CN100418875C - 螺旋型碳纳米管制备装置及方法 - Google Patents

螺旋型碳纳米管制备装置及方法 Download PDF

Info

Publication number
CN100418875C
CN100418875C CNB2005101003900A CN200510100390A CN100418875C CN 100418875 C CN100418875 C CN 100418875C CN B2005101003900 A CNB2005101003900 A CN B2005101003900A CN 200510100390 A CN200510100390 A CN 200510100390A CN 100418875 C CN100418875 C CN 100418875C
Authority
CN
China
Prior art keywords
electrode
carbon nano
spiral carbon
tube
tube preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005101003900A
Other languages
English (en)
Other versions
CN1948141A (zh
Inventor
张庆州
何纪壮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Original Assignee
Hongfujin Precision Industry Shenzhen Co Ltd
Hon Hai Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hongfujin Precision Industry Shenzhen Co Ltd, Hon Hai Precision Industry Co Ltd filed Critical Hongfujin Precision Industry Shenzhen Co Ltd
Priority to CNB2005101003900A priority Critical patent/CN100418875C/zh
Priority to US11/450,101 priority patent/US20070087121A1/en
Publication of CN1948141A publication Critical patent/CN1948141A/zh
Application granted granted Critical
Publication of CN100418875C publication Critical patent/CN100418875C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45589Movable means, e.g. fans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0816Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes involving moving electrodes
    • B01J2219/0818Rotating electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0837Details relating to the material of the electrodes
    • B01J2219/0841Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0875Gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0892Materials to be treated involving catalytically active material

Abstract

本发明涉及一种螺旋型碳纳米管制备装置及方法。该螺旋型碳纳米管制备装置包括:一化学气相沉积反应腔;一对相对设置的第一电极及第二电极,该第一电极及第二电极位于该反应腔内,该第一电极可相对于第二电极作旋转运动。本发明通过第一电极相对于第二电极作旋转运动,当在该第一与第二电极之间施加一电压时,可使该第一与第二电极之间形成的电场的电场方向作周期性变化,进而可使得在该第一与第二电极之间生长的碳纳米管具有一定的螺旋度;并且,通过控制该第一电极的旋转角速度,可制备出具有不同螺旋度的螺旋型碳纳米管。

