族金属,钼∶钨的摩尔比优选为9∶1至1∶19,更优选3∶1至1∶9,最优选3∶1至1∶6。
如果质子液体是水,在本发明工艺过程中至少部分为固态的VIII族非贵金属成分和VIB族金属成分的溶解度通常低于0.05摩尔/(18℃下的100毫升水)。
如果质子液体是水,在本发明工艺过程中至少部分为固态的合适的VIII族非贵金属成分包括在水中具有低溶解度的VIII族非贵金属成分,如柠檬酸盐、草酸盐、碳酸盐、碱式碳酸盐、氢氧化物、磷酸盐、磷化物、硫化物、铝酸盐、钼酸盐、钨酸盐、氧化物或其混合物。优选地,在本发明工艺过程中至少部分为固态的合适的VIII族非贵金属成分包含且更优选基本上由草酸盐、碳酸盐、碱式碳酸盐、氢氧化物、磷酸盐、钼酸盐、钨酸盐、氧化物或其混合物组成,最优选碱式碳酸盐和碳酸盐。一般来说,碱式碳酸盐中的羟基和碳酸根基团的摩尔比为0-4,优选0-2,更优选0-1,最优选0.1-0.8。最优选,在本发明工艺过程中至少部分为固态的VIII族非贵金属成分是VIII族非贵金属盐。
如果质子液体是水,在本发明工艺过程中至少部分为固态的合适的镍和钴成分包含水不溶性镍或钴成分,如镍和/或钴的草酸盐、柠檬酸盐、铝酸盐、碳酸盐、碱式碳酸盐、氢氧化物、钼酸盐、磷酸盐、磷化物、硫化物、钨酸盐、氧化物或其混合物。优选地,镍或钴成分包含且更优选基本上由镍和/或钴的草酸盐、柠檬酸盐、碳酸盐、碱式碳酸盐、氢氧化物、钼酸盐、磷酸盐、钨酸盐、氧化物或其混合物,其中最优选镍和/或钴的碱式碳酸盐、镍和/或钴的氢氧化物、镍和/或钴的碳酸盐、或其混合物。一般来说,在镍或钴或镍-钴碱式碳酸盐中的羟基和碳酸根基团的摩尔比为0-4,优选0-2,更优选0-1,最优选0.1-0.8。至少部分为固态的合适的铁成分是柠檬酸铁(II),铁的碳酸盐、碱式碳酸盐、氢氧化物、磷酸盐、磷化物、硫化物、氧化物、或其混合物,其中优选柠檬酸铁(II),铁的碳酸盐、碱式碳酸盐、氢氧化物、磷酸盐、磷化物、氧化物、或其混合物。
如果质子液体是水,在接触过程中至少部分为固态的合适的VIB族金属成分包括在水中具有低溶解度的VIB族金属成分,如二-和三氧化物、碳化物、氮化物、铝盐、酸、硫化物、或其混合物。在接触过程中至少部分为固态的优选的VIB族金属成分包含并优选基本上由二-和三氧化物、酸、或其混合物组成。
在本发明工艺过程中至少部分为固态的合适的钼成分包含水不溶性钼成分,如钼的二-和三氧化物、硫化钼、碳化钼、氮化钼、钼酸铝、钼酸(如,H2MoO4)、磷钼酸铵、或其混合物,其中优选钼酸和钼的二-和三氧化物。
最后,在本发明工艺过程中至少部分为固态的合适的钨化合物包括水不溶性钨化合物,例如钨的二-和三氧化物、硫化钨(WS2和WS3)、碳化钨、原钨酸(H2WO4*H2O)、氮化钨、钨酸铝(也可以是偏-或多钨酸盐)、磷钨酸铝,或其混合物,其中原钨酸以及钨的二-和三氧化物是优选的。
所有上述成分一般可购得或可通过例如沉淀而制成。例如,碱式碳酸镍可通过加入合适量的碳酸钠而由镍的氯化物、硫酸盐或硝酸盐溶液制成。本领域熟练技术人员一般知道选择沉淀条件以得到所需的形态和结构。
一般来说,除金属之外主要包含C、O和/或H的金属成分是优选的,因为它们对环境不太有害。VIII族非贵金属碳酸盐和碱式碳酸盐是至少部分以固态加入的优选金属成分,因为如果使用碳酸盐或碱式碳酸盐,释放CO2并对反应混合物的pH值产生正面影响。另外,因为碳酸盐转化成CO2且不会最终存在于废水中,因此废水可以再循环。另外,在这种情况下,无需通过洗涤步骤从所得本体催化剂颗粒中除去非所需的阴离子。
以溶质态加入的优选的VIII族非贵金属成分包括水溶性VIII族非贵金属盐,如硝酸盐、硫酸盐、乙酸盐、氯化物、甲酸盐、次磷酸盐及其混合物。其例子包括水溶性镍和/或钴成分,如水溶性镍和/或钴盐,如镍和/或钴的硝酸盐、硫酸盐、乙酸盐、氯化物、甲酸盐或其混合物、以及次磷酸镍。以溶质态加入的合适的铁成分包括铁的乙酸盐、氯化物、甲酸盐、硝酸盐、硫酸盐或其混合物。
以溶质态加入的合适的VIB族金属成分包括水溶性VIB族金属盐如正铵或碱金属的单钼酸盐和钨酸盐以及钼和钨的水溶性同多化合物,例如偏钨酸,或还包含如P、Si、Ni或Co的钼或钨的水溶性杂多化合物、或其混合物。合适的水溶性同多化合物和杂多化合物在 钼化 学(Molybdenum Chemicals),化学数据系列,Bulletin Cdb-14,1969年2月和 钼丝学,化学数据系列,Bulletin Cdb-12a-修正本,1969年11月。合适的水溶性铬化合物是,例如正铬酸盐、同多铬酸盐和硫酸铬铵。
金属成分的优选组合是VIII族非贵金属的碱式碳酸盐和/或碳酸盐(如镍或钴的碱式碳酸盐和/或碳酸盐)与VIB族金属氧化物和/或VIB族酸的组合,如钨酸与钼氧化物的组合、或三氧化钼和三氧化钨的组合;或VIII族非贵金属的碱式碳酸盐和/或碳酸盐(如镍或钴的碱式碳酸盐和/或碳酸盐)与VIB族金属盐(如二钼酸铵、七钼酸铵和偏钨酸铵)的组合。本领域熟练技术人员能够选择金属成分的其它合适组合。
已经发现,在本发明工艺过程中至少部分保持固态的一种或多种金属成分的形态和结构可在本发明工艺过程中保持。因此,通过使用具有某种形态和结构的金属成分颗粒,包含在最终催化剂组合物中的本体催化剂颗粒的形态和结构可至少控制至一定程度。本发明意义上的“形态和结构”是指孔体积、孔径分布、表面积、颗粒形式和粒径。包含在最终催化剂组合物中的“本体催化剂颗粒”以下在标题“本发明的催化剂组合物”中描述。
一般来说,氧化态本体催化剂颗粒的表面积占在本发明工艺过程中至少部分保持固态的金属成分的表面积的至少60%,优选至少70%,更优选至少80%。这时的表面积表示为单位重量该金属成分的表面积,以金属氧化物计算。此外,氧化态本体催化剂颗粒的中值孔径(按照氮气吸附法测定)一般为在本发明工艺过程中至少部分保持固态的金属成分的中值孔径的至少40%,优选至少50%。另外,氧化态本体催化剂颗粒中的孔体积(按照氮气吸附法测定)一般为在本发明工艺过程中至少部分保持固态的金属成分的孔体积的至少40%,优选至少50%,其中孔体积表示为单位重量该金属成分的孔体积,以金属氧化物计算。
粒径的保持性一般取决于在加工过程中,尤其是在混合或捏合之类的步骤中氧化态本体催化剂颗粒所经受的机械损害的程度。如果这些处理时间短且温和,粒径可保持至较高程度。在这种情况下,氧化态本体催化剂颗粒的中值粒径占在本发明工艺过程中至少部分保持固态的金属成分的中值粒径的至少80%,优选至少90%。粒径也可通过喷雾干燥之类的处理来进行,尤其是在存在其它物质时。本领域熟练技术人员能够选择合适的条件以控制这些处理过程中的粒径分布。
如果选择至少部分以固态加入且中值粒径大的金属成分,可以认为,其它金属成分仅与金属成分大颗粒的外层反应。在这种情况下,得到所谓“核-壳”结构的本体催化剂颗粒。
金属成分的合适形态和结构可通过采用适当预成型的金属成分,或利用上述的沉淀或重结晶或本领域熟练技术人员已知的任何其它技术在能够得到合适形态和结构的那些条件下通过制备这些金属成分而实现。可通过常规试验来适当选择合适的沉淀条件。
为了得到具有高催化活性的最终催化剂组合物,在本发明工艺过程中至少部分为固态的一种或多种金属成分是多孔金属成分。理想的是,这些金属成分的总孔体积和孔径分布与常规加氢处理催化剂的类似。常规加氢处理催化剂的孔体积为0.05-5毫升/克,优选0.1-4毫升/克,更优选0.1-3毫升/克,最优选0.1-2毫升/克,按照汞或水孔隙法来测定。另外,常规加氢处理催化剂的表面积一般至少为10米2/克,更优选至少50米2/克,最优选至少100米2/克,按照B.E.T.法来测定。
在本发明工艺过程中至少部分为固态的一种或多种金属成分的中值粒径至少为0.5μm,优选至少1μm,最优选至少2μm,但优选不超过5000μm,更优选不超过1000μm,甚至更优选不超过500μm,最优选不超过150μm。甚至更优选,该中值粒径为1-150μm,最优选2-150μm。一般来说,金属成分的粒径越小,其反应性越高。因此,粒径低于优选下限的金属成分原则上是本发明的优选实施方案。但出于健康、安全和环境原因,这些小颗粒的处理需要特别小心。
以下描述在金属成分混合和(随后)反应步骤的过程中的优选工艺条件:
