CN110234808A - 用于制作由cnt浆料网络限定的结构的系统和方法 - Google Patents

用于制作由cnt浆料网络限定的结构的系统和方法 Download PDF

Info

Publication number
CN110234808A
CN110234808A CN201780070637.XA CN201780070637A CN110234808A CN 110234808 A CN110234808 A CN 110234808A CN 201780070637 A CN201780070637 A CN 201780070637A CN 110234808 A CN110234808 A CN 110234808A
Authority
CN
China
Prior art keywords
cnt
slurry
active material
network
cnt slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780070637.XA
Other languages
English (en)
Other versions
CN110234808B (zh
Inventor
M·W·沙乌尔
E·泽拉
D·盖勒斯
B·怀特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanocomposite Technology Co Ltd
Nanocomp Technologies Inc
Original Assignee
Nanocomposite Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanocomposite Technology Co Ltd filed Critical Nanocomposite Technology Co Ltd
Publication of CN110234808A publication Critical patent/CN110234808A/zh
Application granted granted Critical
Publication of CN110234808B publication Critical patent/CN110234808B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本文提供用于制作如下这样的结构的产品和方法:其具有由碳纳米管(CNT)浆料网络所限定的主体、分散在该主体内的活性材料、以及将该活性材料粘结到主体内的CNT浆料网络的粘结剂材料,该碳纳米管(CNT)浆料网络具有超过该结构的逾渗阈值的长程连通性以允许电子在整个结构中传输。