Description

螺旋型碳纳米管制备装置及方法
【技术领域】
本发明涉及一种碳纳米管制备装置及方法,尤其是指一种利用化学气相沉积法制备螺旋型碳纳米管的装置及方法。
【背景技术】
碳纳米管是一种新型碳材料,由日本研究人员饭岛澄男(S.Iijima)于1991年发现,其是由形成石墨层的碳平面卷曲成圆筒的柱状结构。
目前,碳纳米管可分为单壁碳纳米管及多壁碳纳米管,其可由电弧放电法(Arc Discharge)、激光消融法(Laser Ablation)及化学气相沉积法(ChemicalVapor Deposition)等方法制备获得。并且,化学气相沉积法因其可实现碳纳米管的大面积生长、可控生长而被广泛使用。碳纳米管的特性取决于石墨层的宽度及卷曲方式。依碳纳米管的卷曲方式不同,可将碳纳米管的形态区分为扶手椅(Arm-Chair)型、锯齿(Zig-Zag)型及螺旋(Chiral)型碳纳米管三种。不同的卷曲方式可以表现出碳纳米管金属、半金属、半导体等电学特性,如螺旋型碳纳米管,其具有半导体性质,且其半导体性质会随螺旋角度(0~30度)不同而有些差异。然而,目前的制备方法制备的碳纳米管大都是具有不同电性地碳纳米管的混合物,将其应用在具体领域时需花大力气筛选出具有特定电性的碳纳米管。
现有技术中揭露一种螺旋型碳纳米管制备方法,其将取自于大洋海底的锰结核矿物颗粒球磨成粉末作为碳纳米管生长的催化剂,再利用化学气相沉积法生长出螺旋型碳纳米管。但是,该方法是通过选取一特定的催化剂来达成螺旋型碳纳米管制备的目的,该催化剂本身决定碳纳米管的形态,使得制备出的螺旋型碳纳米管的形态过于单一,且不可控。
有鉴于此,有必要提供一螺旋型碳纳米管制备装置及方法,其可实现螺旋型碳纳米管的可控生长。
【发明内容】
下面将以具体实施例说明一种螺旋型碳纳米管制备装置及方法,其可实现螺旋型碳纳米管的可控生长。
一种螺旋型碳纳米管制备装置,其包括:
一化学气相沉积反应腔;
一对相对设置的第一电极及第二电极,该第一电极及第二电极位于该反应腔内,该第一电极可相对于第二电极作旋转运动。
以及,一种螺旋型碳纳米管制备方法,包括以下步骤:
提供一上述螺旋型碳纳米管制备装置;
将一表面形成有催化剂层的基底装载于该化学气相沉积反应腔内的第一电极与第二电极之间;
在第一电极与第二电极之间施加一电压以产生一电场,并使第一电极相对于第二电极作旋转运动;
向该化学气相沉积反应腔内通入碳源气,进行螺旋型碳纳米管生长。
相较于现有技术,所述螺旋型碳纳米管制备装置及方法,其通过第一电极相对于一相对设置的第二电极作旋转运动,当在该第一与第二电极之间施加一电压时,可使该第一与第二电极之间形成的电场的电场方向作周期性变化,进而使得在该第一与第二电极之间生长的碳纳米管具有一定的螺旋度;并且,通过控制该第一电极的旋转角速度,可制备出具有不同螺旋度的螺旋型碳纳米管。
【附图说明】
图1是本发明实施例螺旋型碳纳米管制备装置示意图。
【具体实施方式】
下面将结合附图对本发明实施例作进一步之详细说明。
参见图1,本发明实施例提供的螺旋型碳纳米管制备装置100,其包括一反应腔120,及一对相对设置的电极160及180。
该反应腔120用于提供一碳纳米管生长环境,其可采用现有技术中常用的热化学气相沉积法生长碳纳米管用石英炉或等离子体辅助化学气相沉积法生长碳纳米管用反应腔。该反应腔120具有一进气口122及一相对设置的出气口124。经由该进气口122可向反应腔120提供碳纳米管生长用碳源气,如甲烷、乙烯、乙炔等碳氢化合物及一氧化碳等气体。该出气口124用于排放废气,其可外接一泵浦用以维持反应腔120的腔内压强。
该对电极160及180位于反应腔120内。其中,电极180可相对于电极160作旋转运动。本实施例中:电极160作为阴极电极,其固定在反应腔120的底部。电极180作为阳极电极,其由一相对于电极160设置的电绝缘承载元件140承载;该承载元件140可为一圆盘,其与从反应腔120顶部插入反应腔120内的旋转轴150固定连接。旋转轴150基本垂直地穿设于承载元件140的圆心位置。其中,旋转轴150可接一驱动马达,使由承载元件140承载的电极180以一角速度旋转,且该角速度可调。优选的,该角速度为等角速度,其可便于对制备出的碳纳米管的螺旋度进行精确控制。该角速度与最终所需的螺旋型碳纳米管的螺旋度有关,角速度越快,生长出的螺旋型碳纳米管的螺旋度越大。该螺旋度一般为0~30度。
下面将描述采用螺旋型碳纳米管制备装置100进行螺旋型碳纳米管制备的过程:
(1)提供一基底200,在该基底200表面形成一催化剂层202;将该形成有催化剂层202的基底200装载在反应腔120内的电极160与电极180之间。该催化剂层202将作为化学气相沉积生长碳纳米管用触媒层,其材质可选用铁、钴、镍及其合金。基底200的材质可选用硅、玻璃、氧化铝等。
(2)在电极160与电极180之间施加一电压以产生一电场,并使电极180相对于电极160作旋转运动。具体步骤可为:将电极180装载在承载元件140上,向电极160与电极180之间施加一电压并启动一驱动马达(图未示)以使电极180以一角速度绕旋转轴150旋转,电极160固定不动。该角速度的大小与最终所需螺旋型碳纳米管的螺旋角有关,角速度越大,螺旋型碳纳米管的螺旋角越大。对于螺旋度大小范围为0~30度的螺旋型碳纳米管的制备,该角速度可设置为0~20转/分钟(Revolutions Per Minute,rpm),也即,0~(2π/3)弧度/秒。该电极160与电极180之间产生的电场的电场强度大小一般设为500~2000伏特/米(V/m)。
(3)向反应腔120内通入碳源气,进行螺旋型碳纳米管生长。具体步骤可为:(a)首先,向反应腔120通入保护气体,并加热催化剂层202至碳纳米管生长温度,一般为500~900摄氏度;该保护气体可选用氮气、氩气等惰性气体、氢气及氨气等,其流量范围可设为200~500标准立方厘米每分钟(sccm)。(b)接着,向反应腔120内通入碳源气,进行化学气相沉积生长碳纳米管。其中,碳源气与保护气体的流量比范围可设为1∶1~1∶10,碳源气的流量范围可设为20~60sccm。由于碳纳米管可在电场中被极化而具取向于电场方向的特性,而在电极180相对于电极160作旋转运动的过程中,电极160与180之间形成的电场的电场方向呈周期性变化,因此电极160与电极180之间生长的碳纳米管将螺旋式生长。(c)待碳纳米管生长完毕,停止通入碳源气;之后,待基底200冷却至室温,再停止通入保护气体。将基底200从反应腔取出,即可收集具有一定螺旋度的螺旋型碳纳米管。另外,通过设定旋转角速度的大小,可获取具有不同螺旋度的碳纳米管。
本实施例中,通过电极160相对于另一相对设置的电极180作旋转运动,当在该对电极160与电极180之间施加一电压时,可使该对电极160与电极180之间形成的电场的电场方向作周期性变化,进而使得在该对电极之间生长出的碳纳米管具有一定的螺旋度;并且,通过控制该电极的旋转角速度,可制备出具有不同螺旋度的螺旋型碳纳米管以满足其不同应用领域的需求。
另一实施例中,将旋转轴150从反应腔120底部插入反应腔120内,电极180作为阳极电极固定不动,而电极160作为阴极电极可绕旋转轴150旋转。该种设置也可达成本发明的目的,实现螺旋型碳纳米管的制备。
另,本领域技术人员还可在本发明精神内做其它变化,如将承载元件140由圆盘变更为棒状结构,或适当变更角速度的大小以用于本发明等设计,只要其不偏离本发明的技术效果均可。这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (9)