a)金属成分的混合:
在金属成分混合过程中的工艺条件并不关键。可以在室温下在自然pH值(如果采用悬浮液或溶液)下加入所有成分。一般来说,当然优选使要加入的金属成分的温度保持在反应混合物的大气压沸点之下,保证各成分在加入时容易处理。但如果需要,也可采用高于反应混合物的大气压沸点的温度或不同的pH值。如果反应步骤在较高温度下进行,要加入反应混合物中的悬浮液和视需要选择的溶液一般可预热至一个可与反应温度相等的较高温度。
如上所述,也可在已混合的金属成分相互反应的同时加入一种或多种金属成分。这时,金属成分的混合及其反应重复并构成单个的工艺步骤。
b)反应步骤:
在添加期间和/或之后,金属成分一般在某个温度下搅拌一段时间以发生反应。反应温度优选为0-300℃,更优选50-300℃,甚至更优选70-200℃,最优选70-180℃。如果温度低于反应混合物的大气压沸点,该工艺一般在大气压下进行。在该温度之上,反应一般在较高压力下,优选在高压釜和/或静态混合器中进行。
一般来说,在反应步骤过程中将该混合物保持在其自然pH值下。该pH值优选为0-12,更优选1-10,甚至更优选3-8。如上所述,必须注意,pH值和温度的选择要使得并非所有的金属在反应步骤过程中溶解。
反应时间一般为1分钟至几天,更优选1分钟至24小时,最优选5分钟至20小时。如上所述,反应时间取决于温度。
在该反应步骤之后,如果必要,可例如通过过滤从液体中分离出固体。
本发明的工艺可作为间歇工艺和作为连续工艺来进行。
如果需要,可以在上述制备本体催化剂颗粒的过程中加入选自粘结剂物质、常规加氢处理催化剂、裂化组分或其混合物的物质,或在该制备之后加入颗粒中。以下在章节(B)中具体给出这些物质。
对于该工艺实施方案,可有以下选择:VIB族和VIII族非贵金属成分一般可在金属成分混合之前或过程中与任何的上述物质接触。它们可例如同时或相继加入该物质中。另外,VIB族和VIII族非贵金属成分可如上所述进行混合,然后将一种物质加入该混合金属成分中。也可将部分的VIB族和VIII族非贵金属成分同时或相继混合,然后加入该物质,最后将剩余的VIB族和VIII族非贵金属成分同时或相继加入。例如,在本发明工艺过程中至少部分为固态的VIB族或VIII族非贵金属成分可首先进行混合,然后根据需要与该物质成型,随后,可将其它的VIB族和/或VIII族非贵金属成分加入视需要成型的混合物中。但也可将该物质与溶质态的VIB族和VIII族非贵金属成分进行混合,随后加入一种至少部分为固态的金属成分。最后,可以同时加入金属成分和该物质。
如上所述,要在制备本体催化剂颗粒的过程中加入的物质可以是粘结剂物质。按照本发明的粘结剂物质是指一种粘结剂和/或其前体。如果前体以溶液形式加入,必须注意将该粘结剂在本发明工艺过程中转化成固态。这可通过调节pH值条件而实现,这样粘结剂会发生沉淀。粘结剂沉淀的合适条件是本领域熟练技术人员已知的,因此无需进一步解释。如果所得催化剂组合物的液体量太高,可视需要进行固液分离。
另外,其它物质如含磷化合物、含硼化合物、含硅化合物、含氟化合物、其它过渡金属、稀土金属、或其混合物也可在制备本体催化剂颗粒的过程中以类似于上述物质时的方式加入。以下具体给出这些其它物质。
可以看出,与任何上述(其它)物质是否在制备颗粒的过程中加入无关,来自上述(A)中描述的工艺的颗粒在本发明中表示为“本体催化剂颗粒”。
(B)随后的工艺步骤
优选地,将原样或包含任何上述(其它)物质的本体催化剂颗粒进行一个或多个以下的工艺步骤:
(i)与选自粘结剂物质、常规加氢处理催化剂、裂化组分或其混合物的物质进行复合,
(ii)喷雾干燥、(闪蒸)干燥、研磨、捏合、淤浆混合、干混或湿混、或其组合,
(iii)成型,
(iv)干燥和/或热处理,和
(v)硫化。
以下更详细地解释这些工艺步骤:
工艺步骤(i)
该物质可以干燥态(无论是否热处理)、以润湿和/或悬浮态和/或作为溶液加入。
该物质在制备本体催化剂颗粒(参见以上)的过程中,在制备本体催化剂组合物之后但在任何步骤(ii)之前和/或在任何步骤(ii)的过程中和/或之后但在任何成型步骤(iii)之前加入。
优选地,该物质在制备本体催化剂颗粒之后和在喷雾干燥或任何其它工艺之前,或如果没有采用喷雾干燥或其它工艺,在成型之前加入。视需要,如上所述制备的本体催化剂组合物可在与该物质复合之前进行固液分离。在固液分离之后,视需要,可包括一个洗涤步骤。另外,在可有可无的固液分离和干燥步骤之后并在与该物质复合之前,可热处理该本体催化剂组合物。
在所有的上述工艺选项中,术语“将本体催化剂组合物与一种物质复合”是指,将该物质加入本体催化剂颗粒中或反之,然后将所得组合物混合。混合优选在液体的存在下进行(“湿混”)。这提高了最终催化剂组合物的机械强度。
已经发现,通过将本体催化剂颗粒与该物质复合和/或在制备本体催化剂颗粒过程中加入该物质,得到具有很高机械强度的本体催化剂组合物,尤其是当本体催化剂颗粒的中值粒径至少为0.5μm,更优选至少1μm,最优选至少2μm,但优选不超过5000μm,更优选不超过1000μm,甚至更优选不超过500μm,最优选不超过150μm时。甚至更优选,中值粒径为1-150μm,最优选2-150μm。
本体催化剂颗粒与该物质复合得到包埋在该物质中的本体催化剂颗粒或反之。通常,本体催化剂颗粒的形态基本上保持在所得催化剂组合物中。
如上所述,该物质选自粘结剂物质、常规加氢处理催化剂、裂化组分或其混合物。这些物质以下更详细描述。
所要应用的粘结剂物质是在加氢处理催化剂中常用作粘结剂的任何物质。其例子为硅石、硅石-矾土,如常规的硅石-矾土、硅石涂覆的矾土或矾土涂覆的硅石、矾土如(伪)勃姆石、或三水铝石、二氧化钛、二氧化钛涂覆的矾土、氧化锆、阳离子粘土或阴离子粘土如滑石粉、膨润土、高岭土、海泡石或水滑石、或其混合物。优选的粘结剂是硅石、硅石-矾土、矾土、二氧化钛、二氧化钛涂覆的矾土、氧化锆、膨润土、或其混合物。这些粘结剂可原样或在胶溶之后应用。
也可应用这些粘结剂的前体,它们在本发明工艺过程中转化成任何的上述粘结剂。合适的前体是,例如碱金属铝酸盐(得到矾土粘结剂)、水玻璃(得到硅石粘结剂)、碱金属铝酸盐与水玻璃的混合物(得到硅石-矾土粘结剂)、二-、三-和/或四价金属源的混合物如镁、铝和/或硅的水溶性盐的混合物(制备阳离子粘土和/或阴离子粘土)、氯化二聚水分子铝、硫酸铝、硝酸铝、氯化铝、或其混合物。
如果需要,在与本体催化剂组合物复合之前和/或在制备过程中加入之前,可以将粘结剂物质与含VIB族金属的化合物和/或含VIII族非贵金属的化合物进行复合。粘结剂物质与任何这些含金属的化合物的复合可通过用这些物质浸渍粘结剂来进行。合适的浸渍技术是本领域熟练技术人员已知的。如果将粘结剂胶溶,也可在含VIB族金属和/或VIII族非贵金属的化合物的存在下进行胶溶。
如果使用矾土作为粘结剂,矾土的表面积一般为50-600米2/克,优选100-450米2/克,按照B.E.T.法来测定。矾土的孔体积优选为0.1-1.5毫升/克,按照氮吸附法来测定。在表征矾土之前,将它在600℃下热处理1小时。
一般来说,比起本体催化剂组合物,要在本发明工艺中加入的粘结剂物质具有较低的催化活性或根本没有任何催化活性。因此,通过加入粘结剂物质,可以降低本体催化剂组合物的活性。另外,粘结剂物质的加入明显增加最终催化剂组合物的机械强度。因此,要在本发明工艺中加入的粘结剂物质的量一般取决于最终催化剂组合物所需的活性和/或所需的机械强度。占总组合物0-95%重量的粘结剂量是合适的,这取决于所需的催化场合。但为了利用本发明组合物所得的异常高活性,粘结剂的加入量一般为总组合物的0-75%重量,优选0-50%重量,更优选0-30%重量。
常规加氢处理催化剂是例如常规的加氢脱硫、加氢脱氮或加氢裂化催化剂。这些催化剂可以使用过的、再生的、新鲜的、或硫化的状态使用。如果需要,常规的加氢处理催化剂可在应用于本发明工艺之前进行研磨或以任何的其它常规方式进行处理。
根据本发明的裂化组分是任何的常规裂化组分,如阳离子粘土、阴离子粘土,结晶裂化组分如沸石,如ZSM-5、(超稳定的)沸石Y、沸石X、ALPO、SAPO、MCM-41,无定形裂化组分如硅石-矾土、或其混合物。某些物质显然可同时用作粘结剂和裂化组分。例如,硅石-矾土同时具有裂化和粘结作用。