Description

用于制作由CNT浆料网络限定的结构的系统和方法
交叉引用
本申请要求2016年11月15日提交的美国实用新型申请号15/351912的权益和优先权,其在此以其全部通过引用结合至本文。
技术领域
领域
本发明涉及用于制作碳纳米管(CNT)浆料网络的组合物和方法,并且特别涉及CNT浆料网络限定的结构。
背景技术
背景
诸如锂离子蓄电池组(LiB类)和超级电容器(SC类)的可充电储能装置(ESD类)广泛用于电子装置中。然而,ESD通常是硬质结构,其具有有限的厚度和容量的储能活性材料。此外,LiB阴极中的活性材料通常是具有很少的或没有固有电传导性的金属氧化物。为了在整个阴极活性材料中传输电子,必须采用导电添加剂。现有技术采用某些形式的炭黑(CB)作为导电添加剂,其会限制该阴极活性材料层可用的厚度。通常,较厚的活性材料层需要更多的CB以实现所需的电传导性。然而,如果CB浓度超过约5%重量,则该材料变得机械不稳定,并且在干燥时将泥裂。这限制了阴极层的厚度到小于约100微米,要求许多层以实现用于满电蓄电池(full battery)所需的容量。每个层必须具有隔离件和集流体,这会占据空间并增加重量,而并不有助于储能容量。具有较厚的活性层将减少蓄电池中的层数以及因此的隔离件数目,因而导致整个蓄电池组电池的体积和重量容量增加。
粉末形式的充分分离的、短的(长度<100微米)碳纳米管已经用作LiB阴极中的导电添加剂,并且在约为炭黑三分之一的浓度下实现了活性材料中电子传输的逾渗阈值。然而,这些粉末化CNT不能赋予机械强度的改进。
发明内容
概述
在一些实施方案中,提供一种结构。该结构包括由互连的碳纳米管(CNT)浆料网络限定的主体,该CNT浆料以足以允许电子在整个结构中传输的量提供。该结构还包括粘结剂材料,其分散在该CNT浆料网络内。该结构还包括活性材料,其分布在整个主体中以用于离子存储。
在一些实施方案中,提供一种用于形成结构的方法。该方法包括使碳纳米管(CNT)浆料与粘结剂、活性材料和溶剂混合以形成分散体。该方法还包括将该分散体施加到基底上。该方法还包括固化该分散体以形成具有在其中形成的CNT浆料网络的结构,该CNT浆料以足以允许电子经由该网络在整个结构中传输的量提供。
在一些实施方案中,提供一种储能装置。该储能装置包括外壳。该储能装置还包括位于外壳中的第一集流体。该储能装置还包括第一结构,其与该第一集流体电连通。该第一结构包括第一主体,其由互连的碳纳米管(CNT)浆料的第一网络限定,该CNT浆料以足以允许电子在整个该第一结构中传输的量提供。该第一结构还包括第一粘结剂材料,其分散在第一CNT浆料网络内。该第一结构还包括第一活性材料,其分布在整个该第一主体中以用于离子存储。
该储能装置还包括位于外壳中的第二集流体。该储能装置还包括第二结构,其与该第二集流体电连通。
该第二结构包括第二主体,其由互连的碳纳米管(CNT)浆料的第二网络限定,该CNT浆料以足以允许电子在整个该第二结构中传输的量传输。该第二结构还包括第二粘结剂材料,其分散在第二CNT浆料网络内。该第二结构还包括第二活性材料,其分布在整个该第二主体中以用于离子存储。该储能装置还包括隔离件,其插在该第一结构和第二结构之间用于抑制该第一和第二结构之间的直接电接触以及用于允许离子在该第一和第二结构之间通过。
在一些实施方案中,提供一种用于在CNT浆料上形成纳米级硅层的方法。该方法包括将一定量的CNT浆料置于化学气相沉积(CVD)反应器中。该方法还包括在该CVD反应器内使硅烷气体在该CNT浆料上流过。该方法还包括加热该CNT浆料以便用纳米级硅层涂覆该CNT浆料。
附图说明
附图的简要说明
将参考附图进一步解释当前公开的实施方案。所示的图不必按比例绘制,而代之以重点通常放在显示当前公开的实施方案的原理上。
图1是显示根据各种实施方案的用于形成由CNT浆料网络限定的结构的方法的流程图。
图2是显示根据各种实施方案的用于直接收集充分缠结的CNT材料网络的系统的图。
图3是显示根据各种实施方案的用于形成CNT浆料的方法的流程图。
图4是根据各种实施方案的由CNT浆料网络限定的结构的一部分的显微镜图像。
图5是显示根据各种实施方案的包括由CNT浆料网络所限定的结构的储能装置的框图。
图6是显示根据各种实施方案的各种磷酸锂铁阴极复合材料的电阻率的绘制图。
图7是显示根据各种实施方案的各种阴极组合物的阴极放电容量的绘制图。
图8是显示根据各种实施方案的各种阴极负载量和组合物的阴极放电容量的绘制图。
图9A是正经历挠曲的传统阴极的图像。
图9B是根据各种实施方案的正经历挠曲的由CNT浆料网络所限定的结构的图像。
图10是显示根据各种实施方案的各种阳极组合物的阳极容量的绘制图。
图11是显示根据各种实施方案的用于形成纳米级硅的方法的流程图。
如讨论中所指出的,虽然如上所述的图阐述了本公开内容,然而也预期了其他实施方案。该公开内容通过代表性而非限制性的方式呈现了示例性的实施方案。本领域技术人员可设想出落入本公开内容的原理的精神和范围内的多种其他改变以及实施方案。
详细说明
根据各种实施方案,提供了用于制作其中具有碳纳米管(CNT)浆料网络结构的改进的组合物和方法。根据各种实施方案,该组合物和方法可包括具有由CNT浆料网络限定的主体、活性材料以及将该活性材料与该CNT浆料网络粘结的粘结剂的结构。在一些实施方案中,该结构可通过固化包括分散在活性材料、溶剂和粘结剂中的CNT浆料的分散体来形成。
在一些实施方案中,该结构引入了由充分缠结的CNT的多个束形成的互连网络,其在比CB或粉末化CNT显著更低的浓度下实现了电子在整个活性材料中传输的逾渗阈值。在一些实施方案中,含有长CNT(>1mm)的支化的、成束的和充分分散的CNT浆料的充分缠结的网络可在约为炭黑1/8至1/16的浓度下提供用于LiB所必需的电和离子传导性,并且还提供机械支撑,其能够实现较厚的阴极、柔性蓄电池组以及高级的阳极和阴极化学。
如本文所用,逾渗阈值是指足以在整个结构中提供电和热传导性的导电添加剂(例如炭黑或CNT浆料)的浓度或重量百分比。即,高于该逾渗阈值时,导电添加剂充分连接以在整个结构中提供电和/或热传导性。在电传导性的情况下,互连的导电添加剂允许电子在整个活性材料中传输。相反,低于该逾渗阈值,互连的导电添加剂之间的长程连通性不足以在整个结构中提供传导性并且因而电子传输(如果有的话)被限制到活性材料的小的、局部化部分中。
本公开内容中所述的充分缠结的网络还赋予改进的机械强度,以用于实现较厚的阴极、阳极中纳米级硅添加以及结构的柔性。在一些实施方案中,该结构可包括以下的一种或多种:阴极、阳极、或储能装置ESD如蓄电池或电容器的电极。
现在参见图1,提供一种根据各种实施方案的用于形成结构的方法200。方法200包括将碳纳米管(CNT)浆料与粘结剂和活性材料以及溶剂混合201以形成分散体的步骤。方法200进一步包括将该分散体施加203到基底的步骤。方法200进一步包括固化205该分散体以形成具有在其中形成的CNT浆料网络的结构的步骤,该CNT浆料网络具有超过该结构的逾渗阈值的长程连通性。
混合201的步骤可包括例如使用高剪切混合器(如双非对称离心实验室混合器)将CNT浆料、粘结剂、活性材料和溶剂混合在一起。在一些实施方案中,混合201的步骤可包括单一步骤。在一些实施方案中,混合201的步骤可包括两个步骤。例如根据各种实施方案,混合201的步骤可通过如下方式进行:初始使该CNT浆料与粘结剂和溶剂混合以形成该分散体,并且然后添加活性材料和/或额外的溶剂到该分散体中并再次混合。在一些实施方案中,初始使该CNT浆料与粘结剂和溶剂混合可通过以任何适当的速度运行高剪切混合器如下这样的时间段来进行,该时间段是实现该CNT浆料和粘结剂在整个分散体中基本均匀分布所需的时间段。该CNT浆料、粘结剂和溶剂的分散体可制备成具有任何合适的粘度,包括例如3000厘泊或更高的任何粘度。在一些实施方案中,该分散体可表现出非常高的粘度如约20000-约250000厘泊以便实现良好的分散。这种高粘度可防止固化前长期存储期间该CNT浆料在分散体内结块。因此,在一些实施方案中,由该CNT浆料、粘结剂和溶剂形成并具有这样高粘度的分散体可在稍后的时间(例如在仓库存储和/或运输之后)与活性材料和溶剂合并,并且混合以完成该分散体。
在一些实施方案中,当加入并混合活性材料时,该分散体可被稀释以产生适于施加(203)和固化(205)的粘度的分散体。在一些实施方案中,为了促进该CNT浆料网络的形成并且提供适于施加和固化以形成该结构(例如像施加203和固化205的步骤那样)的下游稠度,该分散体可被稀释成粘度为例如约3000-约6000厘泊的分散体以用于施加和固化。在一些实施方案中,为了保留CNT浆料的基本均匀的分布以及为了保留并促进形成充分缠结的网络,该高粘性分散体可被连续稀释至期望的粘度。即,在一些实施方案中,可加入实现期望粘度(例如3000-6000厘泊之间)所需的总溶剂量的一部分并与该活性材料混合,然后可加入另一部分的溶剂并混合。这种方法可重复直到实现期望的粘度以及因此的期望的分散体。
在一些实施方案中,该CNT浆料可包括CNT。当前,存在多种如下这样的方法及其变形:其用于生长纳米管并且形成由这些纳米管制成的纱、片或电缆结构以充当用于浆料的来源材料。它们包括:(1)化学气相沉积(CVD),一种可在接近环境压力或在高压下以及在高于约400℃的温度下发生的常用方法,(2)电弧放电,一种可产生具有高完美度管的高温方法,和(3)激光烧蚀。
在一些实施方案中,CVD法或工业上已知的类似气相热解程序可用于产生适当的纳米结构,包括碳纳米管。用于CVD法的生长温度可相当低,例如约400℃-约1350℃。在一些实施方案中,碳纳米管(CNT)(单壁(SWNT)或多壁(MWNT)二者)可通过在试剂含碳气体(即气态碳源)的存在下曝露纳米级催化剂粒子来生长。特别地,可通过加入现有粒子或通过从金属-有机前体或甚至非金属催化剂原位合成该粒子来将纳米级催化剂粒子引入到试剂含碳气体中。虽然SWNT和MWNT二者都会生长,但是在某些情况中,可选择SWNT,这归因于其相对较高的生长速率以及形成绳状结构的倾向,其可在操作、热传导性、电子性能和强度方面提供优势。
根据本发明所产生的单个碳纳米管的强度可例如为约30GPa或更大。如应当理解的,强度对于缺陷是敏感的。然而,本发明中所制造的碳纳米管的弹性模量可不对缺陷敏感并且可在约1-约1.2TPa变化。此外,这些纳米管的破坏应变(其通常可以是结构敏感参数)在本发明中可为约10%到最大约25%。
此外,本发明的纳米管可具有相对小的直径。在本发明的一种实施方案中,本发明中所制造的纳米管可具有小于1nm至约30nm的范围的直径。应当理解,当与可商购的碳纳米管相比时,根据本发明一种实施方案所制成的碳纳米管可在长度上延伸(即长管)。在本发明的一种实施方案中,本发明所制造的纳米管可具有毫米(mm)范围的长度。
应当注意,虽然整个申请中提及了从碳合成纳米管,但是其他一种或多种化合物如氮化硼、MoS2或其组合可用于与本发明有关的纳米管的合成。例如应当理解,氮化硼纳米管也可生长,但是利用不同的化学前体。另外,应当注意,硼和/或氮也可用于降低单个碳纳米管中的电阻率。此外,其他方法如等离子体CVD等也可用于制造本发明的纳米管。
在一些实施方案中,该CNT浆料可包括例如以下参考图3更详细描述所形成的CNT浆料。在一些实施方案中,该CNT浆料可包括任何能够形成用于提供导电帮助的三维CNT浆料网络的CNT浆料,该三维CNT浆料网络在整个结构中具有长程电连通性(即超过该结构的逾渗阈值)同时增强该结构的机械性能和稳定性。通常,该CNT浆料可由任何CNT片、CNT条、CNT带、块收集(bulk-collected)的CNT、CNT纱、任何其他合适的充分缠结的CNT材料或其组合形成。
在一些实施方案中,该CNT材料根据各种实施方案可通过悬浮催化剂化学气相沉积(Floating Catalyst Chemical Vapor Deposition)(FC-CVD)来生产,如美国专利号8999285中所述,其内容以其全部结合至本文。CNT生产的FC-CVD法可导致非常长的纳米管(>100微米),当在气相中它们被生成时变得充分缠结。当该CNT材料离开炉的热区时,纳米管缠结、成束或聚结成互连且支化束的延伸网络,其不能通过其他CNT生产方法来获得。在一些实施方案中,通过FC-CVD所生产的互连的CNT的延伸网络通过制浆方法来保留,因此与传统炭黑和CNT粉末相比,改进了电和机械性能。
在一些实施方案中,现在参见图2,CNT材料可通过收集系统2000从FV-CVD反应器收集。在一些实施方案中,系统2000可偶联至合成室2001。合成室2001通常包括入口端2001a(可向其中供应反应气),热区2002(在这里可发生延伸长度的纳米管的合成)和出口端2001b(反应产物即延伸长度的纳米管和废气可从这里离开并收集)。在一些实施方案中,合成室2001可包括延伸穿过热区2002的石英管2003。虽然通常如图2所示,但是应当理解,其他构造也可用于合成室2001的设计。
在一些实施方案中,系统2000包括外壳2005。如图2中所示,外壳2005可为基本上气密性的,以最小化潜在有害的气载细粒从合成室2001内释放到环境中,并且防止氧气进入系统2000以及到达合成室2001。特别地,合成室2001中氧气的存在可影响完整性并且危害纳米管的生产。
系统2000还可包括外壳2005的入口2005a,以用于以基本上气密的方式接合合成室2001的出口端2001b。在一些实施方案中,当CNT材料离开合成室2001时,纳米管缠结、成束或聚结成互连且支化束的延伸网络。在一些实施方案中,这些延伸网络倾向于形成中空CNT“袋(sock)”,其形状类似于被微风吹胀的风袋。因此,CNT可通过如下方式从合成室2001收集到外壳2005内:将CNT袋2007吸入到旋转的网圆盘2009上(例如通过在圆盘2007的背面上真空抽吸)并且通过解剖刀(scalpel)或“刮刀(doctor)”片(blade)2011从旋转圆盘2009除去CNT,如图2中所示。特别地,当CNT袋2007被吸入到旋转网圆盘2009上时,CNT材料在圆盘2009上形成膜,然后刀片2011刮掉它们并且当CNT袋2007的新的部分被吸入到圆盘2009上时切断。CNT材料然后可落入或传输到收集仓2015或其他收集容器中,以用于随后的制浆。
在一些实施方案中,可以至少一种气体排气2013的一部分的方式提供真空抽吸,通过其气体和热可离开外壳2005。在一种实施方案中,可使从排气2013离开的气体流过液体如水或过滤器,以收集在排气上游2007未聚集的纳米材料。另外,排气可用火焰处理以便使排气的各种组分去能,例如可氧化反应性氢以形成水。
虽然以上描述涉及具有旋转圆盘2009收集机构的收集系统2000,但是考虑到本公开内容显而易见的是,在一些实施方案中,用于从FC-CVD环境收集和除去CNT材料而不破坏充分缠结的CNT网络的任何技术可根据各种实施方案使用。例如在一些实施方案中,收集通过FC-CVD生产的CNT材料可通过形成CNT纱或丝束(例如通过将收集的CNT加捻在一起)和/或CNT片来进行,如在美国专利号7993620和美国专利号8722171中所述,其各自的内容以其全部结合至本文。
在一些实施方案中,该CNT材料可初始包括铁或其他夹杂物。在一些实施方案中,这种夹杂物是不想要的并且可被除去,优选在制浆之前除去。例如在一些实施方案中,铁夹杂物可通过在惰性或还原性气氛中将该CNT材料加热到高温(例如约1800℃)来从该CNT材料中除去。在这种温度下,铁可从该CNT材料中蒸出并且在冷却器表面重新凝固。在一些实施方案中,这种夹杂物的除去可例如在CVD反应器如上述的FV-CVD反应器中,或任何例如在美国专利号8999285和7993620中描述的CVD反应器中进行。
在一些实施方案中,夹杂物例如铁夹杂物可通过将该CNT材料在空气中加热到约500℃并处理来除去。在一些实施方案中,例如可将该CNT材料在空气中在500℃下加热约2小时,然后用盐酸处理以除去铁夹杂物。
在一些实施方案中,该CNT浆料可由任何合适的CNT材料如任何CNT片、CNT条、CNT带、块收集的CNT、CNT纱、以上本文中所述的任何CNT材料、任何其他合适的充分缠结的CNT材料或其组合来形成。现在参见图3,提供一种根据各种实施方案的用于形成CNT浆料的方法1100。方法1100包括通过制浆机将以下的一种或多种:CNT片、CNT条、CNT带、块收集的CNT、CNT纱、任何充分缠结的CNT材料或其组合制浆1101,以形成CNT浆料的步骤。该方法还包括在第一研磨机中研磨1103该CNT浆料的至少一部分的步骤。该方法还包括在第二研磨机中解聚1105该CNT浆料的步骤。
根据各种实施方案,制浆1101的步骤可通过将条或片或直接收集的CNT材料置于制浆机中并且对该材料制浆以形成CNT浆料来进行。根据各种实施方案,制浆机可包括例如Hollander打浆机、锥形匀浆机(conical refiner)、捣磨机或任何其他合适的机械制浆装置或其组合。
根据各种实施方案,可测试CNT浆料以确认浆料粒子尺寸,并且然后用户可决定是否继续制浆。在一些实施方案中,通过脱水该CNT浆料以形成例如CNT压饼可制备用于研磨(例如像在研磨1103的步骤中那样)的该CNT浆料。
在一些实施方案中,然后可干燥该CNT浆料以用于进一步加工。干燥可例如通过空气干燥、烘箱干燥、真空烘箱干燥或通过任何其他合适的干燥方法来进行。在一些实施方案中,该CNT浆料粒子可在约90℃-约110℃的温度下在烘箱中干燥约4-约12小时。
根据各种实施方案,研磨步骤1103可通过使用研磨机来将该CNT浆料破碎成CNT浆料粒子来进行。在一些实施方案中,该CNT浆料的粒子尺寸不由研磨机改变,研磨机将CNT浆料的较大块破碎成组成的CNT浆料粒子以用于随后的干燥。在一些实施方案中,该研磨机可包括例如咖啡研磨机、工业磨谷机(burr mill)、其组合或任何其他合适的研磨装置。
在一些实施方案中,可化学改性和/或涂覆该CNT浆料以增强该CNT浆料的离子传导性。这种化学改性可包括例如聚硅氮烷、聚脲硅氮烷、导电聚合物、多胺、聚噻吩、用聚酰胺渗透、化学改性以引入羧酸盐/酯或胺官能度、任何适于增强离子传导性的改性或其组合。在一些实施方案中,化学改性和/或涂覆可在研磨1103的步骤之后,但是在解聚1105的步骤之前进行。然而,考虑到本公开内容将显而易见的是,化学改性和/或涂覆可在任何时间进行,任何时间包括例如在制浆1101之前,在制浆1101之后但在研磨1103之前,在研磨1103之后但在解聚1105之前,在解聚1105之后或其组合。考虑到本公开内容将进一步显而易见的是,在一些实施方案中,化学改性和/或涂覆可在整个制浆方法中的不同时间点分级进行和/或可应用多个改性和/或涂覆。