1. 一种螺旋型碳纳米管制备装置,其包括:
一化学气相沉积反应腔;
其特征在于,该螺旋型碳纳米管制备装置还包括:一对相对设置的第一电极及第二电极,该第一电极及第二电极位于该反应腔内,该第一电极可相对于第二电极作旋转运动。
2. 如权利要求1所述的螺旋型碳纳米管制备装置,其特征在于所述螺旋型碳纳米管制备装置进一步包括:一从化学气相沉积反应腔顶部或底部插入的旋转轴,该第一电极位于该旋转轴一侧。
3. 如权利要求2所述的螺旋型碳纳米管制备装置,其特征在于所述螺旋型碳纳米管制备装置还包括:一承载元件,其用于承载该第一电极,该承载元件与该旋转轴固定连接。
4. 如权利要求3所述的螺旋型碳纳米管制备装置,其特征在于所述承载元件包括圆盘。
5. 一种螺旋型碳纳米管的制备方法,包括以下步骤:
提供一如权利要求1项所述的螺旋型碳纳米管制备装置;
将一表面形成有催化剂层的基底装载于该化学气相沉积反应腔内的第一电极与第二电极之间;
在第一电极与第二电极之间施加一电压以产生一电场,并使第一电极相对于第二电极作旋转运动;
向该化学气相沉积反应腔内通入碳源气,进行螺旋型碳纳米管生长。
6. 如权利要求5所述的螺旋型碳纳米管制备方法,其特征在于所述电场的电场强度为500~2000伏特/米。
7. 如权利要求5所述的螺旋型碳纳米管制备方法,其特征在于所述第一电极相对于第二电极作旋转运动的角速度为等角速度。
8. 如权利要求5所述的螺旋型碳纳米管制备方法,其特征在于所述螺旋型碳纳米管的螺旋角大小范围为0~30度。
9. 如权利要求5所述的螺旋型碳纳米管制备方法,其特征在于所述第一电极相对于第二电极作旋转运动的角速度大小范围为0~(2π/3)弧度/秒。
CNB2005101003900A 2005-10-11 2005-10-11 螺旋型碳纳米管制备装置及方法 Expired - Fee Related CN100418875C (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNB2005101003900A CN100418875C (zh) 2005-10-11 2005-10-11 螺旋型碳纳米管制备装置及方法
US11/450,101 US20070087121A1 (en) 2005-10-11 2006-06-09 Apparatus and method for synthesizing chiral carbon nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005101003900A CN100418875C (zh) 2005-10-11 2005-10-11 螺旋型碳纳米管制备装置及方法