如果需要,在与本体催化剂组合物复合之前和/或在制备过程中加入之前,裂化组分可与VIB族金属和/或VIII族非贵金属进行复合。裂化组分与任何这些金属的复合可采用该裂化组分被这些物质浸渍的形式。
一般来说,加入何种上述裂化组分(如果有的话)取决于最终催化剂组合物的所需催化场合。如果所得组合物要用于加氢裂化,优选加入结晶裂化组分。如果最终催化剂组合物要用于加氢处理场合或轻度加氢裂化,优选加入其它裂化组分如硅石-矾土或阳离子粘土。裂化物质的加入量取决于最终组合物的所需活性和预期场合,因此可以是基于催化剂组合物总重的0-90%重量。
视需要,可以向催化剂组合物中加入其它物质,如含磷化合物、含硼化合物、含硅化合物、含氟化合物、其它过渡金属化合物、稀土金属化合物、或其混合物。
作为含磷化合物,可以使用磷酸铵、磷酸或有机含磷化合物。含磷化合物可在成型步骤之前和/或在成型步骤之后,在本发明工艺的任何阶段加入。如果将粘结剂胶溶,含磷化合物也可用于胶溶。例如,矾土粘结剂可通过接触磷酸或接触磷酸与硝酸的混合物而胶溶。
作为含硼化合物,可以使用例如硼酸或硼与钼和/或钨的杂多化合物,而作为含氟化合物,可以使用例如氟化铵。含硅化合物通常是水玻璃、硅胶、原硅酸四乙基酯或硅与钼和/或钨的杂多化合物。另外,如果需要将F与Si、B和P结合,可以分别使用氟硅酸、氟硼酸、二氟磷酸或六氟磷酸之类的化合物。
合适的其它过渡金属是,例如铼、锰、钌、铑、铱、铬、钒、铁、铂、钯、铌、钛、锆、钴、镍、钼或钨。这些金属化合物可在成型步骤之前,在本发明工艺的任何阶段加入。除了在本发明工艺过程中加入这些金属,也可将最终催化剂组合物与其复合。即,可以用包含任何这些金属的浸渍溶液浸渍最终催化剂组合物。
工艺步骤(ii)
视需要包含任何的上述(其它)物质的本体催化剂颗粒也可进行喷雾干燥、(闪蒸)干燥、研磨、捏合、淤浆混合、干混或湿混、或其组合,其中优选将湿混与捏合或淤浆混合与喷雾干燥结合起来。
这些工艺可在加入任何上述(其它)物质(如果有的话)之前或之后,在固液分离之后,在热处理之前或之后采用,然后进行再润湿。
优选地,将本体催化剂颗粒与任何的上述物质进行复合,然后进行任何的上述工艺。据信,通过采用任何的上述工艺,即喷雾干燥、(闪蒸)干燥、研磨、捏合、淤浆混合、干混或湿混、或其组合,本体催化剂组合物与任何上述物质之间的混合程度得到提高。这适用于该物质在采用任何上述方法之前和之后加入的情形。但一般优选在步骤(ii)之前加入该物质。如果该物质在步骤(ii)之后加入,所得组合物优选在任何其它工艺步骤如成型之前通过任何常规技术进行充分混合。例如,喷雾干燥的一个优点在于,在采用该工艺时没有任何的废水流。
喷雾干燥通常在100-200℃,优选120-180℃的出口温度下进行。
干混是指干燥态下的本体催化剂颗粒与干燥态下的任何上述物质进行混合。湿混例如包括,将包含本体催化剂颗粒的湿滤饼与作为粉末或湿滤饼的视需要选择的任何上述物质进行混合,形成一种匀质膏体。
工艺步骤(iii)
如果需要,视需要包含任何上述(其它)物质的本体催化剂可视需要在采用步骤(ii)之后进行成型。成型包括挤出、造粒、成珠和/或喷雾干燥。必须注意,如果催化剂组合物要应用于淤浆型反应器、流化床、移动床或膨胀床,一般采用喷雾干燥或成珠。对于固定床或沸腾床场合,一般将催化剂组合物挤出、造粒和/或成珠。在后一情况下,可以在成型步骤之前或过程中的任何阶段加入常用于促进成型的任何添加剂。这些添加剂可包括硬脂酸铝、表面活性剂、石墨、淀粉、甲基纤维素、膨润土、聚乙二醇、聚氧化乙烯或其混合物。另外,如果使用矾土作为粘结剂,可以理想地在成型步骤之前加入酸如硝酸以增加挤出物的机械强度。
如果成型步骤包括挤出、成珠和/或喷雾干燥,优选在液体如水的存在下进行成型步骤。对于挤出和成珠,以LOI表示,液体在成型混合物中的量优选为20-80%。
如果需要,可以将上述物质与视需要包含任何上述物质的本体催化剂颗粒进行同轴挤出。更尤其是,可以将两种混合物进行共挤,这时,视需要包含任何上述物质的所述本体催化剂颗粒存在于内挤出介质中,而没有本体催化剂颗粒的任何上述物质则存在于外挤出介质中,或反之。
步骤(iv)
在一个可有可无的干燥步骤之后,优选在100℃以上,可将所得成型的催化剂组合物根据需要进行热处理。但热处理对本发明工艺并不重要。按照本发明的“热处理”是指一种在例如100-600℃,优选150-550℃,更优选150-450℃的温度下,在惰性气体如氮气中,或在含氧气体如空气或纯氧中进行0.5-48小时的处理。热处理在水流存在下进行。
在所有的上述工艺步骤中,必须控制液体的量。例如,在催化剂组合物进行喷雾干燥之前,如果液体的量太低,必须再加入液体。另一方面,例如,在催化剂组合物挤出之前,如果液体的量太高,必须例如采用过滤、滗析或蒸发进行固液分离来降低液体的量,而且如果必要,所得物质可干燥并随后再润湿至某种程度。对于所有的上述工艺步骤,本领域熟练技术人员能够合适地控制液体的量。
工艺步骤(v)
本发明工艺还可包括一个硫化步骤。硫化一般通过将本体催化剂颗粒直接在其制备之后或在任何一项工艺步骤(i)-(iv)之后接触含硫化合物如单质硫、硫化氢、DMDS或多硫化物来进行。硫化步骤可在液体中和气相中进行。硫化可在制备本体催化剂组合物之后但在步骤(i)之前和/或在步骤(i)之后但在步骤(ii)之前和/或在步骤(ii)之后但在步骤(iii)之前和/或在步骤(iii)之后但在步骤(iv)之前和/或在步骤(iv)之后进行。优选的是,硫化不要在任何能够将所得金属硫化物转化成其氧化物的工艺步骤之前进行。如果是在含氧气氛下进行,这些工艺步骤是例如热处理或喷雾干燥或任何其它的高温处理。因此,如果将催化剂组合物在含氧气氛下进行喷雾干燥和/或任何其它工艺或热处理,硫化优选在采用任何这些方法之后进行。当然,如果这些方法在惰性气氛下进行,硫化也可在这些方法之前进行。
如果将催化剂组合物用于固定床工艺,硫化优选在成型步骤之后,而且(如果采用)在氧化气氛下进行最后热处理之后进行。
硫化可一般现场和/或场外进行。优选地,硫化在场外进行,即,硫化在硫化催化剂组合物加入加氢处理单元之前在单独的反应器中进行。另外,优选将催化剂组合物在场外和现场硫化。
本发明的优选工艺包括以下的连续工艺步骤:如上所述制备本体催化剂颗粒,将所得本体催化剂颗粒与例如粘结剂进行淤浆混合,喷雾干燥所得组合物,再润湿,捏合,挤出,干燥,煅烧和硫化。另一优选工艺实施方案包括以下的连续工艺步骤:如上所述制备本体催化剂颗粒,过滤分离该颗粒,将滤饼与粘结剂之类的物质湿混,捏合,挤出,干燥,煅烧和硫化。
本发明的催化剂组合物
本发明还涉及一种可通过上述工艺得到的催化剂组合物。优选地,本发明涉及一种可通过工艺步骤(A)和视需要选择的一个或多个上述工艺步骤B(i)-(iv)而得到的催化剂组合物。
在一个优选实施方案中,本发明涉及一种可通过上述工艺得到的催化剂组合物,其中在该工艺过程中至少部分为固态的金属成分的形态保持在该催化剂组合物中。形态的这种保持在标题“本发明的工艺”中详细描述。
(a)氧化态催化剂组合物
另外,本发明涉及一种包括含有至少一种VIII族非贵金属和至少两种VIB族金属的本体催化剂颗粒的催化剂组合物,其中所述金属以其氧化态存在于催化剂组合物中,且其中在VIB族金属为钼、钨、和可有可无的铬时,半最大值处的特征全宽不超过2.5°,或在VIB族金属为钼和铬或钨和铬时不超过4.0°。
正如章节“表征方法”中所述,半最大值处的特征全宽根据位于2θ=53.6°(±0.7°)(在VIB族金属为钼、钨、和可有可无的铬时或在VIB族金属为钨和铬时)或位于2θ=63.5°(±0.6°)(在VIB族金属为钼和铬时)的峰来测定。
优选地,半最大值处的特征全宽不超过2.2°,更优选2.0°,进一步更优选1.8°,最优选它不超过1.6°(在VIB族金属为钼、钨、和可有可无的铬时)或不超过3.5°,更优选3.0°,进一步更优选2.5°,最优选2.0°(在VIB族金属为钼和铬或钨和铬时)。