在第二研磨机中解聚1105该CNT浆料的步骤可通过将干燥的CNT浆料加入到第二研磨机(例如咖啡研磨机、工业磨谷机、其组合、或任何其他合适的研磨装置)中来进行。在一些实施方案中,解聚1105的步骤还包括研磨干燥的CNT浆料以破碎任何剩余的块或聚集体,由此增加该CNT浆料的体积以形成CNT浆料。在一些实施方案中,解聚1105的步骤可产生具有研磨1103的步骤中所产生的研磨的CNT浆料体积的约5-约15倍的CNT浆料(即该研磨的CNT浆料的密度为解聚的CNT浆料的约5-约15倍)。解聚1105该CNT浆料的步骤有利地为该CNT浆料提供了更大表面积和更好的分散。通过减少或消除聚集,改进了该CNT浆料的分散,并且降低了在该CNT浆料网络形成期间结块的风险。相反,如果该CNT浆料没有充分分散,则纳米管将结块,并且将需要更多的材料来互连活性材料粒子,由此减少了活性材料的量并且因此降低了该结构的性能。
再次参见图1,在一些实施方案中,该粘结剂可包括例如以下的一种或多种:聚偏二氟乙烯(PVDF)、羧甲基纤维素(CMC)、苯乙烯丁二烯橡胶(SBR)或其组合。更通常地,该粘结剂可为适于在固化的结构中将该CNT浆料粘结到活性材料的任何材料。
在一些实施方案中,该溶剂可包括例如以下的一种或多种:N-甲基-2-吡咯烷酮(NMP)、碳酸丙烯酯、水、乙醇、环己基吡咯烷酮(CHP)、1-苄基-2-吡咯烷酮(NBenP)、苯胺、乙腈、二甲基甲酰胺、二氯甲烷或其组合(例如溶剂为水和约5%-约10%乙醇的溶液)。在一些实施方案中,该溶剂可还包括pH缓冲剂,以用于优化由水性分散体制成的阳极中的离子传导性和微结构。更通常地,该溶剂可包括任何用于在其中分散粘结剂、CNT浆料以及活性材料的合适流体。
根据各种实施方案,该分散体可包括CNT浆料、粘结剂材料和溶剂的任何流体混合物。在一些实施方案中,该分散体可包括分散在溶剂中的约0.1%-约2%CNT浆料和约0.4%-约15%粘结剂材料。例如在一些实施方案中,该分散体可包括分散在NMP溶剂中的约0.8%CNT浆料和约4.8%粘结剂。在一些实施方案中,该分散体可包括分散在5%乙醇和水的溶液的溶剂中的约1.0%CNT浆料和约4.5%粘结剂。
合并步骤203可包括例如将活性材料和额外的溶剂与该分散体合并以形成另一分散体。根据各种实施方案,该活性材料可包括使用高剪切混合器(或额外的高剪切混合器)来将额外的溶剂和活性材料与该分散体合并。根据各种实施方案,该合并步骤可通过在任何合适的速度下运行高剪切混合器如下这样的时间段来进行,该时间段是实现该活性材料与该分散体在溶剂中基本均匀合并所需的。在一些实施方案中,该CNT浆料粒子可由此与活性材料粘结和缠绕(intertwine)(例如,如图3中所示以及在以下更详细描述的),由此部分地形成三维CNT浆料网络。
在一些实施方案中,该活性材料可包括例如以下的一种或多种:磷酸锂铁(LFP)、镍锰钴氧化物(NMC)、锂钴氧化物(LCO)、锂锰氧化物(LMO)、纳米级硅、石墨或其组合。更通常地,该活性材料可为适合于维持用于存储电能的正电荷或负电荷的任何材料。
在一些实施方案中,该分散体可包括分散在溶剂中的约0.1%-约2%的CNT浆料、约1%-约5%粘结剂材料和约10%-约50%的活性材料。例如在一些实施方案中,该分散体可包括分散在NMP溶剂中的约0.25%CNT浆料、约1.0%粘结剂和约50%活性材料。在另一实施方案中,该分散体可包括约0.5%CNT浆料、约2.2%粘结剂、约50%活性材料、约5%的乙醇水溶液(缓冲至约pH=3)。
将该分散体施加203到基底上的步骤可例如使用刮刀片、刀片(knife)、泥刀、分配器或其组合中的一种或多种来进行。更通常地,该施加步骤可使用能够将该分散体分布到基底上的任何合适的装置或系统来进行。
根据各种实施方案,该基底可包括任何具有表面且与该分散体化学相容的材料。在一些实施方案中,例如一种或多种的基底可包括集流体、阴极集流体、阳极集流体、铝箔或板、铜箔或板、不锈钢箔或板、任何其他合适金属的丝或箔,CNT片、带、纱、线、石墨烯、石墨形式的碳材料或其任意组合。在一些实施方案中,该基底可代替地包括特氟隆或其他片,该分散体可在其上固化并随后除去。例如在一些实施方案中,阳极或阴极集流体可与阳极或阴极结构整合,以及因此该阳极或阴极结构可在特氟隆或其他可除去的片上固化,并且然后除去以用于随后的加工和使用。
根据各种实施方案,固化205该分散体以形成具有在其中形成的CNT浆料网络的结构的步骤可通过空气干燥或加热该分散体中的一种或多种来进行。在一些实施方案中,该分散体在165℃下于空气中干燥2小时。
根据各种实施方案,一旦固化,则该结构可包括由该CNT浆料网络所限定的主体,其可在整个活性材料中三维延伸,以及粘结剂材料,其将该CNT浆料网络与该活性材料粘结。例如现在参见图4,提供了根据各种实施方案的结构300的扫描电镜图像,结构300包含CNT浆料和粘结剂网络301,粘结活性材料303到该CNT浆料和粘结剂网络301上。
CNT浆料网络301可例如从参考图3更详细描述所生产的CNT浆料形成。通常,该CNT浆料可为任何能够形成用于提供导电帮助的三维CNT浆料网络301的CNT浆料,该三维CNT浆料网络301具有在整个结构中的长程电连通性(即超过该结构的逾渗阈值)同时增强了该结构的机械性能和稳定性。
图4的图像中所示的结构300包括在NMC活性材料中的约0.5%CNT浆料和约3%PVDF粘结剂的重量的特定组合物,然而根据各种实施方案的结构不限于这种组合物。例如本文所述的任何结构可根据各种实施方案使用。此外,考虑到本公开内容显而易见的是,根据各种实施方案,可使用具有任何材料的组合、任何材料的比和/或任何宽度、高度、厚度或形状的任何组合物,只要该CNT浆料网络301的存在量足以超过结构300的逾渗阈值(例如在约0.5%CNT浆料)并且为该结构300提供增强的材料性能。
现在参见图5,根据各种实施方案,储能装置(ESD)100包括与第一活性层101相连的第一集流体102和与第二活性层103相连的第二集流体104,以及在其中插入的隔离件105。
根据各种实施方案,该第一和第二集流体102、104可包括铝箔、铜箔、不锈钢箔、任何其他合适金属的丝或箔,CNT片、带、纱、线、石墨烯、石墨形式的碳材料或其任意组合。在一些实施方案中,可不需要明显分开的集流体,并且该第一和第二集流体102、104中的一个或二者可替代为整合到该第一或第二活性层101、103中。
在一些实施方案中,该第一活性层101可与集流体102相连。该第一活性层101可包括例如活性材料、粘结剂和CNT网络。在一些实施方案中,该第一活性层可还包括一种或多种性能增强材料。在一些实施方案中,性能增强材料可包括但不限于炭黑、石墨、石墨烯、聚合物、粉末纳米管或其任意组合。在一些实施方案中,该第一活性层101可为蓄电池阴极,并且该活性材料可包括但不限于磷酸锂铁(LFP)、锂钴氧化物(LCO)、镍锰钴氧化物(NMC)、硫、包封的硫、聚合物、可存储电荷传输离子的任何其他材料或其组合。
在一些实施方案中,该第一活性层101可为超级电容器或伪电容器(pseudo-capacitor)中的电极,并且该活性材料可包括导电多孔材料如石墨、石墨烯、碳纤维、碳纳米管或其任意组合,以及表现出氧化还原行为的材料如过渡金属氧化物,其可包括但不限于氧化钌、氧化铱或氧化锰或其组合。
在一些实施方案中,该粘结剂可包括但不限于聚偏二氟乙烯(PVDF)、苯乙烯丁二烯橡胶(SBR)、羧甲基纤维素(CMC)或其他合适的可溶或可分散聚合物或其组合。
在一些实施方案中,隔离件105可防止或抑制两个集流体102、104之间直接的电接触,但是可允许适当离子通过。在一些实施方案中,隔离件可包括但不限于多孔聚乙烯(PE)和多孔聚丙烯(PP)、尼龙、玻璃纤维、氮化硼纳米管或其组合。
在一些实施方案中,该第二活性层103可与第二集流体104相连。该第二活性层103可包括活性材料、粘结剂和分散的CNT网络。在一些实施方案中,该第二活性层103还可包括性能增强材料。在一些实施方案中,该第二活性层103可包括蓄电池阳极并且该活性材料可包括但不限于石墨、硅、镓、氧化锡、氧化铁、氧化钛或其任意组合。该粘结剂可例如为聚偏二氟乙烯(PVDF)、苯乙烯丁二烯橡胶(SBR)、羧甲基纤维素(CMC)或其他合适的可分散聚合物或其组合。在一些实施方案中,该第二活性层103可包括超级电容器或伪电容器中的电极,并且该活性材料可包括导电多孔材料如石墨、石墨烯、碳纤维、碳纳米管或其任意组合。
在一些实施方案中,该第一活性层101可包括根据参考图1的上述方法构建的结构,该第一活性层101具有的重量组成为约0.5%-约20%CNT浆料(例如约1.0%-约2.0%CNT浆料)、约2%-约50%粘结剂(例如约2%-约5%粘结剂)和约30%-约97.5%活性材料。例如在一些实施方案中,该第一活性层101可具有的重量组成为约0.5%CNT浆料、3%PVDF(粘结剂)和约96.5%活性材料。
在一些实施方案中,该第二活性层103可包括根据参考图1的上述方法构建的结构,该第二活性层103具有的重量组成为约0.5%-约2%CNT浆料、约2%-约5%粘结剂和约10%-约95%纳米级硅。在一些实施方案中,该第二活性层103可进一步包括石墨,其中该第二活性层103包括约7.5%-约87.5%的石墨。例如在一些实施方案中,该第二活性层103可具有的重量组成为约1%CNT浆料、约4.5%CMC(粘结剂)、约10%纳米级硅和约84.5%石墨。
图6是显示根据各种实施方案的各种磷酸锂铁阴极复合材料的电阻率(以欧姆-厘米表示)的绘制图。特别地,图6比较了如下材料的电阻率:具有分散在磷酸锂铁(LFP)活性材料中的约1%炭黑重量的传统阴极复合材料,具有分散在LFP中的约0.5%和约0.9%CNT粉末的传统阴极复合材料,以及根据本公开内容的具有分散在LFP中的约0.1%-约0.6%CNT浆料的阴极复合材料。如图6中所示,与传统的炭黑和粉末CNT复合材料相比,约0.6%CNT浆料阴极复合材料在较低浓度(约0.6%重量,相较于CNT粉末的约0.9%和炭黑的1%)下表现出显著降低的电阻率(例如约1欧姆-厘米,相较于CNT粉末的约10欧姆-厘米和炭黑的约30欧姆-厘米)。有利地,降低的电阻率允许阴极更快的充放电并且更低浓度的导电助剂允许在阴极中包括额外的活性材料,由此增加阴极容量。
在一些实施方案中,形成该CNT浆料网络的CNT浆料可有利地超过该结构的逾渗阈值。图7显示了根据各种实施方案的各种镍-锰-钴(NMC)阴极组合物的阴极容量(以mAh/g表示)的绘制图。特别地,图7显示了如下材料在各种阴极放电速率下的阴极容量:分散在NMC中的4%炭黑的传统复合材料,在NMC中的约0.25%CNT浆料的复合材料,在NMC中的约0.5%CNT浆料的复合材料以及在NMC中的约0.75%CNT浆料的复合材料。如图7中所示,约0.25%CNT浆料复合材料未达到完全的逾渗阈值并因此在2C放电速率下表现出约50mAh/g的相对低容量。然而,在较低放电速率如C/2和C/10下,约0.25%CNT浆料复合材料能够匹配现有4%炭黑技术的性能。如图7中进一步所示,其他复合材料中的每一个在2C放电速率下表现出约110mAh/g的类似容量,但是约0.5%CNT浆料复合材料和约0.75%CNT浆料复合材料在较低放电速率如C/10下表现出较高的容量(约140mAh,相较于炭黑的约120mAh)。因此,如图7中所示,与传统的炭黑组合物相比,针对2C放电速率(高功率应用),用CNT浆料网络形成的结构可在导电添加剂的1/8浓度(即,约0.5%vs.约4%)下实现逾渗阈值。对于低功率应用而言,1/16的浓度是足够的。
在一些实施方案中,由于该CNT浆料网络赋予阴极改进的机械性能和降低的电阻率,因此可形成具有较高活性材料负载量的阴极。图8是显示根据各种实施方案的各种阴极负载量的阴极容量(以mAh/g表示)的绘制图,该阴极负载量通过以毫克/平方厘米(mg/sqcm)表示的阴极材料密度来指出。特别地,图8表示如下材料在各种阴极放电速率下的阴极容量:活性材料负载量为约21mg/sq cm的分散在NMC中的约2.5%炭黑和约1.5%石墨的传统复合材料,活性材料负载量为约12mg/sq的在NMC中约0.5%CNT浆料的复合材料,以及活性材料负载量为约21mg/sq的NMC中的约0.5%CNT浆料的复合材料。如图8中所示,归因于约2.5%炭黑和约1.5%石墨的传统复合材料的较大厚度,传统复合材料在较高放电速率2C下被击穿至阴极容量为约40mAh/g。相反,较厚的约0.5%CNT浆料复合材料表现出的阴极容量很大程度上与较薄的约0.5%CNT浆料复合材料一致(在放电速率2C下为约110mAh/g,相较于约12mg/sq cm复合材料的约120mAh/g)。
发生阴极性能改进是因为该CNT浆料网络增强了活性材料层的电传导性以及机械稳定性。阴极活性材料(AM)是固有非导电性的,并且需要导电添加剂(CA)以将电荷输入和输出AM。传统CA技术是炭黑(CB)。然而,CB不会赋予材料任何机械强度,因此随着AM变厚,阴极变得不太机械稳定,因为需要更多的CB以达到逾渗阈值,并且在某些时刻阴极活性层脱落。与此相冲突的是,在蓄电池功能中令人期望的是使活性层尽可能厚从而降低电池中被非活性材料如隔离件和集流体所占据的体积。然而,增加CB的量(例如从约4%到约5%CB或归因于增加的厚度)将电极拉伸强度急剧降低到接近零。在高于约5%CB浓度下,阴极材料在干燥时泥裂。有利地,本文公开的CNT浆料网络不仅赋予更好的电传导性以及因此需要较少的导电添加剂,而且还增强了机械稳定性。因此,本公开内容的CNT浆料网络允许更厚的阴极而没有阴极的机械和电破坏。
现在参见图9A-9B,通过该CNT浆料网络赋予的增强的机械稳定性进一步允许阴极和阳极的更大柔性以及因此的使用这种阳极和阴极的任何整体蓄电池的更大柔性。蓄电池柔性可有助于广泛的应用,包括可穿戴电子设备和个人电脑。然而,为了获得蓄电池中真实的柔性,阳极和阴极必须是机械上结实的和柔性的。图9A是具有在LFP中约5%炭黑添加剂的传统阴极的图像,和图9B是本公开内容的具有在LFP中约1%CNT浆料的阴极结构图像。如图9A中所示,传统阴极当围绕2.5cm直径销钉(dowel)缠绕时开裂。相反,如图9B中所示,约1%CNT浆料阴极不开裂,甚至当围绕0.32cm销钉缠绕时也是如此。考虑到本公开内容将显而易见的是,可根据各种实施方案使用包括CNT浆料的任何其他组合物。通常,粘结剂和CNT增加的百分比可提供额外的柔性,虽然很可能在柔性和容量之间存在权衡。然而,在所有组合物中,包含CNT浆料材料可赋予蓄电池活性材料通过传统炭黑或CNT粉末添加剂无法获得的柔性和强度。
在一些实施方案中,可提供具有穿过其中延伸的CNT浆料网络的阳极。图10是显示根据各种实施方案的各种阳极组合物随时间的阳极容量(以mAh/g表示)的绘制图。特别地,图10表示了如下材料随充电/放电循环变化的阳极容量:石墨中约10%纳米级硅(Si)的传统复合材料和根据各种实施方案在石墨中约10%纳米级硅和约1%CNT浆料的复合材料,全石墨阳极和约10%硅纳米材料阳极并列具有最大理论容量。约10%Si阳极的理论容量基于假定的Li15Si4的最大Li-Si化学计量比来计算。如图10中所示,通过在所有11个测试循环内维持较高的阳极容量以及针对约10%硅阳极的在第二周期处甚至接近理论最大阳极容量,包括约1%CNT浆料的阳极胜过无CNT浆料的复合材料。这进一步显示了加入CNT浆料可用于增强涂层的电和机械性能二者,甚至当包括更大表面积纳米粒子如硅时。
作为背景,硅是一种用于在LiB阳极中存储锂金属的吸引人的材料,这归因于其高理论容量:Li22Si5为4200mAh/g,或Li15Si4为3572mAh/g,相较于理论容量仅为372mAh/g的传统阳极技术(即石墨)。然而,关于将硅加入到LiB阳极中的一个持续问题是容量随着充电/放电循环而衰减。该衰减归因于在锂化/脱锂期间3倍至4倍的膨胀/收缩导致的Si的开裂/粉化。这种开裂在利用纳米级Si时不发生,该纳米级硅定义为直径或厚度小于约50纳米的硅。然而,纳米级Si的生产通常非常昂贵、非常困难或二者都有并且在将其引入到可涂覆且随后机械上结实的涂层方面产生归因于其高表面积的挑战。图10中可看出的随循环可见的容量衰减据信归因于存在显著分数的大于约50nm的Si粒子。
现在参见图11,提供化学气相沉积(CVD)方法1200以形成纳米级硅材料。该方法包括将一定量的CNT浆料放置1201于CVD反应器中的步骤。该方法还包括这样的步骤1203:在该CVD反应器内使硅烷气体在CNT浆料上流过。该方法还包括这样的步骤1205:加热该CVD反应器以便用纳米级硅层涂覆该CNT浆料。
将一定量的CNT浆料放置1201于CVD反应器中的步骤可例如通过将如上文所述生产的一定量的CNT浆料或一定量的另一CNT纳米粒子置于CVD反应器中来进行。根据各种实施方案,该CVD反应器可包括以下的一种或多种:冷壁流化床反应器、热壁电阻式加热炉或其组合。
在CVD反应器内使硅烷气体在CNT浆料上流动1203经过的步骤可例如通过供给硅烷气体流(例如经由压缩气体管线、气体瓶或任何其他合适的气体流动机构)到该CVD反应器中来进行。在一些实施方案中,该流动1203的步骤还可包括使硅烷气体与混合物中的一种或多种额外气体一起流动。例如在一些实施方案中,在CVD反应器内可使氢、硅烷和氩的混合物在CNT浆料上流过。
加热该CVD反应器以便用纳米级硅层涂覆该CNT浆料的加热1205的步骤可例如通过感应加热或微波加热来加热冷壁石英炉而进行或通过电阻加热反应器来加热热壁电阻式加热炉而进行。考虑到本公开内容应当理解,根据各种实施方案,期望的涂层厚度和均匀性可通过改变浆料温度、炉压和输入气体组成及流速来控制。
本公开内容的各种方面可单独使用、组合使用,或以前述实施方案中未具体讨论的多种排列方式来使用,并且因此其应用不限于前述说明书所述的或附图所示的组分的细节和排列方式。例如在一种实施方案中描述的方面可以任何方式与其他实施方案所述的方面组合。同样,本文所用的措词和术语是出于说明性的目的,并且不应当被认为是限制性的。
在权利要求中使用序数术语如“第一”、“第二”、“第三”等来改变权利要求要素本身并不隐含一个权利要求要素相比于另一个的任何优先、在先或次序,或方法以时间次序进行,而仅仅是用作区分具有某个名称的一个权利要求要素与具有相同名称的另一要素(然而对于使用顺序术语而言)的标签,以区分该权利要求元素。