Publications (2)

Publication Number Publication Date
CN1948141A CN1948141A (zh) 2007-04-18
CN100418875C true CN100418875C (zh) 2008-09-17

Family

ID=37948438

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005101003900A Expired - Fee Related CN100418875C (zh) 2005-10-11 2005-10-11 螺旋型碳纳米管制备装置及方法

Country Status (2)

Country Link
US (1) US20070087121A1 (zh)
CN (1) CN100418875C (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2202202B1 (en) * 2005-05-03 2018-02-21 Nanocomp Technologies, Inc. Carbon nanotube composite materials
AU2006345024C1 (en) 2005-07-28 2012-07-26 Nanocomp Technologies, Inc. Systems and methods for formation and harvesting of nanofibrous materials
US9061913B2 (en) * 2007-06-15 2015-06-23 Nanocomp Technologies, Inc. Injector apparatus and methods for production of nanostructures
EP2173473A2 (en) * 2007-07-25 2010-04-14 Nanocomp Technologies, Inc. Systems and methods for controlling chirality of nanotubes
AU2008283846A1 (en) * 2007-08-07 2009-02-12 Nanocomp Technologies, Inc. Electrically and thermally non-metallic conductive nanostructure-based adapters
US20090044848A1 (en) * 2007-08-14 2009-02-19 Nanocomp Technologies, Inc. Nanostructured Material-Based Thermoelectric Generators
WO2009137725A1 (en) * 2008-05-07 2009-11-12 Nanocomp Technologies, Inc. Nanostructure-based heating devices and method of use
EP2279512B1 (en) 2008-05-07 2019-10-23 Nanocomp Technologies, Inc. Carbon nanotube-based coaxial electrical cables and wiring harness
US8354593B2 (en) * 2009-07-10 2013-01-15 Nanocomp Technologies, Inc. Hybrid conductors and method of making same
JP6014603B2 (ja) 2011-01-04 2016-10-25 ナノコンプ テクノロジーズ インコーポレイテッド ナノチューブベースの絶縁体
ES2943257T3 (es) 2013-06-17 2023-06-12 Nanocomp Technologies Inc Agentes exfoliantes-dispersantes para nanotubos, haces y fibras
US11434581B2 (en) 2015-02-03 2022-09-06 Nanocomp Technologies, Inc. Carbon nanotube structures and methods for production thereof
US10581082B2 (en) 2016-11-15 2020-03-03 Nanocomp Technologies, Inc. Systems and methods for making structures defined by CNT pulp networks
US11279836B2 (en) 2017-01-09 2022-03-22 Nanocomp Technologies, Inc. Intumescent nanostructured materials and methods of manufacturing same
CN110292896B (zh) * 2018-03-23 2020-10-27 中国科学技术大学 一种等离子体反应装置及不饱和烃的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1353084A (zh) * 2000-11-13 2002-06-12 国际商业机器公司 单壁碳纳米管的制造方法及应用
JP2004107658A (ja) * 2002-08-28 2004-04-08 Du Pont Toray Co Ltd ポリイミドフィルムおよびその製造方法
US6774333B2 (en) * 2002-03-26 2004-08-10 Intel Corporation Method and system for optically sorting and/or manipulating carbon nanotubes