优选地,如果VIB族金属为钼、钨、和可有可无的铬,X-射线衍射图具有在2θ=38.7°(±0.6°)和40.8°(±0.7°)的两个峰(这些峰称作双峰P)和/或在2θ=61.1°(±1.5°)和64.1°(±1.2°)的两个峰(这些峰称作双峰Q)。
根据本发明氧化催化剂组合物在半最大值处的特征全宽和可有可无存在的至少一种双峰P和Q可以推理,本发明催化剂的微结构不同于按照WO9903578或美国专利3678124所述利用共沉淀制成的相应催化剂。
典型的X-射线衍射图在实施例中描述。
本体催化剂颗粒的X-射线衍射图优选不含所要反应的金属成分的任何特征峰。当然,如果需要,也可选择金属成分的量以得到其X-射线衍射图特征在于仍然具有一个或多个至少一种这些金属成分的特征峰的本体催化剂颗粒。例如,如果加入大量的在本发明工艺过程中至少部分为固态的金属成分,或如果该金属成分以大颗粒形式加入,可以在所得本体催化剂颗粒的X-射线衍射图中追踪到少量的该金属成分。
VIB族与VIII族非贵金属的摩尔比一般为10∶1至1∶10,优选3∶1至1∶3。在核-壳结构的颗粒的情况下,这些比率当然应用于包含在壳中的金属。不同VIB族金属相互间的比率一般并不重要。这同样适用于使用一种以上VIII族非贵金属的情形。如果钼和钨作为VIB族金属存在,钼∶钨比率优选为9∶1至1∶19,更优选3∶1至1∶9,最优选3∶1至1∶6。
本体催化剂颗粒包含至少一种VIII族非贵金属成分和至少两种VIB族金属成分。合适的VIB族金属包括铬、钼、钨或其混合物,最优选钼与钨的组合。合适的VIII族非贵金属包括铁、钴、镍或其混合物,优选镍和/或钴。优选地,包含在本发明本体催化剂颗粒中的金属成分组合包含镍、钼和钨,或镍、钴、钼和钨,或钴、钼和钨。
优选的是,镍和钴占VIII族非贵金属成分总量的至少50%重量,以氧化物计算,更优选至少70%重量,更加优选至少90%重量。VIII族非贵金属成分可特别优选基本上由镍和/或钴组成。
优选的是,钼和钨占VIB族金属成分总量的至少50%重量,以三氧化物计算,更优选至少70%重量,更加优选至少90%重量。VIB族金属成分可特别优选基本上由钼和钨组成。
优选地,包含在这些催化剂组合物中的氧化态本体催化剂颗粒的B.E.T.表面积至少为10米2/克,更优选至少50米2/克,最优选至少80米2/克,按照B.E.T.法来测定。
如果在制备本体催化剂颗粒的过程中,已经加入任何的上述(其它)物质,如粘结剂物质、裂化组分或常规加氢处理催化剂,该本体催化剂颗粒包含约100%重量的VIB族和VIII族非贵金属。如果任何的上述物质已在制备本体催化剂颗粒的过程中加入,它们优选包含30-100%重量,更 优选50-100%重量,最优选70-100%重量的VIB族和VIII族非贵金属,余量为任何的上述(其它)物质。VIB族和VIII族非贵金属的量利用TEM-EDX、AAS或ICP来测定。
氧化态本体催化剂颗粒的中值孔径(50%的孔体积低于所述直径,其它50%高于此)优选为3-25纳米,更优选5-15纳米(通过N2吸附来测定)。
氧化态本体催化剂颗粒的总孔体积至少为0.05毫升/克,更优选至少0.1毫升/克,通过N2吸附来测定。
本体催化剂颗粒的孔径分布最好与常规加氢处理催化剂的孔径分布大致相同。更尤其是,本体催化剂颗粒的中值孔径为3-25纳米,通过N2吸附来测定,孔体积为0.05-5毫升/克,更优选至少0.1-4毫升/克,进一步更优选至少0.1-3毫升/克,最优选0.1-2毫升/克,通过N2吸附来测定。
另外,这些本体催化剂颗粒的中值粒径优选至少为0.5μm,更优选至少1μm,最优选至少2μm,但优选不超过5000μm,更优选不超过1000μm,甚至更优选不超过500μm,最优选不超过150μm。甚至更优选,该中值粒径为1-150μm,最优选2-150μm。
如上所述,如果需要,可以使用本发明工艺来制备核-壳结构的本体催化剂颗粒。在这些颗粒中,至少一种金属各向异性地分布在本体催化剂颗粒中。在本发明工艺过程中至少部分为固态的金属成分的金属浓度一般在内部、即最终本体催化剂颗粒的核中比在外部、即最终本体催化剂颗粒的壳中更高。一般来说,该金属在最终本体催化剂颗粒的壳中的浓度最高为该金属在最终本体催化剂颗粒核中的浓度的95%且在大多数情况下最高为90%。另外,已经发现,在本发明工艺过程中以溶质态使用的金属成分的金属也各向异性地分布在最终本体催化剂颗粒中。更尤其是,该金属在最终本体催化剂颗粒的核中的浓度一般低于该金属在壳中的浓度。进一步尤其是,该金属在最终本体催化剂颗粒的核中的浓度最高为该金属在壳中的浓度的80%,往往最高70%,通常最高60%。必须注意,上述各向异性金属分布(如果有的话)可存在于本发明的催化剂组合物中,与该催化剂是否已热处理和/或硫化无关。在上述情况下,该壳的厚度一般为10-1000纳米。
尽管上述各向异性金属分布可由本发明工艺而获得,但VIB族和VIII族非贵金属一般均匀分布在本体催化剂颗粒中。该实施方案一般是优选的。
优选地,该催化剂组合物还包含一种合适的粘结剂物质。合适的粘结剂物质优选为上述的那些。该颗粒一般包埋在粘结剂物质中,后者用作胶以将颗粒固定在一起。优选地,颗粒匀质分布在粘结剂内。粘结剂的存在一般会增加最终催化剂组合物的机械强度。一般来说,以侧粉碎强度表示,本发明催化剂组合物的机械强度至少为1磅/毫米,优选至少3磅/毫米(测定直径为1-2毫米的挤出物)。
粘结剂的量尤其取决于催化剂组合物的所需活性。占总组合物0-95%重量的粘结剂量是合适的,这取决于所需的催化场合。但为了利用本发明组合物所得的异常高活性,粘结剂的加入量一般为总组合物的0-75%重量,优选0-50%重量,更优选0-30%重量。
如果需要,催化剂组合物可包含合适的裂化组分。合适的裂化组分优选为上述的那些。裂化组分的量优选为基于催化剂组合物总重的0-90%重量。
此外,催化剂组合物可包含常规的加氢处理催化剂。常规的加氢处理催化剂一般包含任何的上述粘结剂物质和裂化组分。常规加氢处理催化剂的氢化金属包括VIB族和VIII族非贵金属,如镍或钴与钼或钨的组合。合适的常规加氢处理催化剂是例如加氢处理或加氢裂化催化剂。这些催化剂可以使用过的、再生、新鲜或硫化状态使用。
另外,催化剂组合物可包含任何其它的常存在于加氢处理催化剂中的物质,例如含磷化合物、含硼化合物、含硅化合物、含氟化合物、其它过渡金属、稀土金属、或其混合物。以下给出这些其它物质的细节。在该催化剂组合物已于氧化气氛中经过热处理和/或硫化时,过渡或稀土金属以氧化态存在,和/或在催化剂组合物已硫化时为硫化态。
为了得到具有高机械强度的催化剂组合物,本发明催化剂组合物可能最好具有低的大孔率。优选地,低于30%孔体积的催化剂组合物是直径大于100纳米的孔(按照汞侵入法来测定,接触角:130°),更优选低于20%。
本发明的催化剂组合物一般包含基于催化剂组合物总重的10-100%重量,优选25-100%重量,更优选45-100%重量,最优选65-100%重量的VIB族和VIII族非贵金属,以金属氧化物计算。
可以看出,按照JP09000929所述通过用VIB族和VIII族非贵金属溶液在矾土载体上逐步浸渍而制成的催化剂不含任何的本体催化剂颗粒并因此具有完全不同于本发明催化剂的形态。
(b)硫化催化剂组合物
如果需要,本发明的催化剂组合物可以硫化。因此,本发明还涉及一种包括含有至少一种VIII族非贵金属和至少两种VIB族金属的硫化态本体催化剂颗粒的催化剂组合物,其中在使用条件下的硫化度不超过90%。
另外,本发明还涉及一种包括含有至少一种VIII族非贵金属和至少两种VIB族金属的硫化态本体催化剂颗粒的催化剂组合物,其中在使用条件下的硫化度不超过90%,且其中该催化剂组合物不含具有结构式NibMocWdOz的化合物的硫化形式,其中b/(c+d)为0.75-1.5或甚至0.5-3且c/d为0.1-10或甚至等于或大于0.01,且z=[2b+6(c+d)]/2,或其中该催化剂组合物甚至不含钼酸镍的任何硫化形式,其中至少一部分但低于所有的钼被钨替代,例如公开于未出版国际专利申请WO9903578。
显然,上述硫化态催化剂组合物可包含任何的上述(其它)物质。
本发明还涉及一种成型的硫化态催化剂组合物,包含:
(i)含有至少一种VIII族非贵金属和至少两种VIB族金属的硫化态本体催化剂颗粒,其中在使用条件下的硫化度不超过90%,和