Claims (32)

1.一种结构,其包含:
由互连的碳纳米管(CNT)浆料网络限定的主体,该CNT浆料以足以允许电子在整个结构中传输的量提供;
粘结剂材料,其分散在该CNT浆料网络内;和
活性材料,其分布在整个主体中以用于离子存储。
2.权利要求1的结构,其中该CNT浆料网络为该结构的约0.1%-约20.0%重量。
3.权利要求1的结构,其中该粘结剂为该结构的约2%-约50%重量。
4.权利要求1的结构,其进一步包括添加剂,该添加剂包括分散在该主体内的以下的一种或多种:炭黑、石墨、石墨烯、导电聚合物、提供与该CNT浆料网络的协同导电性能的任何导电材料或其组合。
5.权利要求4的结构,其中该添加剂为该结构的约0.5%-约90%重量。
6.权利要求1的结构,其中该粘结剂材料包括以下的一种或多种:聚偏二氟乙烯(PVDF)、羧甲基纤维素(CMC)、苯乙烯丁二烯橡胶(SBR)、能够将该活性材料与该CNT浆料网络粘结的任何粘结剂材料或其组合。
7.权利要求1的结构,该结构具有约12毫克/平方厘米或更大的固体负载量。
8.权利要求1的结构,其中该结构限定了阴极。
9.权利要求8的结构,其中该活性材料包括以下的一种或多种:磷酸锂铁(LFP)、镍锰钴氧化物(NMC)、锂钴氧化物(LCO)、锂锰氧化物(LMO)、硫、包封的硫、任何阴极活性材料或其组合。
10.权利要求1的结构,其中该结构限定了阳极。
11.权利要求10的结构,其中该活性材料包括以下的一种或多种:硅纳米粒子、硅纳米线、纳米级碳上的硅涂层、任何纳米级硅、任何阳极活性材料或其组合,其中该纳米级碳包括以下的一种或多种:碳纳米管、石墨烯、石墨、炭黑、任何纳米级碳或其组合。
12.权利要求11的结构,其中该纳米级硅材料为该结构的约10%-约95%重量。
13.权利要求1的结构,其中该结构限定了电容器、伪电容器或超级电容器中的一种或多种。
14.一种形成结构的方法,其包括:
使碳纳米管(CNT)浆料与粘结剂、活性材料和溶剂混合以形成分散体;
将该分散体施加到基底上;和
固化该分散体以形成具有在其中形成的CNT浆料网络的结构,该CNT浆料以足以允许电子经由该网络在整个结构中传输的量提供。
15.权利要求14的方法,其中该混合的步骤包括:
初始使碳纳米管(CNT)浆料与粘结剂和溶剂混合;和
其后加入活性材料到该CNT浆料、粘结剂和溶剂中以形成该分散体。
16.权利要求15的方法,其中该其后加入的步骤进一步包括用额外的溶剂稀释该分散体以形成分散体。
17.权利要求14的方法,该分散体具有约3000厘泊或更大的粘度。
18.权利要求14的方法,其进一步包括:
通过制浆机将以下的一种或多种:CNT片、CNT条、CNT带、块收集的CNT、CNT纱、任何充分缠结的CNT材料或其组合制浆,以形成CNT浆料;
在第一研磨机中研磨该CNT浆料的至少一部分;和
在第二研磨机中解聚该CNT浆料。
19.权利要求18的方法,其进一步包括化学改性或涂覆该CNT浆料以增强该CNT浆料的离子传导性。
20.权利要求19的方法,该化学改性或涂覆包括以下的一种或多种:聚硅氮烷、聚脲硅氮烷、导电聚合物、多胺、聚噻吩、用聚酰胺渗透、化学改性以引入羧酸盐/酯或胺官能度、用于增强离子传导性的化学改性或其组合。
21.权利要求14的方法,其中该粘结剂材料包括以下的一种或多种:聚偏二氟乙烯(PVDF)、羧甲基纤维素(CMC)、苯乙烯丁二烯橡胶(SBR)、能够将该活性材料与该CNT浆料网络粘结的任何粘结剂材料或其组合。
22.权利要求14的方法,其中该溶剂包括以下的一种或多种:N-甲基-2-吡咯烷酮(NMP)、水、乙醇、环己基吡咯烷酮(CHP)、1-苄基-2-吡咯烷酮(NBenP)、苯胺、乙腈、二甲基甲酰胺、二氯甲烷、pH缓冲剂、能够与该活性材料、粘结剂和CNT浆料形成分散体的任何溶剂或其组合。
23.权利要求14的方法,其中该活性材料包括以下的一种或多种:磷酸锂铁(LFP)、镍锰钴氧化物(NMC)、锂钴氧化物(LCO)、锂锰氧化物(LMO)、硫、包封的硫、硅纳米粒子、硅纳米线、纳米级碳上的硅涂层、任何纳米级硅、任何阴极活性材料、任何阳极活性材料或其组合。
24.一种储能装置,其包括:
外壳;
位于该外壳中的第一集流体;
第一结构,其与该第一集流体电连通,并且包括:
第一主体,其由互连的碳纳米管(CNT)浆料的第一网络限定,该CNT浆料以足以允许电子在整个该第一结构中传输的量提供,
第一粘结剂材料,其分散在第一CNT浆料网络内,和
第一活性材料,其分布在整个该第一主体中以用于离子存储;
位于该外壳中的第二集流体;
第二结构,其与该第二集流体电连通,并且包括:
第二主体,其由互连的碳纳米管(CNT)浆料的第二网络限定,该CNT浆料以足以允许电子在整个该第二结构中传输的量提供,
第二粘结剂材料,其分散在第二CNT浆料网络内,和
第二活性材料,其分布在整个该第二主体中以用于离子存储;和
隔离件,其插在该第一结构和该第二结构之间用于抑制该第一和第二结构之间的直接电接触,以及用于允许离子在该第一和第二结构之间通过。
25.权利要求24的储能装置,其中第一和第二集流体各自包括以下的一种或多种:金属、CNT片、CNT纱、分散的CNT网络、石墨、石墨烯、炭黑、粘结剂或其组合。
26.权利要求24的储能装置,其中该第一结构限定了阴极并且该第二结构限定了阳极。
27.权利要求24的储能装置,其中该第一集流体与该第一结构整体地形成并且该第二集流体与该第二结构整体地形成。
28.一种在CNT浆料上形成纳米级硅层的方法,其包括:
将一定量的CNT浆料置于化学气相沉积(CVD)反应器中;
在该CVD反应器内使硅烷气体在该CNT浆料上流过;和
加热该CNT浆料以便用纳米级硅层涂覆该CNT浆料。
29.权利要求28的方法,其进一步包括在该CVD反应器内使氩气或氢气中的至少一种与硅烷气体在该CNT浆料上流过。
30.权利要求28的方法,其中该纳米级硅层涂层小于50纳米。
31.权利要求28的方法,其中该CVD反应器为热壁电阻式加热炉,并且该加热的步骤进一步包括电阻式加热该CVD反应器。
32.权利要求28的方法,其中该CVD反应器为冷壁流化床反应器,并且该加热该CNT浆料的步骤进一步包括感应加热或微波加热中的至少之一。
CN201780070637.XA 2016-11-15 2017-11-07 用于制作由cnt浆料网络限定的结构的系统和方法 Active CN110234808B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/351,912 US10581082B2 (en) 2016-11-15 2016-11-15 Systems and methods for making structures defined by CNT pulp networks
US15/351,912 2016-11-15
PCT/US2017/060277 WO2018093603A1 (en) 2016-11-15 2017-11-07 Systems and methods for making structures defined by cnt pulp networks