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4664938A (en) * 1985-05-06 1987-05-12 Phillips Petroleum Company Method for deposition of silicon
JPH03203317A (ja) * 1989-12-29 1991-09-05 Matsushita Electric Ind Co Ltd プラズマ処理装置
US5414324A (en) * 1993-05-28 1995-05-09 The University Of Tennessee Research Corporation One atmosphere, uniform glow discharge plasma
JP3257741B2 (ja) * 1994-03-03 2002-02-18 東京エレクトロン株式会社 プラズマエッチング装置及び方法
US5763020A (en) * 1994-10-17 1998-06-09 United Microelectronics Corporation Process for evenly depositing ions using a tilting and rotating platform
JP2003141719A (ja) * 2001-10-30 2003-05-16 Anelva Corp スパッタリング装置及び薄膜形成方法
US20030129305A1 (en) * 2002-01-08 2003-07-10 Yihong Wu Two-dimensional nano-sized structures and apparatus and methods for their preparation
JP4066044B2 (ja) * 2002-11-08 2008-03-26 信行 高橋 成膜方法及びスパッタ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1353084A (zh) * 2000-11-13 2002-06-12 国际商业机器公司 单壁碳纳米管的制造方法及应用
US6774333B2 (en) * 2002-03-26 2004-08-10 Intel Corporation Method and system for optically sorting and/or manipulating carbon nanotubes
JP2004107658A (ja) * 2002-08-28 2004-04-08 Du Pont Toray Co Ltd ポリイミドフィルムおよびその製造方法

Also Published As

Publication number Publication date
US20070087121A1 (en) 2007-04-19
CN1948141A (zh) 2007-04-18

Similar Documents

Publication Publication Date Title
CN100418875C (zh) 螺旋型碳纳米管制备装置及方法
CN101244815B (zh) 一种以液相前驱物制备氮掺杂碳纳米管的方法
CN1935637B (zh) 碳纳米管制备方法
CN100551822C (zh) 一种二维单层石墨烯的制备方法
JP2009196873A (ja) カーボンナノチューブの製造方法及び製造装置
CN1948140A (zh) 一种碳纳米管制备装置及方法
US20110027164A1 (en) Method and apparatus for synthesizing carbon nanotubes using ultrasonic evaporation
JP2004002182A (ja) 配向性カーボンナノチューブ膜およびその製造方法
CN105036096B (zh) 一种利用反应气体涡旋制备高纯度氮化硼纳米管的方法
Guo et al. Boron carbonitride nanojunctions
CN110527973A (zh) 一种利用固态掺杂源制备掺硼金刚石的方法
WO2009135344A1 (zh) 化学气相沉积合成无金属催化剂自组生长碳纳米管的方法
WO2003010114A1 (fr) Procede de preparation d'une materiau de carbure de silicium nanometrique
CN104445200B (zh) 一种制备超长碳化硅纳米线的方法
CN109957784A (zh) 一种微波化学气相沉积制备二氧化硅/石墨烯纳米复合材料的方法及其产品
Cappelli et al. Nano-structured oriented carbon films grown by PLD and CVD methods
CN1899956A (zh) 合成单一形貌氮化硼纳米管的方法
Hesamzadeh et al. PECVD-growth of carbon nanotubes using a modified tip-plate configuration
TW200800397A (en) Method of preparing catalyst for catalyzing carbon nanotubes growth
TWI313670B (en) Apparatus and method for fabrication of carbon nanotube array
TWI240312B (en) Method for rapidly fabricating aligned carbon nanotube under low temperature
Qiaoqin et al. Plasma-enhanced deposition of nano-structured carbon films
CN1948139A (zh) 碳纳米管的制备装置
JP2005036275A (ja) Dlc微粒子及びその製造方法
Yang et al. Amorphous hollow carbon spheres synthesized using radio frequency plasma-enhanced chemical vapour deposition

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080917

Termination date: 20161011

CF01 Termination of patent right due to non-payment of annual fee