(ii)选自粘结剂物质、常规加氢处理催化剂、裂化组分或其混合物的物质。
重要的是,硫化态本体催化剂颗粒在使用条件下的硫化度不超过90%。使用条件下的硫化度优选为10-90%,更优选20-90%,最优选40-90%。硫化度按照章节“表征方法”中所述来测定。
如果将常规的硫化技术应用于本发明工艺,那么硫化态本体催化剂颗粒在使用之前的硫化度与在使用条件下的硫化度基本上相同。但如果采用非常特定的硫化技术,催化剂使用之前的硫化度可能高于在使用过程中的硫化度,因为在使用过程中,从催化剂去除部分硫化物或单质硫。在这种情况下,硫化度是在使用催化剂时但不在此之前的硫化度。使用条件以下描述于章节“按照本发明的应用”。催化剂“处于使用条件”是指,将它经受这些条件足够长的时间以得到与其反应环境平衡的催化剂。
进一步优选,本发明的催化剂组合物基本不含VIII族非贵金属二硫化物。更尤其是,VIII族非贵金属优选以(VIII族非贵金属)ySx而存在,其中x/y为0.5-1.5。
可以看出,比起包含一种VIII族非贵金属和仅一种VIB族金属的催化剂,本发明的硫化态催化剂组合物具有明显较好的催化性能。
成型的硫化态催化剂颗粒可具有许多不同的形状。合适的形状包括球、圆柱体、环、和对称或非对称多叶,例如三-和四叶。挤出、成珠或成丸得到的颗粒的直径为0.2-10毫米,且其长度同样为0.5-20毫米。喷雾干燥得到的颗粒的中值粒径一般为1-100μm。
以下详细给出粘结剂物质、裂化成分、常规加氢处理催化剂、和任何其它物质及其用量。另外,以上已具体给出了包含在硫化催化剂组合物中的VIII族非贵金属和VIB族金属及其用量。
可以看出,以上在氧化态催化剂组合物时描述的核-壳结构不被硫化作用破坏,即,该硫化态催化剂组合物还可包含这种核-壳结构。
进一步看出,该硫化催化剂至少部分为结晶物质,即,该硫化态本体催化剂颗粒的X-射线衍射图一般包含VIII族非贵金属和VIB族金属硫化物的几个特征结晶峰。
至于氧化态催化剂组合物,低于30%孔体积的硫化态催化剂组合物是直径大于100纳米的孔(按照汞侵入法来测定,接触角:130°),更优选低于20%。
一般来说,硫化态本体催化剂颗粒的中值粒径与以上在氧化态本体催化剂颗粒时给出的那些相同。
按照本发明的应用
按照本发明的催化剂组合物可用于基本上所有的加氢处理工艺,在范围较宽的反应条件下,例如在200-450℃的温度和5-300巴的氢气压力下,以0.05-10小时-1的空速(LHSV)处理各种原料。本文中的术语“加氢处理”包括其中将烃原料与氢气在高温高压下反应的所有工艺,包括氢化、加氢脱硫、加氢脱氮、加氢脱金属、加氢脱芳构化、加氢异构化、加氢脱蜡、加氢裂化、和在轻度压力条件下的加氢裂化之类的工艺,后者常称作轻度加氢裂化。本发明的催化剂组合物特别适用于加氢处理烃原料。这些加氢处理工艺包括,例如烃原料的加氢脱硫、加氢脱氮、和加氢脱芳构化。合适的原料是例如中间馏出物、煤油、石脑油、真空汽油、和重质粗柴油。可以采用常规的工艺条件,例如250-450℃的温度、5-250巴的压力、0.1-10小时-1的空速、和50-2000NI/I的H2/油比率。
表征方法
1.侧粉碎强度测定
首先,测定例如挤出物颗粒的长度,然后将挤出物颗粒利用一个可移动活塞进行压缩负载(25磅,8.6秒)。测定粉碎该颗粒所需的力。对至少40个挤出物颗粒重复该步骤,然后计算平均值,单位长度(毫米)的力(磅)。该方法优选用于具有不超过7毫米长度的成型颗粒。
2.利用N2吸附的孔体积
N2吸附测量按照J.C.P.Broekhoff(Delft University ofTechnology 1969)的博士论文所述来进行。
3.所加固体金属成分的量
定性测定:至少当金属成分以直径大于可见光波长的颗粒形式存在时,在本发明过程中存在的固体金属成分可容易地通过视觉检查来检测。当然,也可使用本领域熟练技术人员已知的准弹性光散射(QELS)或近前向散射之类的方法来确认,在本发明工艺过程中的任何时候,不是所有的金属为溶质态。
定量测定:如果至少部分以固态加入的金属成分作为悬浮液加入,在本发明工艺过程中加入的固体金属成分的量可通过在添加过程中使用的条件下(温度、pH值、压力、液体的量)过滤所加的悬浮液,使得包含在悬浮液中的所有固体物质收集为固体滤饼来测定。由固体和干燥滤饼的重量,可通过标准方法来测定固体金属成分的重量。当然,如果除了固体金属成分,其它固体成分如固体粘结剂存在于滤饼中,那么必须从固体和干燥滤饼的重量中减去该固体和干燥粘结剂的重量。
固体金属成分在滤饼中的量也可通过标准方法如原子吸收光谱(AAS)、XRF、湿化学分析、或ICP来测定。
如果至少部分以固态加入的金属成分作为润湿或干燥态加入,一般不可能过滤。在这种情况下,固体金属成分的重量被认为等于相应起始采用的金属成分的重量(基于干重)。所有金属成分的总重是基于干重的起始采用的所有金属成分的量,以金属氧化物计算。
4.在半最大值处的特征全宽
氧化态催化剂在半最大值处的特征全宽根据催化剂的X-射线衍射图,使用线性背景来测定:
(a)如果VIB族金属是钼和钨:在半最大值处的特征全宽是2θ=53.6°(±0.7°)峰在半最大值处的全宽(根据2θ)
(b)如果VIB族金属是钼和铬:在半最大值处的特征全宽是2θ=63.5°(±0.6°)峰在半最大值处的全宽(根据2θ)
(c)如果VIB族金属是钨和铬:在半最大值处的特征全宽是2θ=53.6°(±0.7°)峰在半最大值处的全宽(根据2θ)
(d)如果VIB族金属是钼、钨和铬:在半最大值处的特征全宽是2θ=53.6°(±0.7°)峰在半最大值处的全宽(根据2θ)
为了测定X-射线衍射图,可以使用配有石墨单色器的标准功率衍射仪(如,Phi1lips PW1050)。测量条件可以例如选择如下:
X-射线生成器设定:40千伏和40毫安
波长:1.5418埃
分散和抗散射缝:1°
检测器缝:0.2毫米
步长:0.01(°2θ)
时间/步:20秒
5.硫化度
将包含在硫化态催化剂组合物中的所有硫在氧气流中通过在感应炉中加热而氧化。所得二氧化硫使用具有基于二氧化硫IR特性的检测系统的红外装置进行分析。为了得到硫的量,将与二氧化硫有关的信号与公知标准物校正得到的值进行比较。随后根据包含在硫化态本体催化剂颗粒中的硫量与当所有VIB族和VIII族非贵金属以其二硫化物形式存在时存在于本体催化剂颗粒中的硫量之间的比率来计算硫化度。
本领域熟练技术人员显然看出,要测定其硫化度的催化剂在测定硫化度之前需要在惰性气氛下进行处理。
本发明通过以下实施例进一步说明:
实施例1
将17.65克七钼酸铵(NH4)6 Mo7O24*4H2O(0.1摩尔Mo,来自Aldrich)和24.60克偏钨酸铵(NH4)6H2W12O40(0.1摩尔W,来自Strem Chemical)溶解在800毫升水中,得到在室温下pH值为约5.2的溶液。随后将该溶液加热至90℃(溶液A)。
将35.3克碱式碳酸镍2NiCO3*3Ni(OH)2*4H2O(0.3摩尔Ni,来自Aldrich)悬浮在200毫升水中,然后将该悬浮液加热至90℃(悬浮液B)。碱式碳酸镍的B.E.T.表面积为239米2/克(=376米2/克NiO),孔体积为0.39厘米3/克(=0.62厘米3/克NiO)(通过氮气吸附来测定)、中值孔径为6.2纳米,且中值粒径为11.1微米。
将悬浮液B在10分钟内加入溶液A中,然后将所得悬浮液在连续搅拌下在90℃下保持18-20小时。在该时间结束时,过滤该悬浮液。将所得固体在120℃下干燥4小时并随后在400℃下煅烧。产率为约92%,基于已转化成氧化物的所有金属成分的计算重量。
氧化态本体催化剂颗粒的B.E.T.表面积为167米2/克(=486米2/克NiO=碱式碳酸镍的相应表面积的128%),孔体积为0.13厘米3/克(=0.39厘米3/克NiO=碱式碳酸镍的孔体积的63%)、中值孔径为3.4纳米(碱式碳酸镍的中值孔径的55%),且中值粒径为10.6微米(=碱式碳酸镍的中值粒径的95%)。
在煅烧步骤之后得到的X-射线衍射图在图1中给出。在半最大值处的特征全宽测定为1.38°(根据2θ=53.82°的峰)。