Publications (2)

Publication Number Publication Date
CN110234808A true CN110234808A (zh) 2019-09-13
CN110234808B CN110234808B (zh) 2022-02-08

Family

ID=62108758

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780070637.XA Active CN110234808B (zh) 2016-11-15 2017-11-07 用于制作由cnt浆料网络限定的结构的系统和方法

Country Status (7)

Country Link
US (2) US10581082B2 (zh)
EP (1) EP3541992B1 (zh)
JP (2) JP7197497B2 (zh)
KR (2) KR102461423B1 (zh)
CN (1) CN110234808B (zh)
ES (1) ES2908259T3 (zh)
WO (1) WO2018093603A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023184098A1 (zh) * 2022-03-28 2023-10-05 宁德时代新能源科技股份有限公司 含硅负极活性材料、以及包含其的负极极片、二次电池及用电装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7133130B2 (ja) * 2018-10-09 2022-09-08 トヨタ自動車株式会社 二次電池用電極および二次電池
PL4009400T3 (pl) 2019-09-30 2024-04-22 Lg Energy Solution, Ltd. Kompozytowy materiał aktywny anody, sposób jego wytwarzania oraz zawierająca go anoda
CN111653321A (zh) * 2020-06-17 2020-09-11 上海汽车集团股份有限公司 燃料电池催化剂活性的计算装置、计算方法及电子设备
CN112436128A (zh) * 2020-12-01 2021-03-02 上海纳米技术及应用国家工程研究中心有限公司 用于锂离子电池负极的锰钴氧复合二维碳材料的制备方法
KR20240101028A (ko) * 2022-12-23 2024-07-02 주식회사 엘지에너지솔루션 음극 슬러리, 이를 포함하는 음극 및 리튬 이차 전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5810934A (en) * 1995-06-07 1998-09-22 Advanced Silicon Materials, Inc. Silicon deposition reactor apparatus
CN101243566A (zh) * 2005-09-06 2008-08-13 Lg化学株式会社 包含碳纳米管的复合物粘合剂以及使用该粘合剂的锂二次电池
US20100178543A1 (en) * 2007-04-10 2010-07-15 The Regents Of The University Of California Charge storage devices containing carbon nanotube films as electrodes and charge collectors
US20100310941A1 (en) * 2009-06-05 2010-12-09 Prashant Nagesh Kumta Compositions Including Nano-Particles and a Nano-Structured Support Matrix and Methods of preparation as reversible high capacity anodes in energy storage systems
US20110104551A1 (en) * 2009-11-05 2011-05-05 Uchicago Argonne, Llc Nanotube composite anode materials suitable for lithium ion battery applications