随后,将催化剂硫化:将1.5-2克催化剂放在石英船中,然后插入水平石英管中并放在Lindberg炉中。将温度在50毫升/分钟的氮气流下在约1小时内升至370℃,然后在370℃下继续流动1.5小时。关掉氮气,然后将10%H2S/H2以20毫升/分钟加入反应器。将温度升至400℃并保持2小时。然后切断热并将催化剂在H2S/H2流下冷却至70℃,这时中断气流并将催化剂在氮气下冷却至室温。
将硫化催化剂在设计用于恒定氢气流的300毫升改进Carberry间歇反应器中评估。将催化剂成丸并筛分至20/40网孔,然后将1克加载到不锈钢篮中,夹在莫来石珠的层之间。将在十氢萘中包含5%重量二苯并噻吩(DBT)的100毫升液体原料加入高压釜。将100毫升/分钟的氢气流通入该反应器,并使用回压调节器将压力保持在3150kPa。将温度以5-6℃/分钟升至350℃,然后进行测试,直到50%DBT已转换或已经过7小时。每30分钟取出少量的等分试样产品并利用气相色谱(GC)来分析。总体转化的速率常数按照M.Daage和R.R.Chianelli( 催化剂杂志,149,414-427(1994))所述来计算。
在350℃下的总DBT转化(以速率常数表示)(χ)测定为138*1016分子/(g*s)。
对比例A
按照实施例1所述制备催化剂,只是使用仅一种VIB族金属成分:按照实施例1所述制备催化剂,其中使用35.3克七钼酸铵(NH4)6Mo7O24*4H2O(0.2摩尔Mo)和35.3克碱式碳酸镍2NiCO3*3Ni(OH)2*4H2O(0.3摩尔Ni)。产率为约85%,基于已转化成其氧化物的所有金属成分的计算重量。将催化剂按照实施例1所述进行硫化和测试。在350℃下的总DBT转化(以速率常数表示)(χ)测定为95.2*1016分子/(g*s),明显低于实施例1。
对比例B
按照实施例1所述制备催化剂,只是使用仅一种VIB族金属成分:按照实施例1所述制备催化剂,其中使用49.2克偏钨酸铵(NH4)6H2W12O40(0.2摩尔W)和35.3克碱式碳酸镍2NiCO3*3Ni(OH)2*4H2O(0.3摩尔Ni)。产率为约90%,基于已转化成其氧化物的所有金属成分的计算重量。将催化剂按照实施例1所述进行硫化和测试。在350℃下的总DBT转化(以速率常数表示)(χ)测定为107*1016分子/(g*s),明显低于实施例1。
实施例2
将28.8克MoO3(0.2摩尔Mo,来自Aldrich)和50.0克钨酸H2WO4(0.2摩尔W,来自Aldrich)在800毫升水中制浆(悬浮液A)并加热至90℃。将70.6克碱式碳酸镍2NiCO3*3Ni(OH)2*4H2O(0.6摩尔Ni,来自Aldrich)悬浮在200毫升水中并加热至90℃(悬浮液B)。
将悬浮液B在60分钟内加入悬浮液A,然后将所得混合物在连续搅拌下在90℃下保持18小时。在该时间结束时,过滤该悬浮液。将所得固体在120℃下干燥4-8小时并随后在400℃下煅烧。产率为约99%,基于已转化成氧化物的所有金属成分的计算重量。
氧化态本体催化剂颗粒的B.E.T.表面积为139米2/克(=374米2/克NiO=碱式碳酸镍的相应表面积的99%),孔体积为0.13厘米3/克(=0.35厘米3/克NiO=碱式碳酸镍的孔体积的56%)、中值孔径为3.7纳米(碱式碳酸镍的中值孔径的60%),且中值粒径为14.5微米(=碱式碳酸镍的中值粒径的131%)。
氧化态本体催化剂颗粒的X-射线衍射图包括在2θ=23.95°(非常宽)、30.72°(非常宽)、35.72°、38.76°、40.93°、53.80°、61.67°和64.23°的峰。
经煅烧的催化剂组合物在半最大值处的特征全宽测定为1.60°(根据2θ=53.80°的峰测定)。
按照实施例1所述将催化剂硫化并测试催化性能。在350℃下的总转化(χ)测定为144*1016分子/(g*s)。
使用条件下的硫化度为62%。
实施例3
重复实施例2的制备,只是使用(NH4)6H2W12O40替代H2WO4。产率为约96%,基于已转化成其氧化物的所有金属成分的计算重量。
实施例4
采用不同量的镍重复实施例2。产率和在半最大值处的特征全宽(根据范围2θ=53.66-53.92°内的峰测定)在下表中给出:
       所加金属的摩尔量[摩尔]   产率* 煅烧样品在角2θ中的半最大值处的特征全宽
    Ni     Mo     W
    1.0     0.5     0.5   96 1.47
    1.25     0.5     0.5   100 1.50
    1.5     0.5     0.5   99 1.60
    2.0     0.5     0.5   99 1.32
*(基于已转化成其氧化物的所有金属成分的计算重量)[%]
实施例5
采用不同量的钼:钨比率重复实施例4。
产率和在半最大值处的特征全宽(根据范围2θ=53.80-53.94°内的峰测定)在下表中给出:
      所加金属的摩尔量[摩尔]   产率*  煅烧样品在角2θ中的半最大值处的特征全宽
    Ni     Mo   W
    1.5     0.7   0.3   97  1.29
    1.5     0.5   0.5   99  1.60
    1.5     0.3   0.7   98  1.06
    1.5     0.1   0.9   98  1.11
*(基于已转化成其氧化物的所有金属成分的计算重量)[%]
实施例6
按照类似于实施例1所述工艺步骤的方式来制备催化剂组合物。将所得混合物喷雾干燥。该喷雾干燥的粉末包含43.5%重量的NiO、20.1%重量的MoO3和34.7%重量的WO3。经喷雾干燥的本体催化剂颗粒的孔体积为0.14毫升/克,按照氮气吸附法测定,且B.E.T.表面积为171米2/克。
将本体催化剂颗粒与基于催化剂组合物总重的20%重量矾土粘结剂湿混。调节该混合物的含水量,得到一种可挤出的混合物,然后将该混合物挤出。挤出之后,将该挤出物在120℃下干燥并在385℃下煅烧。所得催化剂组合物的B.E.T.表面积为202米2/克,按照汞孔隙法测定的孔体积为0.25毫升/克,且侧粉碎强度为5.4磅/毫米。
使用掺有DMDS(二甲基二硫醚)的SRGO(直馏汽油)将部分的所得催化剂进行硫化,在30巴(LHSV=4小时-1,H:油=200)下得到总硫含量为2.5%重量。采用0.5℃/分钟的上升速率,将催化剂温度由室温升至320℃,并在320℃下保持10小时。然后将样品冷却至室温。
该硫化催化剂组合物在使用条件下的硫化度测定为52%。
将另一部分催化剂用DMDS掺杂原料进行硫化。然后用LCCO(轻度裂化的循环油)来测试该硫化催化剂。比起市售的矾土承载的含镍和钼的催化剂,在加氢脱氮中的相对体积活性测定为281。
实施例7
按照类似于实施例1所述工艺步骤的方式来制备催化剂组合物。在反应完成之后,用本体催化剂颗粒将胶溶矾土(15%重量,基于催化剂组合物的总重)进行共制浆,然后将淤浆喷雾干燥。所得催化剂包含13.2%重量的Al2O3、33.9%重量的NiO、20.5%重量的MoO3和30.2%重量的WO3。氧化态本体催化剂颗粒的孔体积为0.17毫升/克,按照氮气吸附法测定,且B.E.T.表面积为114米2/克。将喷雾干燥的颗粒与所需一定量的水进行混合,得到一种可挤出的混合物。将所得混合物挤出,然后将所得挤出物在120℃下干燥并在385℃下煅烧。
所得组合物的B.E.T.表面积为133米2/克,按照汞孔隙法测定的孔体积为0.24毫升/克,且侧粉碎强度为5.3磅/毫米。
使用10%体积H2S在H2中的混合物在大气压下将部分的所得催化剂进行硫化(GHSV(气体小时空速)=约8700Nm3*m-3*hr-1)。将催化剂温度以6℃/分钟的上升速率由室温升至400℃,然后在400℃下保持2小时。然后将样品在H2S/H2混合物中冷却至室温。
该硫化催化剂组合物在使用条件下的硫化度测定为64%。
将另一部分催化剂用DMDS掺杂原料进行硫化。然后用LCCO(轻度裂化的循环油)来测试该硫化催化剂。比起市售的矾土承载的含镍和钼的催化剂,在加氢脱氮中的相对体积活性测定为235。

Claims (23)

1.一种制备包括含有至少一种VIII族非贵金属和至少两种VIB族金属的本体催化剂颗粒的催化剂组合物的方法,该方法包括,将至少一种VIII族非贵金属成分和至少两种VIB族金属成分在质子液体的存在下进行混合并反应,其中至少一种金属成分在整个工艺过程中至少部分地保持固态,所述VIII族和VIB族金属以氧化物计占本体催化剂颗粒总重量的50-100%重量,在反应过程中至少部分为固态的那些金属成分的溶解度在18℃下低于0.05摩尔/100毫升水。
2.根据权利要求1的方法,其中在金属成分的混合过程中,至少一种金属成分至少部分为固态,且至少一种金属成分为溶质态。
3.根据权利要求1的方法,其中所有金属成分在金属成分的混合过程中至少部分为固态。
4.根据权利要求1-3中任何一项的方法,其中所述质子液体包括水。
5.根据权利要求1-3中任何一项的方法,其中VII I族非贵金属包括钴、镍、铁或其混合物。
6.根据权利要求5的方法,其中镍和钴占VIII族非贵金属成分总量的至少50%重量,以氧化物计。
7.根据权利要求6的方法,其中镍和钴占VIII族非贵金属成分总量的至少70%重量,以氧化物计。
8.根据权利要求7的方法,其中镍和钴占VIII族非贵金属成分总量的至少90%重量,以氧化物计。
9.根据权利要求1-3中任何一项的方法,其中VIB族金属包括铬、钼或钨中的至少两种。
10.根据权利要求9的方法,其中钼和钨占VIB族金属成分总量的至少50%重量,以三氧化物计。
11.根据权利要求10的方法,其中钼和钨占VIB族金属成分总量的至少70%重量,以三氧化物计。
12.根据权利要求11的方法,其中钼和钨占VIB族金属成分总量的至少90%重量,以三氧化物计。
13.根据权利要求1-3中任何一项的方法,其中在金属成分的混合和/或反应过程中加入选自粘结剂物质、常规加氢处理催化剂、裂化组分或其混合物的物质。
14.根据权利要求1-3中任何一项的方法,其中将本体催化剂颗粒进行一个或多个以下的工艺步骤:
(i)与选自粘结剂物质、常规加氢处理催化剂、裂化组分或其混合物的物质进行复合,
(ii)喷雾干燥、闪蒸干燥、研磨、捏合、淤浆混合、干混或湿混、或其组合,
(iii)成型,
(iv)干燥和/或热处理,和
(v)硫化。
15.根据权利要求1 4的方法,包括以下步骤:
将至少一种VIII族非贵金属成分和至少两种VIB族金属成分在质子液体存在下进行混合并反应,其中至少一种金属成分在整个工艺过程中至少部分地保持固态,
·可有可无地干燥和/或洗涤,
·与选自粘结剂物质、裂化组分、常规加氢处理催化剂或其混合物的物质进行复合,
·可有可无地成型,
·可有可无地硫化。
16.根据权利要求14的方法,包括以下步骤:
·将至少一种VIII族非贵金属成分和至少两种VIB族金属成分在质子液体存在下进行混合并反应,其中至少一种金属成分在整个工艺过程中至少部分地保持固态,在反应过程中存在选自粘结剂物质、裂化组分、常规加氢催化剂或其混合物的物质,
·可有可无地干燥和/或洗涤,
·可有可无地成型,
·可有可无地硫化。
17.根据权利要求15或16的方法,其中进行成型步骤。
18.一种包括含有至少一种VIII族非贵金属和至少两种VIB族金属的本体催化剂颗粒的催化剂组合物,其中所述金属以其氧化态和/或硫化态存在,所述VIII族和VIB族金属以氧化物计占本体催化剂颗粒总重量的50-100%重量,且其中当在催化剂组合物中金属以它们的氧化态存在时,催化剂组合物的X-射线衍射图为:当VIB族金属为钼、钨、和可有可无的铬时,半最大值处的特征全宽不超过2.5°,或当VIB族金属为钼和铬或钨和铬时不超过4.0°。
19.根据权利要求18的催化剂组合物,其中当VIB族金属为钼、钨、和可有可无的铬时,半最大值处的特征全宽不超过2.0°,或当VIB族金属为钼和铬或钨和铬时不超过3.0°。
20.根据权利要求18的催化剂组合物,其包括硫化态本体催化剂颗粒,该硫化态催化剂颗粒包括至少一种VIII族非贵金属成分和至少两种VIB族金属成分,该催化剂组合物基本不含VIII族非贵金属二硫化物。
21.根据权利要求20的催化剂组合物,其中VIII族非贵金属以(VIII族非贵金属)ySx存在,x/y为0.5-1.5。
22.根据权利要求20或21的催化剂组合物,包括含有至少一种VIII族非贵金属和至少两种VIB族金属的硫化态本体催化剂颗粒,其中在使用条件下的硫化度不超过90%。
23.根据权利要求18-22中任何一项的催化剂组合物在烃原料的加氢处理中的应用。
CN00803876A 1999-01-15 2000-01-13 混合金属催化剂组合物、其制备和用途 Expired - Lifetime CN1131111C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US23112599A 1999-01-15 1999-01-15
US23111899A 1999-01-15 1999-01-15
US09/231,118 1999-01-15
US09/231,125 1999-01-15