Family Cites Families (220)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2962386A (en) 1957-03-08 1960-11-29 Union Carbide Corp Method of making impervious carbon articles
US3109712A (en) 1960-01-11 1963-11-05 Plessey Co Ltd Bodies and shapes of carbonaceous materials and processes for their production
US3090876A (en) 1960-04-13 1963-05-21 Bell Telephone Labor Inc Piezoelectric devices utilizing aluminum nitride
US3462289A (en) 1965-08-05 1969-08-19 Carborundum Co Process for producing reinforced carbon and graphite bodies
US3706193A (en) 1971-04-19 1972-12-19 Electrospin Corp Spinning head
BE789764A (fr) 1971-10-07 1973-02-01 Hamel Ag Dispositif a filer ou a retordre et son procede d'utilisation
DE2730367A1 (de) * 1977-07-05 1979-01-18 Siemens Ag Verfahren zum passivieren von halbleiterelementen
US4384944A (en) 1980-09-18 1983-05-24 Pirelli Cable Corporation Carbon filled irradiation cross-linked polymeric insulation for electric cable
JPS5872036A (ja) 1981-10-26 1983-04-28 Satake Eng Co Ltd 色彩選別機の選別装置
DE3332126T1 (de) 1982-02-12 1984-01-26 Arthur L. 07092 Mountainside N.J. Fingerhut Verbund-waermedaemmaterial
US4468922A (en) 1983-08-29 1984-09-04 Battelle Development Corporation Apparatus for spinning textile fibers
US4572813A (en) 1983-09-06 1986-02-25 Nikkiso Co., Ltd. Process for preparing fine carbon fibers in a gaseous phase reaction
JPS62213126A (ja) 1986-03-13 1987-09-19 Fujitsu Ltd マイクロ波プラズマ処理装置
US5168004A (en) 1988-08-25 1992-12-01 Basf Aktiengesellschaft Melt-spun acrylic fibers possessing a highly uniform internal structure which are particularly suited for thermal conversion to quality carbon fibers
JPH05246786A (ja) * 1991-07-02 1993-09-24 L'air Liquide コア粉体の存在下で化学蒸着法により珪素ベース超微粒子をコア粉に均一に塗布する方法
JP2687794B2 (ja) 1991-10-31 1997-12-08 日本電気株式会社 円筒状構造をもつ黒鉛繊維
US5428884A (en) 1992-11-10 1995-07-04 Tns Mills, Inc. Yarn conditioning process
EP0651452A1 (en) 1993-11-01 1995-05-03 Osaka Gas Co., Ltd. Porous carbonaceous material and a method for producing the same
US5488752A (en) 1993-12-23 1996-02-06 Randolph; Norman C. Heat conducting apparatus for wiper blades
JPH0835069A (ja) 1994-07-22 1996-02-06 Kao Corp 成膜装置
US6036774A (en) 1996-02-26 2000-03-14 President And Fellows Of Harvard College Method of producing metal oxide nanorods
US5874159A (en) 1996-05-03 1999-02-23 E. I. Du Pont De Nemours And Company Durable spunlaced fabric structures
US6700550B2 (en) 1997-01-16 2004-03-02 Ambit Corporation Optical antenna array for harmonic generation, mixing and signal amplification
US6376971B1 (en) 1997-02-07 2002-04-23 Sri International Electroactive polymer electrodes
US6143412A (en) 1997-02-10 2000-11-07 President And Fellows Of Harvard College Fabrication of carbon microstructures
US6683783B1 (en) 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
AU6545698A (en) 1997-03-07 1998-09-22 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
JP2002515847A (ja) 1997-05-29 2002-05-28 ウィリアム・マーシュ・ライス・ユニバーシティ 単層カーボンナノチューブ類から形成された炭素繊維類
US6106913A (en) 1997-10-10 2000-08-22 Quantum Group, Inc Fibrous structures containing nanofibrils and other textile fibers
US6110590A (en) 1998-04-15 2000-08-29 The University Of Akron Synthetically spun silk nanofibers and a process for making the same
US6426134B1 (en) 1998-06-30 2002-07-30 E. I. Du Pont De Nemours And Company Single-wall carbon nanotube-polymer composites
JP4076280B2 (ja) 1998-08-12 2008-04-16 株式会社タイカ 薄膜抵抗発熱体及びそれを用いたトナーの加熱定着用部材
KR100775878B1 (ko) 1998-09-18 2007-11-13 윌리엄 마쉬 라이스 유니버시티 단일벽 탄소 나노튜브의 용매화를 용이하게 하기 위한 단일벽 탄소 나노튜브의 화학적 유도체화 및 그 유도체화된 나노튜브의 사용 방법
US6630772B1 (en) 1998-09-21 2003-10-07 Agere Systems Inc. Device comprising carbon nanotube field emitter structure and process for forming device
JP4619539B2 (ja) 1998-11-03 2011-01-26 ウィリアム・マーシュ・ライス・ユニバーシティ 高温一酸化炭素気体からの単層カーボンナノチューブの結晶核形成および成長
US7476889B2 (en) 1998-12-07 2009-01-13 Meridian Research And Development Radiation detectable and protective articles
US6265466B1 (en) 1999-02-12 2001-07-24 Eikos, Inc. Electromagnetic shielding composite comprising nanotubes
US6333016B1 (en) 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes
US6790426B1 (en) 1999-07-13 2004-09-14 Nikkiso Co., Ltd. Carbonaceous nanotube, nanotube aggregate, method for manufacturing a carbonaceous nanotube
US6299812B1 (en) 1999-08-16 2001-10-09 The Board Of Regents Of The University Of Oklahoma Method for forming a fibers/composite material having an anisotropic structure
US6491891B1 (en) 1999-09-10 2002-12-10 Ut-Battelle, Inc. Gelcasting polymeric precursors for producing net-shaped graphites
US6923946B2 (en) 1999-11-26 2005-08-02 Ut-Battelle, Llc Condensed phase conversion and growth of nanorods instead of from vapor
DE60033692T2 (de) 1999-12-07 2007-11-08 William Marsh Rice University, Houston Orientierte, in eine Polymer-Matrix eingebettete Nanofasern
JP4003110B2 (ja) 2000-01-17 2007-11-07 アイシン精機株式会社 熱電デバイス
SE0001123L (sv) 2000-03-30 2001-10-01 Abb Ab Kraftkabel
US6495116B1 (en) 2000-04-10 2002-12-17 Lockheed Martin Corporation Net shape manufacturing using carbon nanotubes
DE60143722D1 (de) 2000-06-01 2011-02-03 Panasonic Corp Verfahren zur Herstellung eines wärmeleitenden Substrats mit Leiterrahmen und thermisch leitender Platte
US6908572B1 (en) 2000-07-17 2005-06-21 University Of Kentucky Research Foundation Mixing and dispersion of nanotubes by gas or vapor expansion
US6519835B1 (en) 2000-08-18 2003-02-18 Watlow Polymer Technologies Method of formable thermoplastic laminate heated element assembly
US6682677B2 (en) 2000-11-03 2004-01-27 Honeywell International Inc. Spinning, processing, and applications of carbon nanotube filaments, ribbons, and yarns
CN100457609C (zh) 2000-11-13 2009-02-04 国际商业机器公司 单壁碳纳米管的制造方法及应用
US6708572B2 (en) 2000-12-22 2004-03-23 General Electric Company Portal trace detection systems for detection of imbedded particles
US7052668B2 (en) 2001-01-31 2006-05-30 William Marsh Rice University Process utilizing seeds for making single-wall carbon nanotubes
AT409637B (de) 2001-03-16 2002-09-25 Electrovac Ein ccvd-verfahren zur herstellung von röhrenförmigen kohlenstoff-nanofasern
WO2002076724A1 (en) 2001-03-26 2002-10-03 Eikos, Inc. Coatings containing carbon nanotubes
US6723299B1 (en) 2001-05-17 2004-04-20 Zyvex Corporation System and method for manipulating nanotubes
US7288238B2 (en) 2001-07-06 2007-10-30 William Marsh Rice University Single-wall carbon nanotube alewives, process for making, and compositions thereof
US7125502B2 (en) 2001-07-06 2006-10-24 William Marsh Rice University Fibers of aligned single-wall carbon nanotubes and process for making the same
US20030036877A1 (en) 2001-07-23 2003-02-20 Schietinger Charles W. In-situ wafer parameter measurement method employing a hot susceptor as a reflected light source
US6706402B2 (en) 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
US6835591B2 (en) 2001-07-25 2004-12-28 Nantero, Inc. Methods of nanotube films and articles
FR2828500B1 (fr) 2001-08-08 2004-08-27 Centre Nat Rech Scient Procede de reformage de fibres composites et applications
US7001556B1 (en) 2001-08-16 2006-02-21 The Board Of Regents University Of Oklahoma Nanotube/matrix composites and methods of production and use
US6611039B2 (en) 2001-09-28 2003-08-26 Hewlett-Packard Development Company, L.P. Vertically oriented nano-fuse and nano-resistor circuit elements
US7147966B2 (en) 2001-11-30 2006-12-12 The Trustees Of Boston College Coated carbon nanotube array electrodes
JP3911410B2 (ja) 2001-11-30 2007-05-09 富士重工業株式会社 複合材製品の製造方法
US6884861B2 (en) 2001-12-10 2005-04-26 The United States Of America As Represented By The Secretary Of The Navy Metal nanoparticle thermoset and carbon compositions from mixtures of metallocene-aromatic-acetylene compounds
US20030134916A1 (en) 2002-01-15 2003-07-17 The Regents Of The University Of California Lightweight, high strength carbon aerogel composites and method of fabrication
US7423084B2 (en) 2002-02-15 2008-09-09 Dsm Ip Assets B.V. Method of producing high strength elongated products containing nanotubes
CN1176014C (zh) 2002-02-22 2004-11-17 清华大学 一种直接合成超长连续单壁碳纳米管的工艺方法
US6764628B2 (en) 2002-03-04 2004-07-20 Honeywell International Inc. Composite material comprising oriented carbon nanotubes in a carbon matrix and process for preparing same
US7192642B2 (en) 2002-03-22 2007-03-20 Georgia Tech Research Corporation Single-wall carbon nanotube film having high modulus and conductivity and process for making the same
KR100549140B1 (ko) 2002-03-26 2006-02-03 이 아이 듀폰 디 네모아 앤드 캄파니 일렉트로-브로운 방사법에 의한 초극세 나노섬유 웹제조방법
EP1461390A1 (en) 2002-04-01 2004-09-29 Carbon Nanotechnologies, Inc. Composite of single-wall carbon nanotubes and aromatic polyamide and process for making the same
CA2584508A1 (en) 2002-05-09 2003-11-09 Institut National De La Recherche Scientifique Method for producing single-wall carbon nanotubes
US6854602B2 (en) 2002-06-04 2005-02-15 Conocophillips Company Hydrogen-selective silica-based membrane
US7776444B2 (en) 2002-07-19 2010-08-17 University Of Florida Research Foundation, Inc. Transparent and electrically conductive single wall carbon nanotube films
JP4547852B2 (ja) 2002-09-04 2010-09-22 富士ゼロックス株式会社 電気部品の製造方法
CN100411979C (zh) 2002-09-16 2008-08-20 清华大学 一种碳纳米管绳及其制造方法
WO2004109837A2 (en) 2002-10-31 2004-12-16 Carbon Nanotechnologies, Inc. Fuel cell electrode comprising carbon nanotubes
CA2505996A1 (en) 2002-11-15 2004-06-03 Mcgill University Method and apparatus for producing single-wall carbon nanotubes
US20060252853A1 (en) 2002-11-18 2006-11-09 Rensselaer Polytechnic Institute Nanotube polymer composite and methods of making same
US20050002851A1 (en) 2002-11-26 2005-01-06 Mcelrath Kenneth O. Carbon nanotube particulates, compositions and use thereof
US20040265212A1 (en) 2002-12-06 2004-12-30 Vijay Varadan Synthesis of coiled carbon nanotubes by microwave chemical vapor deposition
US20060272701A1 (en) 2002-12-09 2006-12-07 Pulickel Ajayan Nanotube-organic photoelectric conversion device and methods of making same
TWI265541B (en) 2002-12-25 2006-11-01 Hon Hai Prec Ind Co Ltd Plasma display
WO2004065294A2 (en) 2003-01-17 2004-08-05 Duke University Systems and methods for producing single-walled carbon nanotubes (swnts) on a substrate
US6764874B1 (en) 2003-01-30 2004-07-20 Motorola, Inc. Method for chemical vapor deposition of single walled carbon nanotubes
JP2004315297A (ja) 2003-04-17 2004-11-11 Misuzu Kogyo:Kk ナノカーボンコンポジット材及びその製造方法
US6842328B2 (en) 2003-05-30 2005-01-11 Joachim Hossick Schott Capacitor and method for producing a capacitor
KR100584671B1 (ko) 2004-01-14 2006-05-30 (주)케이에이치 케미컬 황 또는 금속 나노입자를 접착제로 사용하는 탄소나노튜브또는 탄소나노파이버 전극의 제조방법 및 이에 의해제조된 전극
ES2537515T3 (es) 2003-06-11 2015-06-09 Axson Services Gmbh Célula fotovoltaica que comprende nanotubos de carbono que tienen en sus superficies un pigmento
US7118941B2 (en) 2003-06-25 2006-10-10 Intel Corporation Method of fabricating a composite carbon nanotube thermal interface device
US7112472B2 (en) 2003-06-25 2006-09-26 Intel Corporation Methods of fabricating a composite carbon nanotube thermal interface device
US20050104258A1 (en) 2003-07-02 2005-05-19 Physical Sciences, Inc. Patterned electrospinning
GB0316367D0 (en) 2003-07-11 2003-08-13 Univ Cambridge Tech Production of agglomerates from gas phase
KR100549698B1 (ko) 2003-07-12 2006-02-08 영 욱 김 활성탄 섬유를 이용한 발열구조 및 이를 적용한 전열기구
US7182929B1 (en) 2003-08-18 2007-02-27 Nei, Inc. Nanostructured multi-component and doped oxide powders and method of making same
US7109581B2 (en) 2003-08-25 2006-09-19 Nanoconduction, Inc. System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler
JP2005075672A (ja) 2003-08-29 2005-03-24 Seiko Epson Corp 成形体
US7375369B2 (en) 2003-09-08 2008-05-20 Nantero, Inc. Spin-coatable liquid for formation of high purity nanotube films
DE10342653A1 (de) 2003-09-15 2005-04-07 Miliauskaite, Asta, Dr. Vorrichtung zur Erzeugung elektrischer Energie
US20050061496A1 (en) 2003-09-24 2005-03-24 Matabayas James Christopher Thermal interface material with aligned carbon nanotubes
US20050070658A1 (en) 2003-09-30 2005-03-31 Soumyadeb Ghosh Electrically conductive compositions, methods of manufacture thereof and articles derived from such compositions
JP4412052B2 (ja) 2003-10-28 2010-02-10 富士ゼロックス株式会社 複合材およびその製造方法
US7354877B2 (en) 2003-10-29 2008-04-08 Lockheed Martin Corporation Carbon nanotube fabrics
CN100364081C (zh) 2003-11-08 2008-01-23 鸿富锦精密工业(深圳)有限公司 散热器及其制造方法
KR101176807B1 (ko) 2003-11-10 2012-08-24 데이진 가부시키가이샤 탄소 섬유 부직포, 그 제조 방법 및 용도
TWI261639B (en) 2003-12-03 2006-09-11 Univ Feng Chia Method for making carbon fiber fabric and product thereof
US20050209392A1 (en) 2003-12-17 2005-09-22 Jiazhong Luo Polymer binders for flexible and transparent conductive coatings containing carbon nanotubes
WO2005061382A1 (en) 2003-12-24 2005-07-07 Nanometrix Inc. Continuous production of carbon nanotubes
EP1709213A4 (en) 2004-01-15 2012-09-05 Nanocomp Technologies Inc SYSTEMS AND METHODS FOR SYNTHESIZING LONG LENGTH NANOSTRUCTURES
JP4689261B2 (ja) 2004-03-01 2011-05-25 三菱レイヨン株式会社 カーボンナノチューブ含有組成物、これからなる塗膜を有する複合体、及びそれらの製造方法
US7615094B2 (en) 2004-03-05 2009-11-10 Mitsubishi Materials C.M.I. Corporation Tungsten-based sintered material having high strength and high hardness, and hot press mold used for optical glass lenses