Publications (2)

Publication Number Publication Date
CN1339985A CN1339985A (zh) 2002-03-13
CN1131111C true CN1131111C (zh) 2003-12-17

Family

ID=26924828

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00803876A Expired - Lifetime CN1131111C (zh) 1999-01-15 2000-01-13 混合金属催化剂组合物、其制备和用途

Country Status (16)

Country Link
EP (1) EP1150768B1 (zh)
JP (2) JP5246980B2 (zh)
KR (1) KR100706364B1 (zh)
CN (1) CN1131111C (zh)
AT (1) ATE266471T1 (zh)
AU (1) AU761109B2 (zh)
CA (1) CA2359906C (zh)
CZ (1) CZ298704B6 (zh)
DE (1) DE60010660T2 (zh)
DK (1) DK1150768T3 (zh)
ES (1) ES2221612T3 (zh)
HU (1) HUP0105159A3 (zh)
PL (1) PL197285B1 (zh)
RU (1) RU2229931C2 (zh)
TR (1) TR200102023T2 (zh)
WO (1) WO2000041810A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101173186B (zh) * 2006-11-01 2011-05-18 中国石油化工股份有限公司 一种中压加氢裂化方法

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7232515B1 (en) 1997-07-15 2007-06-19 Exxonmobil Research And Engineering Company Hydrofining process using bulk group VIII/Group VIB catalysts
US7288182B1 (en) 1997-07-15 2007-10-30 Exxonmobil Research And Engineering Company Hydroprocessing using bulk Group VIII/Group VIB catalysts
US7229548B2 (en) 1997-07-15 2007-06-12 Exxonmobil Research And Engineering Company Process for upgrading naphtha
US7513989B1 (en) 1997-07-15 2009-04-07 Exxonmobil Research And Engineering Company Hydrocracking process using bulk group VIII/Group VIB catalysts
DE60144149D1 (de) 2000-07-12 2011-04-14 Albemarle Netherlands Bv Ein auf einem brennbaren bindemittel basierender mischmetallkatalysator
DE60134140D1 (de) 2000-07-12 2008-07-03 Albemarle Netherlands Bv Verfahren zur herstellung eines ein additiv enthaltenden mischmetallkatalysators
US7173160B2 (en) 2002-07-18 2007-02-06 Chevron U.S.A. Inc. Processes for concentrating higher diamondoids
TW200425950A (en) 2003-02-24 2004-12-01 Shell Int Research Catalyst composition preparation and use
AR043243A1 (es) 2003-02-24 2005-07-20 Shell Int Research Composicion de catalizador ,su preparacion y uso
US7691257B2 (en) * 2004-04-22 2010-04-06 Exxonmobil Research And Engineering Company Process to manufacture low sulfur diesel fuels
US20050236304A1 (en) * 2004-04-22 2005-10-27 Soled Stuart L Process to manufacture lube oil products
US7776205B2 (en) 2004-04-22 2010-08-17 Exxonmobil Research And Engineering Company Process to upgrade hydrocarbonaceous feedstreams
US7780845B2 (en) 2004-04-22 2010-08-24 Exxonmobil Research And Engineering Company Process to manufacture low sulfur distillates
WO2005103206A1 (en) 2004-04-22 2005-11-03 Albemarle Netherlands B.V. Hydrotreating catalyst containing a group v metal
CN101035881B (zh) 2004-09-08 2010-10-13 国际壳牌研究有限公司 加氢裂化催化剂组合物
US7648941B2 (en) 2004-09-22 2010-01-19 Exxonmobil Research And Engineering Company Bulk bimetallic catalysts, method of making bulk bimetallic catalysts and hydroprocessing using bulk bimetallic catalysts
US8062508B2 (en) * 2005-10-26 2011-11-22 Exxonmobil Research And Engineering Company Hydroprocessing using bulk bimetallic catalysts
WO2007048593A1 (en) * 2005-10-26 2007-05-03 Albemarle Netherlands Bv Bulk hydroprocessing catalyst comprising a group viii metal and molybdenum, preparation and use thereof
CN101360560B (zh) * 2005-10-26 2014-08-13 埃克森美孚研究工程公司 利用体相双金属催化剂的加氢处理
AU2006308082B2 (en) * 2005-10-26 2011-07-07 Albemarle Netherlands Bv A bulk catalyst comprising nickel tungsten metal oxidic particles
US7686943B2 (en) * 2005-10-26 2010-03-30 Exxonmobil Research And Engineering Company Hydroprocessing using hydrothermally-prepared bulk multimetallic catalysts
EA015445B1 (ru) * 2005-10-26 2011-08-30 Альбемарл Недерландс Бв Сыпучая каталитическая композиция и способ приготовления сыпучей каталитической композиции
TWI441683B (zh) 2005-10-26 2014-06-21 Albemarle Netherlands Bv 包含金屬氧化顆粒之塊觸媒(bulk catalyst)與製備該塊觸媒之方法
US7713407B2 (en) * 2006-06-02 2010-05-11 Exxonmobil Research & Engineering Company Production of low sulfur fuels using improved hydrocracker post-treatment catalyst
KR101434695B1 (ko) 2006-09-14 2014-08-26 알베마를 네덜란드 비.브이. 폐 촉매로부터 vi-b 족 금속을 회수하는 방법
CN101553315B (zh) * 2006-10-11 2012-10-03 埃克森美孚研究工程公司 制备本体第ⅷ族/第vib族金属催化剂的方法
JP4934417B2 (ja) * 2006-12-08 2012-05-16 千代田化工建設株式会社 金属担持触媒の製造方法
CN101280216B (zh) * 2007-04-04 2011-11-30 中国石油化工股份有限公司 一种生产超低硫柴油方法
US20090107880A1 (en) * 2007-10-31 2009-04-30 Chevron U.S.A. Inc. Method of upgrading heavy hydrocarbon streams to jet products
EP2227519A2 (en) * 2007-11-19 2010-09-15 Shell Internationale Research Maatschappij B.V. Method for the start-up of a catalytic process
AU2008331798B2 (en) 2007-12-04 2012-11-01 Exxonmobil Research And Engineering Company Hydrocarbon hydroprocessing using bulk catalyst composition
EP2103347A1 (en) 2008-03-17 2009-09-23 ExxonMobil Research and Engineering Company Hydrocarbon hydroprocessing using bulk catalyst composition
CN101733120B (zh) 2009-12-23 2012-11-21 中国科学院大连化学物理研究所 一种具有层状结构的多金属本体催化剂及制法和应用
US10022712B2 (en) 2010-06-01 2018-07-17 Exxonmobil Research And Engineering Company Hydroprocessing catalysts and their production
KR20130109023A (ko) 2010-06-01 2013-10-07 엑손모빌 리서치 앤드 엔지니어링 컴퍼니 수소첨가공정 촉매 및 그의 제조
RU2473387C1 (ru) * 2011-10-06 2013-01-27 Учреждение Российской академии наук Институт проблем переработки углеводородов Сибирского отделения РАН (ИППУ СО РАН) Способ получения массивного катализатора гидропереработки тяжелых нефтяных фракций
CN103657671B (zh) 2012-08-30 2015-07-08 中国科学院大连化学物理研究所 一种二烯烃选择加氢催化剂及制备和应用
WO2015171277A1 (en) 2014-05-05 2015-11-12 Exxonmobil Research And Engineering Company Hydroprocessing catalysts and their production
JP7012640B2 (ja) 2015-10-27 2022-02-14 ダブリュー・アール・グレース・アンド・カンパニー-コーン 耐酸性触媒担体及び触媒
US10449523B2 (en) * 2015-12-15 2019-10-22 Uop Llc Crystalline bis-ammonia transition metal molybdotungstate
US10953389B2 (en) 2016-02-01 2021-03-23 Albemarle Europe Sprl Nickel containing mixed metal-oxide/carbon bulk hydroprocessing catalysts and their applications
US10995013B2 (en) * 2017-12-20 2021-05-04 Uop Llc Mixed transition metal tungstate
FR3090414B1 (fr) * 2018-12-19 2022-07-29 Ifp Energies Now Catalyseur sélectif en hydrogénolyse des éthyl-aromatiques par conservation des méthyl-aromatiques.
BR102020006833A2 (pt) * 2020-04-03 2021-10-19 Petróleo Brasileiro S.A. - Petrobras Catalisador para geração de hidrogênio e/ou gás de síntese, seu método de obtenção e uso em processo de reforma a vapor
FR3111827B1 (fr) 2020-06-29 2022-08-19 Ifp Energies Now Catalyseur trimetallique a base de nickel, molybdene et tungstene et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage
CN112570037A (zh) * 2020-11-18 2021-03-30 中国石油天然气股份有限公司 经还原后部分硫化的体相催化剂及其制备方法
CN112570038B (zh) * 2020-11-18 2024-05-28 中国石油天然气股份有限公司 经还原的体相催化剂及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3678124A (en) * 1968-10-24 1972-07-18 Gennady Arkadievich Stepanov Process for the production of mono- and diolefin hydrocarbons
FR2031818A6 (zh) * 1969-02-07 1970-11-20 Inst Francais Du Petrole
US4094820A (en) * 1977-03-11 1978-06-13 Union Oil Company Of California Manufacture of cobalt and/or nickel-molybdenum-alumina catalysts
US4153578A (en) * 1978-07-31 1979-05-08 Gaf Corporation Catalyst comprising Raney nickel with adsorbed molybdenum compound
DD145231A1 (de) * 1979-08-06 1980-12-03 Karl Becker Katalysatorkombination fuer die einstufige hydrierung von kohlenwasserstoffgemischen
US4591429A (en) * 1984-09-28 1986-05-27 Exxon Research And Engineering Co. Hydrotreating process employing catalysts comprising a supported mixture of a sulfide of a promoter metal, trivalent chromium and molybdenum or tungsten
GB8811817D0 (en) * 1988-05-19 1988-06-22 Shell Int Research Process for preparation of catalyst particles & catalyst particles thus prepared
JP2911999B2 (ja) * 1990-10-17 1999-06-28 エヌオーケー株式会社 点火制御装置
JP3676849B2 (ja) * 1995-06-10 2005-07-27 財団法人石油産業活性化センター 軽油の水素化脱硫触媒

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101173186B (zh) * 2006-11-01 2011-05-18 中国石油化工股份有限公司 一种中压加氢裂化方法

Also Published As

Publication number Publication date
CA2359906C (en) 2007-10-23
EP1150768B1 (en) 2004-05-12
WO2000041810A1 (en) 2000-07-20
HUP0105159A2 (hu) 2002-04-29
PL197285B1 (pl) 2008-03-31
AU761109B2 (en) 2003-05-29
AU2438000A (en) 2000-08-01
DK1150768T3 (da) 2004-09-20
JP5246980B2 (ja) 2013-07-24
RU2229931C2 (ru) 2004-06-10
CZ20012560A3 (cs) 2002-02-13
TR200102023T2 (tr) 2002-02-21
CZ298704B6 (cs) 2007-12-27
JP2002538943A (ja) 2002-11-19
JP2013066889A (ja) 2013-04-18
DE60010660T2 (de) 2005-05-19
CA2359906A1 (en) 2000-07-20
CN1339985A (zh) 2002-03-13
HUP0105159A3 (en) 2003-08-28
DE60010660D1 (de) 2004-06-17
KR100706364B1 (ko) 2007-04-10
ES2221612T3 (es) 2005-01-01
ATE266471T1 (de) 2004-05-15
EP1150768A1 (en) 2001-11-07
KR20010089590A (ko) 2001-10-06

Similar Documents

Publication Publication Date Title
CN1131111C (zh) 混合金属催化剂组合物、其制备和用途
CN1309476C (zh) 新型混合金属催化剂及其用途
CN1753731A (zh) 催化剂组合物的制备和应用
US6534437B2 (en) Process for preparing a mixed metal catalyst composition
CN1323998C (zh) 通过丙烷的非均相催化的气相氧化制备丙烯酸的方法
US7557062B2 (en) Catalyst composition, its preparation and use
TWI450761B (zh) 包含viii族金屬及vib族金屬鉬之整體氫化處理觸媒(bulk hydroprocessing catalyst)
CN101035881A (zh) 加氢裂化催化剂组合物
CN1092633C (zh) 用于制备甲基丙烯酸的催化剂以及使用该催化剂制备甲基丙烯酸的方法
CN1220551C (zh) 制备多相多金属氧化物材料的方法
CN1086605C (zh) 生产丙烯酸用的催化剂和使用该催化剂生产丙烯酸的方法
CN1112969C (zh) 多金属氧化物材料
CN106573228B (zh) 用于加氢转化渣油的中孔催化剂及用于制备后者的方法
CN100377781C (zh) 一种加氢处理催化剂及其制备方法
CN1124890C (zh) 一种馏分油加氢精制催化剂、其载体及制备
CN1500770A (zh) 丙烯醛气相催化氧化制备丙烯酸的方法
CN1200768C (zh) 提高沸点在石脑油范围的烃的等级的催化剂组合物
CN1109800A (zh) 多金属氧化物材料
US20050236304A1 (en) Process to manufacture lube oil products
CN105473225A (zh) 由合成气来制造混合醇
US20020065441A1 (en) Process for the hydroprocessing of a hydrocarbon feedstock using a mixed metal catalyst composition
RU2343974C2 (ru) Каталитическая композиция, ее получение и применение

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: ALBEMARLE NETHERLANDS B V

Free format text: FORMER OWNER: AKZO NOVEL N.V. CORP.

Effective date: 20050812

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20050812

Address after: Amersfoort Holland

Patentee after: Albemarle Netherlands B. V.

Address before: Holland Arnhem

Patentee before: Akzo Nobel N. V.

CX01 Expiry of patent term

Granted publication date: 20031217

CX01 Expiry of patent term