US7250188B2 (en) 2004-03-31 2007-07-31 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defense Of Her Majesty's Canadian Government Depositing metal particles on carbon nanotubes
US7803262B2 (en) 2004-04-23 2010-09-28 Florida State University Research Foundation Alignment of carbon nanotubes using magnetic particles
US20080293842A1 (en) 2004-05-13 2008-11-27 Nanodynamics, Inc. Self Assembled Nanotubes and Methods for Preparation Thereof
US20090317710A1 (en) 2008-06-20 2009-12-24 Mysticmd, Inc. Anode, cathode, grid and current collector material for reduced weight battery and process for production thereof
US7641829B2 (en) 2004-07-21 2010-01-05 Florida State University Research Foundation Method for mechanically chopping carbon nanotube and nanoscale fibrous materials
US20070287202A1 (en) 2004-08-31 2007-12-13 Kenzo Maehashi Method for Producing Nano-Scale Low-Dimensional Quantum Structure, and Method for Producing Integrated Circuit Using the Method for Producing the Structure
CA2581058C (en) 2004-09-21 2012-06-26 Nantero, Inc. Resistive elements using carbon nanotubes
US7938996B2 (en) 2004-10-01 2011-05-10 Board Of Regents, The University Of Texas System Polymer-free carbon nanotube assemblies (fibers, ropes, ribbons, films)
US20100297441A1 (en) 2004-10-18 2010-11-25 The Regents Of The University Of California Preparation of fibers from a supported array of nanotubes
US20070116631A1 (en) 2004-10-18 2007-05-24 The Regents Of The University Of California Arrays of long carbon nanotubes for fiber spinning
FR2877351B1 (fr) 2004-10-29 2007-02-09 Centre Nat Rech Scient Cnrse Fibres composites comprenant au moins des nanotubes de carbone, leur procede d'obtention et leurs applications
CN108425170B (zh) 2004-11-09 2021-02-26 得克萨斯大学体系董事会 纳米纤维纱线、带和板的制造和应用
JP4504430B2 (ja) 2004-11-12 2010-07-14 キム,ハグ−ヨン ナノ繊維からなる連続状フィラメントの製造方法
WO2006060476A2 (en) 2004-12-01 2006-06-08 William Marsh Rice University Fibers comprised of epitaxially grown single-wall carbon nanotubes, and a method for added catalyst and continuous growth at the tip
US7309830B2 (en) 2005-05-03 2007-12-18 Toyota Motor Engineering & Manufacturing North America, Inc. Nanostructured bulk thermoelectric material
US20060189822A1 (en) 2005-01-20 2006-08-24 Yoon Seon M Dispersant for dispersing carbon nanotubes and carbon nanotube composition comprising the same
US20070116627A1 (en) 2005-01-25 2007-05-24 California Institute Of Technology Carbon nanotube compositions and devices and methods of making thereof
ES2366917T3 (es) 2005-01-28 2011-10-26 Tekna Plasma Systems, Inc. Síntesis de nanopolvos mediante plasma de inducción.
CA2600524C (en) 2005-03-10 2013-12-03 Tailored Materials Corporation Thin film production method and apparatus
EP2570385A3 (en) 2005-05-03 2013-10-16 Nanocomp Technologies, Inc. Carbon composite materials and methods of manufacturing same
JP4972640B2 (ja) 2005-05-26 2012-07-11 ナノコンプ テクノロジーズ インコーポレイテッド 電子部品の熱管理のためのシステムおよび方法
JP4747295B2 (ja) 2005-06-02 2011-08-17 国立大学法人信州大学 同軸カーボンナノチューブシートの製造方法
US7553472B2 (en) 2005-06-27 2009-06-30 Micron Technology, Inc. Nanotube forming methods
JP5443756B2 (ja) 2005-06-28 2014-03-19 ザ ボード オブ リージェンツ オブ ザ ユニバーシティ オブ オクラホマ カーボンナノチューブを成長および収集するための方法
GB0513498D0 (en) 2005-06-30 2006-03-29 Bae Systems Plc Fibre materials
CA2850951A1 (en) 2005-07-28 2007-01-28 Nanocomp Technologies, Inc. Systems and methods for formation and harvesting of nanofibrous materials
US8093715B2 (en) 2005-08-05 2012-01-10 Purdue Research Foundation Enhancement of thermal interface conductivities with carbon nanotube arrays
CN100418876C (zh) 2005-08-19 2008-09-17 清华大学 碳纳米管阵列制备装置及方法
US7850778B2 (en) 2005-09-06 2010-12-14 Lemaire Charles A Apparatus and method for growing fullerene nanotube forests, and forming nanotube films, threads and composite structures therefrom
TWI298520B (en) 2005-09-12 2008-07-01 Ind Tech Res Inst Method of making an electroplated interconnection wire of a composite of metal and carbon nanotubes
CN100418875C (zh) 2005-10-11 2008-09-17 鸿富锦精密工业(深圳)有限公司 螺旋型碳纳米管制备装置及方法
AU2006350110B2 (en) 2005-11-04 2011-03-03 Nanocomp Technologies, Inc. Nanostructured antennas and methods of manufacturing same
JP5162825B2 (ja) 2005-12-13 2013-03-13 パナソニック株式会社 非水電解質二次電池用負極とそれを用いた非水電解質二次電池
CN100500556C (zh) 2005-12-16 2009-06-17 清华大学 碳纳米管丝及其制作方法
CN1992099B (zh) 2005-12-30 2010-11-10 鸿富锦精密工业(深圳)有限公司 导电复合材料及含有该导电复合材料的电缆
KR100749886B1 (ko) 2006-02-03 2007-08-21 (주) 나노텍 탄소나노튜브를 이용한 발열체
DE102006014171A1 (de) 2006-03-24 2007-09-27 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Flächenheizer mit leitfähigem Cellulosevlies
US20070277866A1 (en) 2006-05-31 2007-12-06 General Electric Company Thermoelectric nanotube arrays
CN101090011B (zh) 2006-06-14 2010-09-22 北京富纳特创新科技有限公司 电磁屏蔽电缆
US7796123B1 (en) 2006-06-20 2010-09-14 Eastman Kodak Company Touchscreen with carbon nanotube conductive layers
US8197621B2 (en) 2006-06-27 2012-06-12 Naos Co. Ltd. Method for manufacturing planar heating element using carbon micro-fibers
WO2008013508A1 (en) 2006-07-28 2008-01-31 Nanyang Technological University Method of aligning nanotubes
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US20080166563A1 (en) 2007-01-04 2008-07-10 Goodrich Corporation Electrothermal heater made from thermally conducting electrically insulating polymer material
US20090311554A1 (en) 2007-01-05 2009-12-17 Sang Keun Oh Carbon nanotube dispersing agent, carbon nanotube composite, carbon nanotube film, and method for manufacturing the carbon nanotube film
US20080192014A1 (en) 2007-02-08 2008-08-14 Tyco Electronics Corporation Touch screen using carbon nanotube electrodes
US9028790B2 (en) 2007-02-20 2015-05-12 Toray Industries, Inc. Carbon nanotube assembly and electrically conductive film
US20080238882A1 (en) 2007-02-21 2008-10-02 Ramesh Sivarajan Symmetric touch screen system with carbon nanotube-based transparent conductive electrode pairs
EP2962986B1 (en) 2007-02-27 2017-04-05 Nanocomp Technologies, Inc. Materials for thermal protection and methods of manufacturing same
US20100219383A1 (en) 2007-03-07 2010-09-02 Eklund Peter C Boron-Doped Single-Walled Nanotubes(SWCNT)
US7437938B2 (en) 2007-03-21 2008-10-21 Rosemount Inc. Sensor with composite diaphragm containing carbon nanotubes or semiconducting nanowires
CN101286383B (zh) 2007-04-11 2010-05-26 清华大学 电磁屏蔽线缆
US8828481B2 (en) 2007-04-23 2014-09-09 Applied Sciences, Inc. Method of depositing silicon on carbon materials and forming an anode for use in lithium ion batteries
US8115187B2 (en) 2007-05-22 2012-02-14 Nantero, Inc. Triodes using nanofabric articles and methods of making the same
KR100951730B1 (ko) 2007-05-30 2010-04-07 삼성전자주식회사 전도성이 개선된 카본나노튜브, 그의 제조방법 및 상기카본나노튜브를 함유하는 전극
WO2009029341A2 (en) 2007-07-09 2009-03-05 Nanocomp Technologies, Inc. Chemically-assisted alignment of nanotubes within extensible structures
WO2009048672A2 (en) 2007-07-25 2009-04-16 Nanocomp Technologies, Inc. Systems and methods for controlling chirality of nanotubes
EP2176927A4 (en) 2007-08-07 2011-05-04 Nanocomp Technologies Inc ELECTRIC AND THERMALLY CONDUCTIVE NON-METAL ADAPTERS ON NANOSTRUCTURE BASE
AU2008286842A1 (en) 2007-08-14 2009-02-19 Nanocomp Technologies, Inc. Nanostructured material-based thermoelectric generators
CN101808819A (zh) * 2007-09-07 2010-08-18 无机专家公司 作为用于锂二次电池的阳极材料的硅改性纳米纤维纸
US20090320911A1 (en) 2007-09-18 2009-12-31 Rodney Ruoff Method and system for improving conductivity of nanotube nets and related materials
US20090169819A1 (en) 2007-10-05 2009-07-02 Paul Drzaic Nanostructure Films
CN101835542A (zh) 2007-10-11 2010-09-15 佐治亚科技研究公司 碳纤维和碳薄膜及其制造方法
WO2009058855A2 (en) 2007-10-29 2009-05-07 William Marsh Rice University Neat carbon nanotube articles processed from super acid solutions and methods for production thereof
WO2009064133A2 (en) 2007-11-14 2009-05-22 Cheil Industries Inc. Conductivity enhanced transparent conductive film and fabrication method thereof
JP5431960B2 (ja) 2007-12-07 2014-03-05 大同塗料株式会社 カーボンナノチューブ含有導電体の製造方法
WO2009079249A1 (en) 2007-12-14 2009-06-25 3M Innovative Properties Company Methods for making electronic devices
JP4424690B2 (ja) 2008-02-01 2010-03-03 北京富納特創新科技有限公司 同軸ケーブル
CN101556839B (zh) 2008-04-09 2011-08-24 清华大学 线缆
US8262942B2 (en) * 2008-02-07 2012-09-11 The George Washington University Hollow carbon nanosphere based secondary cell electrodes
JP5146256B2 (ja) 2008-03-18 2013-02-20 富士通株式会社 シート状構造体及びその製造方法、並びに電子機器及びその製造方法
JP2009242145A (ja) 2008-03-28 2009-10-22 Toray Ind Inc カーボンナノチューブ膜の製造方法
JP2009252713A (ja) 2008-04-11 2009-10-29 Kuraray Co Ltd カーボンナノチューブを用いた導電膜およびその製造方法
US8968820B2 (en) 2008-04-25 2015-03-03 Nanotek Instruments, Inc. Process for producing hybrid nano-filament electrodes for lithium batteries
WO2009137722A1 (en) 2008-05-07 2009-11-12 Nanocomp Technologies, Inc. Carbon nanotube-based coaxial electrical cables and wiring harness
US20130189565A1 (en) 2008-05-07 2013-07-25 Nanocomp Technologies, Inc. Batteries Having Nanostructured Composite Cathode
CA2723619A1 (en) 2008-05-07 2009-11-12 Nanocomp Technologies, Inc. Nanostructure-based heating devices and method of use
US8936874B2 (en) 2008-06-04 2015-01-20 Nanotek Instruments, Inc. Conductive nanocomposite-based electrodes for lithium batteries
GB0811357D0 (en) 2008-06-20 2008-07-30 Q Flo Ltd A mtheod of making carbon nanotube dispensions for the enhancement of fluids
US8237677B2 (en) 2008-07-04 2012-08-07 Tsinghua University Liquid crystal display screen
US20100021682A1 (en) 2008-07-25 2010-01-28 Florida State University Research Foundation Composite material and method for increasing z-axis thermal conductivity of composite sheet material
US20100044074A1 (en) 2008-08-25 2010-02-25 Yong Hyup Kim Carbon nanotube networks with metal bridges
US20120183770A1 (en) 2010-06-22 2012-07-19 Bosnyak Clive P Modified carbon nanotubes, methods for production thereof and products obtained therefrom
US20100216030A1 (en) 2009-02-20 2010-08-26 Samsung Electronics Co., Ltd. Positive electrode for all-solid secondary battery and all-solid secondary battery employing same
JP2010244911A (ja) * 2009-04-08 2010-10-28 Mitsubishi Rayon Co Ltd 電極セル及びリチウムイオン二次電池
KR101598544B1 (ko) 2009-04-14 2016-03-02 삼성전자주식회사 분산성 탄소나노튜브, 분산성 탄소나노튜브-고분자 복합체 및 이의 제조 방법
WO2010151244A1 (en) 2009-06-22 2010-12-29 Hewlett-Packard Development Company, L.P. Transparent conductive material
US9786444B2 (en) 2009-06-25 2017-10-10 Nokia Technologies Oy Nano-structured flexible electrodes, and energy storage devices using the same
US8354593B2 (en) 2009-07-10 2013-01-15 Nanocomp Technologies, Inc. Hybrid conductors and method of making same
US8574673B2 (en) 2009-07-31 2013-11-05 Nantero Inc. Anisotropic nanotube fabric layers and films and methods of forming same
US20110111279A1 (en) 2009-11-09 2011-05-12 Florida State University Research Foundation Inc. Binder-free nanocomposite material and method of manufacture
US8974967B2 (en) * 2009-12-21 2015-03-10 The Board Of Trustees Of The Leland Stanford Junior Univerity Nanotube-based nanomaterial membrane
KR20120120358A (ko) 2010-01-25 2012-11-01 더 보드 어브 트러스티스 어브 더 리랜드 스탠포드 주니어 유니버시티 결합된 나노구조체 및 이를 위한 방법
JP2011207671A (ja) 2010-03-30 2011-10-20 Toray Ind Inc カーボンナノチューブの製造方法
CN102372252B (zh) 2010-08-23 2016-06-15 清华大学 碳纳米管复合线及其制备方法
CN102372253B (zh) 2010-08-23 2014-01-15 清华大学 碳纳米管复合线状结构及其制备方法
JP2014505319A (ja) 2010-11-12 2014-02-27 ナノコンプ テクノロジーズ インコーポレイテッド 電子部品の熱管理のためのシステムおよび方法
EP2661369B1 (en) 2011-01-04 2019-04-10 Nanocomp Technologies, Inc. Thermal insulators based on nanotubes, their use and method for thermal insulation.
JP2012173700A (ja) 2011-02-24 2012-09-10 Kyocera Document Solutions Inc 光学装置およびそれを備えた画像形成装置
JP5906578B2 (ja) * 2011-04-07 2016-04-20 日立化成株式会社 リチウムイオン二次電池用正極合剤並びにこれを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池
US8853540B2 (en) 2011-04-19 2014-10-07 Commscope, Inc. Of North Carolina Carbon nanotube enhanced conductors for communications cables and related communications cables and methods
WO2013126840A1 (en) * 2012-02-22 2013-08-29 Seldon Technologies, Inc. Electrodes and applications
US9437370B2 (en) * 2012-02-27 2016-09-06 Nanotek Instruments, Inc. Lithium-ion cell having a high-capacity anode and a high-capacity cathode
US20140332731A1 (en) * 2012-04-02 2014-11-13 CNano Technology Limited Electrode Composition for Battery
CN102683644B (zh) * 2012-05-23 2014-11-12 东莞新能源科技有限公司 一种锂离子电池正极浆料的制备方法
KR102305509B1 (ko) * 2014-07-22 2021-09-28 씨-나노 테크놀로지 리미티드 배터리용 전극 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5810934A (en) * 1995-06-07 1998-09-22 Advanced Silicon Materials, Inc. Silicon deposition reactor apparatus
CN101243566A (zh) * 2005-09-06 2008-08-13 Lg化学株式会社 包含碳纳米管的复合物粘合剂以及使用该粘合剂的锂二次电池
US20100178543A1 (en) * 2007-04-10 2010-07-15 The Regents Of The University Of California Charge storage devices containing carbon nanotube films as electrodes and charge collectors
US20100310941A1 (en) * 2009-06-05 2010-12-09 Prashant Nagesh Kumta Compositions Including Nano-Particles and a Nano-Structured Support Matrix and Methods of preparation as reversible high capacity anodes in energy storage systems
US20110104551A1 (en) * 2009-11-05 2011-05-05 Uchicago Argonne, Llc Nanotube composite anode materials suitable for lithium ion battery applications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023184098A1 (zh) * 2022-03-28 2023-10-05 宁德时代新能源科技股份有限公司 含硅负极活性材料、以及包含其的负极极片、二次电池及用电装置

Also Published As

Publication number Publication date
JP7397110B2 (ja) 2023-12-12
KR102461423B1 (ko) 2022-11-03
US11387460B2 (en) 2022-07-12
ES2908259T3 (es) 2022-04-28
JP7197497B2 (ja) 2022-12-27
JP2020507195A (ja) 2020-03-05
WO2018093603A1 (en) 2018-05-24
CN110234808B (zh) 2022-02-08
EP3541992B1 (en) 2021-12-22
EP3541992A1 (en) 2019-09-25
US20200161661A1 (en) 2020-05-21
US20180138514A1 (en) 2018-05-17
KR20210158424A (ko) 2021-12-30
KR20190086509A (ko) 2019-07-22
US10581082B2 (en) 2020-03-03
EP3541992A4 (en) 2020-07-29
JP2022078165A (ja) 2022-05-24
KR102470300B1 (ko) 2022-11-25

Similar Documents

Publication Publication Date Title
CN110234808A (zh) 用于制作由cnt浆料网络限定的结构的系统和方法
Shi et al. A review of recent developments in Si/C composite materials for Li-ion batteries
Peng et al. A review of flexible lithium–sulfur and analogous alkali metal–chalcogen rechargeable batteries
JP6857443B2 (ja) 電池用電極組成物および電池用電極を形成する方法
Fei et al. A general approach to fabricate free-standing metal sulfide@ carbon nanofiber networks as lithium ion battery anodes
Pampal et al. A review of nanofibrous structures in lithium ion batteries
KR101594836B1 (ko) 그래핀-금속나노입자복합체, 상기 복합체를 포함하는 탄소나노섬유복합체 및 상기 탄소나노입자복합체를 포함하는 이차전지
CN104781958B (zh) 阴极活性物质、导电性组合物、阴极材料、阴极结构体及二次电池以及它们的制造方法
US20140332731A1 (en) Electrode Composition for Battery
KR101521453B1 (ko) 복합 탄소섬유
KR102028942B1 (ko) 도전성 페이스트의 제조 방법 및 도전성 페이스트
KR100905691B1 (ko) 탄소나노섬유를 혼성화시킨 리튬 이차전지용 음극 활물질
CN107431189A (zh) 复合核壳型颗粒
CN104627977B (zh) 一种氧化石墨烯增强的复合纳米碳纸及其制备方法
WO2018102389A1 (en) Discrete carbon nanotubes and microfiber composites
CN102449825A (zh) 用于锂离子电池的电极及其制备方法
Jiang et al. Centrifugally-spun tin-containing carbon nanofibers as anode material for lithium-ion batteries
JP2016504707A (ja) ナノ物体、特に、カーボンナノ物体を含む複合材料、それを調製する方法およびこの材料を含むインクおよび電極
CN110192295A (zh) 电极用浆料、电极及其制造方法、以及二次电池
CN110192296A (zh) 电极用浆料、电极及其制造方法、以及二次电池
CN106133968A (zh) 导电多孔体、固体高分子型燃料电池及导电多孔体的制备方法
Zhou et al. Structural design and material preparation of carbon-based electrodes for high-performance lithium storage systems
Xia et al. Recent progress of Si-based anodes in the application of lithium-ion batteries
Mo et al. Facile flame catalytic growth of carbon nanomaterials on the surface of carbon nanotubes
Li et al. Free-standing sandwich-structured flexible film electrode composed of Na2Ti3O7 nanowires@ CNT and reduced graphene oxide for advanced sodium-ion batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant