CN110024188B - 负极材料及非水电解质二次电池 - Google Patents

负极材料及非水电解质二次电池 Download PDF

Info

Publication number
CN110024188B
CN110024188B CN201780073638.XA CN201780073638A CN110024188B CN 110024188 B CN110024188 B CN 110024188B CN 201780073638 A CN201780073638 A CN 201780073638A CN 110024188 B CN110024188 B CN 110024188B
Authority
CN
China
Prior art keywords
negative electrode
lithium silicate
lithium
particles
silicon particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780073638.XA
Other languages
English (en)
Other versions
CN110024188A (zh
Inventor
内山洋平
山本泰右
明乐达哉
山本格久
南博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of CN110024188A publication Critical patent/CN110024188A/zh
Application granted granted Critical
Publication of CN110024188B publication Critical patent/CN110024188B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种负极材料,其包含:包含硅酸锂的硅酸锂相、和分散在上述硅酸锂相内的硅颗粒,上述硅颗粒的微晶尺寸为10nm以上,上述硅酸锂的组成以式Li2Si2O5·(x‑2)SiO2表示且满足2<x≤18。

Description

负极材料及非水电解质二次电池
技术领域
本发明主要涉及非水电解质二次电池的负极的改良。
背景技术
近年来,非水电解质二次电池、特别是锂离子二次电池由于具有高电压和高能量密度而被期待作为小型民用用途、蓄电装置及电动汽车的电源。在寻求电池的高能量密度化的过程中,期待利用包含与锂合金化的硅(silicon)的材料作为理论容量密度高的负极活性物质。
但是,包含硅的材料的不可逆容量大,因此有初始充放电效率(特别是初次放电容量相对于初次充电容量之比)低这样的问题。因此,提出了将相当于不可逆容量的锂导入预先包含硅的材料中的各种技术。
例如,专利文献1提出了将SiOx(0<x≤2)所示的硅氧化物粉末与锂源粉末(例如LiH)混合并焙烧而得到含有锂的硅氧化物粉末的方案。专利文献1的含有锂的硅氧化物粉末包含Li4SiO4、Li2SiO3及Li2Si2O5。这些硅酸锂与水分反应而溶出碱性成分,因此有时在制造负极时产生不良或使负极劣化。因此,专利文献1提出了在含有锂的硅氧化物粉末中减少特别容易溶出碱性成分的Li4SiO4及Li2SiO3的含量。
需要说明的是,SiOx所示的硅氧化物粉末例如通过如下方式得到:将对二氧化硅和硅的混合物加热而生成的一氧化硅蒸气冷却,使其析出而得到。这种情况下,硅氧化物粉末从微观来看是二氧化硅与微晶尺寸为5nm左右的具有小粒径的硅颗粒的复合物。
专利文献2提出了一种非水电解质二次电池用负极活性物质,其具备Li2zSiO2+z(0<z<2)所示的硅酸锂相、和分散在硅酸锂相中的硅颗粒。通过将初次充电前的硅颗粒的平均粒径设为500nm以下(优选为50nm以下),从而使充放电时的体积变化变小,容易抑制电极结构的崩解。
现有技术文献
专利文献
专利文献1:日本特开2015-153520号公报
专利文献2:国际公开第2016-35290号
发明内容
在使硅颗粒分散在硅酸锂相中的情况下,硅颗粒的微晶尺寸、平均粒径越小则硅颗粒的表面积越大,不可逆容量容易变大。从得到良好的循环特性且容易设计出高容量负极的观点出发,期望将硅颗粒的微晶尺寸设为10nm以上。
另一方面,当硅颗粒的微晶尺寸达到10nm以上时,充放电时硅颗粒、硅酸锂会产生可发生龟裂程度的体积变化。龟裂的生成与碱性成分溶出一起促进硅的劣化。即使在硅酸锂的主要成分为Li2Si2O5之类的不易溶出碱性成分的成分时,也难以抑制这样的现象。
鉴于以上,本公开的一个方面涉及一种负极材料,其包含:硅酸锂相、和分散在上述硅酸锂相内的硅颗粒,上述硅颗粒的微晶尺寸为10nm以上,上述硅酸锂相的组成以式Li2Si2O5·(x-2)SiO2表示且满足2<x≤18。
本公开的另一方面涉及一种非水电解质二次电池,其具备:包含上述负极材料和石墨的负极、电化学上能够吸藏及释放锂的正极、和非水电解质,。
根据本公开,在使用包含硅酸锂相、和分散在硅酸锂相内的硅颗粒的负极材料的情况下,即使硅颗粒的微晶尺寸为10nm以上也可以得到循环特性良好的非水电解质二次电池。
附图说明
图1是示出本发明的一实施方式的LSX颗粒的构成的截面示意图。
图2是示出充放电前的母颗粒的XRD图案的一例的图。
图3是本发明的一实施方式的非水电解质二次电池的一部分被切除的立体示意图。
具体实施方式
本发明的实施方式的负极材料(以下也称为负极材料LSX。)包含硅酸锂相、和分散在硅酸锂相内的硅颗粒。其中,硅酸锂相具有以式Li2Si2O5·(x-2)SiO2表示的组成且满足2<x≤18,硅颗粒由微晶尺寸10nm以上的微晶构成。硅颗粒具有硅(Si)单质的颗粒状的相。
硅酸锂相不具有较多的可与锂反应的位点,因此在充放电时不易引起新的不可逆反应。因此在充放电初期显示出优异的充放电效率。
另一方面,二氧化硅和硅的混合物进行加热而生成一氧化硅的蒸气、使其冷却、析出而得到的以往的SiOx是SiO2与微晶尺寸5nm左右的微细的硅的复合物,包含大量的SiO2。因此,在充放电时会发生如下所述的反应。式(3)的SiO2的反应是不可逆反应,Li4SiO4的生成是使初次充放电效率下降的主要因素。
(1)SiOx(2Si+2SiO2)+16Li++16e-→3Li4Si+Li4SiO4
关于Si及2SiO2,将式(1)分解则成为下述式子。
(2)Si+4Li++4e-→Li4Si
(3)2SiO2+8Li++8e-→Li4Si+Li4SiO4
本实施方式中,分散在硅酸锂相内的硅颗粒比以往的SiOx中所含的微细的硅大,微晶尺寸为10nm以上。通过使硅颗粒的微晶尺寸为10nm以上,从而能将硅颗粒的表面积抑制得较小,因此不易产生伴随不可逆容量的生成的劣化,容易实现良好的循环特性。另外,通过改变硅的含量,也容易设计出高容量负极。需要说明的是,硅颗粒的微晶尺寸基于硅颗粒的X射线衍射(XRD)图案的归属于Si(111)面的衍射峰的半值宽度并由谢勒公式计算。
即使是硅颗粒的微晶尺寸为10nm以上的情况,由于硅颗粒分散在硅酸锂相内,因此伴随充放电的负极材料LSX的膨胀收缩也受到抑制。因此,负极材料LSX的结构稳定性优异。但是若硅颗粒的平均粒径过大,则硅颗粒容易发生龟裂。硅颗粒的平均粒径优选为500nm以下,更优选为200nm以下,进一步优选为50nm以下。需要说明的是,硅颗粒的平均粒径通过观察负极材料的截面SEM(扫描型电子显微镜)照片来测定。具体而言,硅颗粒的平均粒径是对任意的100个硅颗粒的最大直径取平均而求出的。硅颗粒是通过使多个微晶聚集而形成的。
式Li2Si2O5·(x-2)SiO2也可以以Li2O·2SiO2·(x-2)SiO2(或Li2O·xSiO2)表示。即,可以看成相对于1mol的Li2O、与Li2Si2O5相比过量地包含(x-2)摩尔的SiO2类似成分。由此,负极材料LSX中所含的硅酸锂通过满足2<x≤18,从而使碱性成分(Li2O)的比例比Li2Si2O5少。因此,包含微晶尺寸为10nm以上的硅颗粒的负极材料LSX即使在充放电时产生龟裂,碱性成分也几乎不会溶出、也不易发生硅的劣化。
硅酸锂相的组成可以通过以下来分析。
首先测定负极材料LSX试样的质量。然后如以下所述那样计算试样中所含的碳、锂及氧的含量。然后,从试样的质量减去碳含量,计算余量中所占的锂及氧含量,由锂(Li)和氧(O)的摩尔比求出x值。
碳含量使用碳-硫分析装置(例如堀场制作所株式会社制的EMIA-520型)来测定。取试样至磁舟中,加入助燃剂,插入到加热至1350℃的燃烧炉(载气:氧)中,通过红外线吸收来检测燃烧时产生的二氧化碳气体量。例如使用Bureau of Analysed Sampe.Ltd制的碳钢(碳含量0.49%)来制作标准曲线,计算试样的碳含量(高频感应加热炉燃烧-红外线吸收法)。
氧含量使用氧·氮·氢分析装置(例如堀场制作所株式会社制的EGMA-830型)来测定。将试样加入Ni密封容器中,与作为助熔剂的Sn颗粒及Ni颗粒一起投入用电力5.75kW加热的碳坩埚中,检测释放出的一氧化碳气体。使用标准试样Y2O3制作标准曲线,计算试样的氧含量(非活性气体熔解-非色散型红外线吸收法)。
关于锂含量,用热硝氟酸(加热的氢氟酸与硝酸的混酸)完全溶解试样,将作为溶解残渣的碳过滤去除后,用电感耦合等离子体发射光谱法(ICP-AES)分析所得到的滤液,测定锂含量。使用市售的锂的标准溶液制作标准曲线,计算试样的锂含量。
就负极材料LSX而言,为了充分抑制充放电时硅颗粒、硅酸锂相发生龟裂、碱性成分从龟裂处溶出,Li2O·xSiO2中的SiO2类似成分越多越优选。具体而言,优选满足2.1≤x≤18,更优选满足4≤x≤18。例如在x=2.1的情况下,可以看做相对于1mol的Li2O、SiO2比Li2Si2O5过量0.1摩尔。另外,在x=4的情况下,可以看做相对于1mol的Li2O、SiO2类似成分比Li2Si2O5过量2摩尔。
负极材料LSX优选形成平均粒径1~25μm、进一步优选4~15μm的颗粒状材料(以下也称为LSX颗粒。)。由此,容易使由伴随充放电的负极材料LSX的体积变化导致的应力进一步松弛,容易得到良好的循环特性。另外,LSX颗粒的表面积变为适度,使由与非水电解质的副反应导致的容量下降也得到抑制。
LSX颗粒的平均粒径是指:通过激光衍射散射法测定的粒度分布中,体积累计值为50%的粒径(体积平均粒径)。作为测定装置,可以使用例如堀场制作所株式会社(HORIBA)制“LA-750”。
LSX颗粒优选具备覆盖其表面的至少一部分的导电性材料。硅酸锂相缺乏电子传导性,因此LSX颗粒的导电性也容易变低。另一方面,通过用导电性材料覆盖表面,从而可以使导电性飞跃性提高。导电层优选较薄,薄至实质上不影响LSX颗粒的平均粒径的程度。
然后对负极材料LSX的制造方法进行详述。
硅酸锂的原料可以使用二氧化硅与锂化合物的混合物。将原料按照使硅相对于锂的原子比:Si/Li大于1的方式混合,对混合物进行焙烧,由此得到以式Li2Si2O5·(x-2)SiO2表示且满足2<x≤18的硅酸锂。如表1所示,Si/Li比大于1时,得到计算上满足2<x的硅酸锂。从尽可能地抑制碱性成分溶出的观点出发,优选按照Si/Li比为1.05~9的方式来加入原料。
[表1]
Figure BDA0002075526320000061
如表1所示,硅酸锂相中Si与Li的原子比:Si/Li在x=2时,为2/2=1。由此,计算上硅酸锂相的Si/Li大于1时,满足2<x;当Si/Li≤9的情况下,满足x≤18。因此即使考虑测定误差,在利用XPS等测定的硅酸锂相的原子比:Si/Li为1.05以上的情况下也满足2.1≤x,在Si/Li为4以上的情况下,可认为满足8≤x。
作为锂化合物,可以使用碳酸锂、氧化锂、氢氧化锂、氢化锂等。这些可以单独使用,也可以将两种以上组合使用。
优选将包含二氧化硅和锂化合物的混合物在空气中、在400℃~1200℃、优选800℃~1100℃下加热而使二氧化硅和锂化合物反应。
工序(ii)
然后,向硅酸锂中配混原料硅而进行复合化。但是按照最终得到的硅颗粒的、由XRD图案的归属于Si(111)面的衍射峰的半值宽度并由谢勒公式计算出的微晶尺寸为10nm以上方式来进行控制。例如,可以边对硅酸锂和原料硅的混合物赋予剪切力边将混合物粉碎。
具体而言,首先将原料硅和硅酸锂以例如20:80~95:5的质量比混合。作为原料硅,可以使用平均粒径为数μm~数十μm左右的硅的粗粒。然后,用球磨机之类的粉碎装置边使混合物微粒化边进行搅拌。需要说明的是,可以将原料硅和硅酸锂分别独自微粒化后进行混合。另外,也可以不使用粉碎装置,而是合成硅纳米颗粒和硅酸锂纳米颗粒,将这些混合。
然后,将微粒化的混合物在例如非活性气氛(例如氩气、氮气等气氛)中在450℃~1000℃下加热、焙烧。此时,可以边通过热压等对混合物施加压力边焙烧而制作混合物的烧结体(负极材料LSX)。硅酸锂在450℃~1000℃下稳定、与硅几乎不反应,因此即使发生容量下降也是轻微的。
然后可以将烧结体粉碎至粒状物,制成LSX颗粒。此时,通过适宜选择粉碎条件,从而能够得到平均粒径1~25μm的LSX颗粒。
工序(iii)
然后,可以将LSX颗粒的表面的至少一部分用导电性材料覆盖而形成导电层。导电性材料优选在电化学上稳定,优选碳材料。作为用碳材料覆盖颗粒状材料的表面的方法,可例示:使用乙炔、甲烷等烃气体作为原料的CVD法;将煤沥青、石油沥青、酚醛树脂等与颗粒状材料混合、加热而使其炭化的方法等。另外,也可以使炭黑附着于颗粒状材料的表面。
考虑到确保导电性、以及锂离子的扩散性,导电层的厚度优选为1~200nm,更优选为5~100nm。导电层的厚度可以通过使用SEM或TEM观察颗粒的截面来计测。
工序(iv)
可以进行用酸清洗LSX颗粒的工序。例如,通过用酸性水溶液清洗LSX颗粒,可以将使原料硅和硅酸锂复合化时可能产生的、微量的Li2SiO3之类的成分溶解、去除。作为酸性水溶液,可以使用盐酸、氢氟酸、硫酸、硝酸、磷酸、碳酸等无机酸的水溶液、柠檬酸、乙酸等有机酸的水溶液。
图1示意性示出作为负极材料LSX的一例的LSX颗粒20的截面。
LSX颗粒20具备硅酸锂相21、和分散在硅酸锂相内的硅颗粒22。在由硅酸锂相21和硅颗粒22构成的母颗粒23的表面形成有导电层24。导电层24由覆盖LSX颗粒或母颗粒23的表面的至少一部分的导电性材料形成。
优选硅颗粒22大致均匀地分散在硅酸锂相21内。母颗粒23例如具有海岛结构,所述海岛结构是微细的硅颗粒分散在硅酸锂相21的基体中而成的。这种情况下,在母颗粒23的任意截面中,硅颗粒22(单质Si)不是集中在一部分区域、而是大致均匀地散布。
优选硅酸锂相21及硅颗粒22均由微细颗粒的集合构成。优选硅酸锂相21由比硅颗粒22更微细的颗粒构成。这种情况下,在LSX颗粒20的X射线衍射(XRD)图案中,归属于单质Si的(111)面的衍射峰强度大于归属于硅酸锂的(111)面的衍射峰强度。
图2示出充放电前的母颗粒23的XRD图案的一例。
清晰地观测到Li2Si2O5的峰,可以理解Li2Si2O5为主要成分。来自除了Li2Si2O5以外的硅酸锂的峰强度弱,与来自硅酸锂的峰相比,单质Si的峰大。需要说明的是,与Li2Si2O5相比SiO2过量的硅酸锂为非晶质,因此未观测到它们的峰。
母颗粒23除了硅酸锂相21及硅颗粒22以外还可以包含第3成分。例如,硅酸锂相21除了硅酸锂以外,还可以包含结晶性或非晶质的SiO2。利用Si-NMR测定的SiO2在母颗粒23中所占的含量例如优选为30质量%以下,更优选为7质量%以下。
从高容量化及提高循环特性的观点出发,利用Si-NMR测定的硅颗粒22(单质Si)在母颗粒23中所占的含量优选为20质量%~95质量%,更优选为35质量%~75质量%。由此,可以确保高的充放电容量,并且锂离子的扩散变得良好,容易得到优异的负荷特性。另外,未被硅酸锂相覆盖而是呈露出状态的、与非水电解质接触的硅颗粒的表面减少,因此循环特性的下降得到抑制。
硅酸锂相21大部分(例如90质量%以上)由式Li2Si2O5·(x-2)SiO2或Li2O·2SiO2·(x-2)SiO2或Li2O·xSiO2(2<x≤18)所示的硅酸锂构成。因此,硅酸锂相21中几乎不包含容易溶出碱性成分的Li4SiO4及Li2SiO3。而且硅酸锂相21的SiO2类似成分与Li2Si2O5相比是过量的,因此与Li2Si2O5相比,强碱性成分的组成比率降低。因此,即使在母颗粒23或硅颗粒22产生龟裂的情况下,也不易发生由单质Si的变质导致的充放电容量下降。
从稳定性、制造的容易性、锂离子导电性等的观点出发,式Li2Si2O5·(x-2)SiO2优选满足2.1≤x≤18,更优选满足3≤x≤8。这种情况下,硅酸锂相21中,除了Li2Si2O5相以外例如Li2Si3O7、Li2Si4O9、Li2Si5O11、Li2Si6O13、Li2Si7O15、Li2Si8O17、Li2Si9O19、Li2Si10O21等相离域化,上述组成表示包括晶体和非晶质在内的整体的平均组成。其中,优选以Li2Si2O5相为主要成分(质量最多的成分),优选利用Si-NMR测定的Li2Si2O5在硅酸锂相21中所占的含量超过15质量%,更优选为40质量%以上。以下示出期望的Si-NMR的测定条件。
<Si-NMR测定条件>
测定装置:Varian公司制、固体核磁共振光谱测定装置(INOVA-400)
探针:Varian 7mmCPMAS-2
MAS:4.2kHz
MAS速度:4kHz
脉冲:DD(45°脉冲+信号捕捉时间1H解耦)
重复时间:1200秒
观测幅度:100kHz
观测中心:-100ppm附近
信号捕捉时间:0.05秒
累积次数:560
试样量:207.6mg
硅颗粒22的平均粒径在初次充电前为500nm以下,优选为200nm以下,更优选为50nm以下。通过将硅颗粒22如此地适度地微细化,由此使充放电时的体积变化变小,使结构稳定性提高。硅颗粒22的平均粒径通过用SEM或TEM观察负极材料的截面来测定。具体而言,对任意的100个硅颗粒22的最大直径取平均而求出。
然后,对本发明的实施方式的非水电解质二次电池进行说明。非水电解质二次电池例如具备如下所述的负极、正极和非水电解质。
[负极]
负极具备例如负极集电体、和形成于负极集电体的表面且包含负极活性物质的负极合剂层。负极合剂层可以如下形成:将使负极合剂分散在分散介质中而成的负极浆料涂布在负极集电体的表面并进行干燥,从而形成。可以根据需要对干燥后的涂膜进行压延。负极合剂层可以形成在负极集电体的一个表面,也可以形成在两个表面。
负极合剂可以包含作为负极活性物质的负极材料LSX(或LSX颗粒)作为必需成分、并且包含粘结剂、导电剂、增稠剂等作为任意成分。负极材料LSX中的硅颗粒可以吸藏大量的锂离子,因此有助于负极的高容量化。
负极活性物质优选还包含电化学上吸藏和释放锂离子的碳材料。负极材料LSX由于会伴随着充放电而发生体积膨胀收缩,因此当其在负极活性物质中所占的比率变大时,容易随着充放电而发生负极活性物质与负极集电体的接触不良。另一方面,通过将负极材料LSX和碳材料组合使用,从而能够对负极赋予硅颗粒的高容量、并且实现优异的循环特性。负极材料LSX在负极材料LSX和碳材料的总计中所占的比例优选例如3~30质量%。由此,容易兼顾高容量化和提高循环特性。
作为碳材料,可例示例如石墨、易石墨化碳(软炭)、难石墨化碳(硬炭)等。其中,优选充放电的稳定性优异、不可逆容量也少的石墨。石墨是具有石墨型晶体结构的材料,包括例如天然石墨、人造石墨、石墨化中间相碳颗粒等。碳材料可以单独使用1种,也可以将两种以上组合使用。
作为负极集电体,使用无孔的导电性基板(金属箔等)、多孔的导电性基板(网状体(Mesh body)、网体(Net body)、冲压片等)。作为负极集电体的材质,可例示不锈钢、镍、镍合金、铜、铜合金等。负极集电体的厚度没有特别限定,从负极的强度和轻质化的平衡的观点出发,优选为1~50μm,更期望为5~20μm。
作为粘结剂,可例示树脂材料,例如:聚四氟乙烯、聚偏氟乙烯(PVDF)等氟树脂;聚乙烯、聚丙烯等聚烯烃树脂;芳纶树脂等聚酰胺树脂;聚酰亚胺、聚酰胺酰亚胺等聚酰亚胺树脂;聚丙烯酸、聚丙烯酸甲酯、乙烯-丙烯酸共聚物等丙烯酸类树脂;聚丙烯腈、聚乙酸乙烯酯等乙烯基树脂;聚乙烯基吡咯烷酮;聚醚砜;苯乙烯-丁二烯共聚橡胶(SBR)等橡胶状材料等。这些可以单独使用1种,也可以将两种以上组合使用。
作为导电剂,可例示例如:乙炔黑等炭黑类;碳纤维、金属纤维等导电性纤维类;氟化碳;铝等金属粉末类;氧化锌、钛酸钾等导电性晶须类;氧化钛等导电性金属氧化物;亚苯基衍生物等有机导电性材料等。这些可以单独使用1种,也可以将两种以上组合使用。
作为增稠剂,可列举例如:羧甲基纤维素(CMC)及其改性物(也包括钠盐等盐)、甲基纤维素等纤维素衍生物(纤维素醚等);聚乙烯醇等具有乙酸乙烯酯单元的聚合物的皂化物;聚醚(聚环氧乙烷等聚环氧烷烃等)等。这些可以单独使用1种,也可以将两种以上组合使用。
作为分散介质,没有特别限制,可例示例如:水、乙醇等醇;四氢呋喃等醚;二甲基甲酰胺等酰胺;N-甲基-2-吡咯烷酮(NMP);或它们的混合溶剂等。
[正极]
正极具备例如正极集电体、和形成在正极集电体的表面的正极合剂层。正极合剂层可以如下形成:将使正极合剂分散在分散介质中而成的正极浆料涂布在正极集电体的表面并进行干燥,从而形成。可以根据需要对干燥后的涂膜进行压延。正极合剂层可以形成在正极集电体的一个表面,也可以形成在两个表面。
作为正极活性物质,可以使用锂复合金属氧化物。可列举例如LiaCoO2、LiaNiO2、LiaMnO2、LiaCobNi1-bO2、LiaCobM1-bOc、LiaNi1-bMbOc、LiaMn2O4、LiaMn2-bMbO4、LiMePO4、Li2MePO4F(M为Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、B中的至少一种。)。在此,a=0~1.2、b=0~0.9、c=2.0~2.3。需要说明的是,表示锂的摩尔比的a值为活性物质刚制作后的值,随着充放电而增大或减小。
作为粘结剂及导电剂,可以使用与关于负极而例示的物质同样的物质。作为导电剂,可以使用天然石墨、人造石墨等石墨。
正极集电体的形状及厚度可以分别从基于负极集电体的形状及范围中选择。作为正极集电体的材质,可例示例如不锈钢、铝、铝合金、钛等。
[非水电解质]
非水电解质包含非水溶剂、和溶解于非水溶剂中的锂盐。非水电解质中的锂盐的浓度例如为0.5~2mol/L。非水电解质可以含有公知的添加剂。
作为非水溶剂,使用例如环状碳酸酯、链状碳酸酯、环状羧酸酯等。作为环状碳酸酯,可列举碳酸亚丙酯(PC)、碳酸亚乙酯(EC)等。作为链状碳酸酯,可列举碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、碳酸二甲酯(DMC)等。作为环状羧酸酯,可列举γ-丁内酯(GBL)、γ-戊内酯(GVL)等。非水溶剂可以单独使用1种,也可以将两种以上组合使用。
作为锂盐,可以使用例如含氯酸的锂盐(LiClO4、LiAlCl4、LiB10Cl10等)、含氟酸的锂盐(LiPF6、LiBF4、LiSbF6、LiAsF6、LiCF3SO3、LiCF3CO2等)、含氟酸的酰亚胺的锂盐(LiN(CF3SO2)2、LiN(CF3SO2)(C4F9SO2)、LiN(C2F5SO2)2等)、卤化锂(LiCl、LiBr、LiI等)等。锂盐可以单独使用1种,也可以将两种以上组合使用。
[分隔件]
通常,期望在正极与负极之间夹有分隔件。分隔件的离子透过度高,具备适度的机械强度及绝缘性。作为分隔件,可以使用微多孔薄膜、织布、无纺布等。作为分隔件的材质,优选聚丙烯、聚乙烯等聚烯烃。
作为非水电解质二次电池的结构的一例,可列举下述结构:在外壳体中收纳有正极及负极夹着分隔件卷绕而成的电极组、和非水电解质的结构。或者,也可以应用正极和负极夹着分隔件层叠而成的层叠型的电极组等其它形态的电极组来代替卷绕型的电极组。非水电解质二次电池例如可以为圆筒型、方型、硬币型、纽扣型、层压型等中的任意形态。
图3是本发明的一实施方式的方形的非水电解质二次电池的一部分被切除的立体示意图。
电池具备有底方形的电池壳体6、收纳在电池壳体6内的电极组9及非水电解质(未图示)。电极组9具有长条带状的负极、长条带状的正极、和介于二者之间的防止二者直接接触的分隔件。电极组9如下形成:将负极、正极及分隔件以平板状的卷芯为中心进行卷绕并抽出卷芯而形成。
负极的负极集电体上通过熔接等安装有负极引线11的一端。正极的正极集电体上通过熔接等安装有正极引线14的一端。负极引线11的另一端与设置于封口板5的负极端子13电连接。正极引线14的另一端与兼为正极端子的电池壳体电连接6。在电极组9的上部配置有树脂制的框体4,其将电极组9与封口板5隔离,并且将负极引线11与电池壳体6隔离。然后用封口板5将电池壳体6的开口部封口。
实施例
以下基于实施例及比较例具体说明本发明,但本发明不受以下的实施例限定。
<实施例1>
[负极材料LSX的制备]
工序(i)
将二氧化硅和碳酸锂按照原子比:Si/Li为1.05的方式混合,将混合物在950℃的空气中焙烧10小时,从而得到式Li2O·2.1SiO2(x=2.1)所示的硅酸锂。将得到的硅酸锂粉碎至平均粒径为10μm。
工序(ii)
将平均粒径10μm的硅酸锂(Li2O·2.1SiO2)和原料硅(3N、平均粒径10μm)以50:50的质量比混合,将混合物填充到行星球磨机(Fritsch公司制、P-5)的罐(SUS制、容积:500mL)中,向罐中放入24个SUS制球(直径20mm),盖好盖子,在非活性气氛中以200rpm对混合物进行50小时粉碎处理。
然后,在非活性气氛中取出粉末状的混合物,在非活性气氛中在600℃下焙烧4小时,得到混合物的烧结体(LSX颗粒(母颗粒))。
然后将LSX颗粒粉碎,使其通过40μm的网,然后与煤沥青(JFE化学株式会社制、MCP250)混合,将混合物在非活性气氛中在800℃下焙烧5小时,将LSX颗粒的表面用导电性碳覆盖,从而形成导电层。导电层的覆盖量相对于LSX颗粒和导电层的总质量设为5质量%。然后使用筛子而得到具有导电层的平均粒径10μm的LSX颗粒A1。
[LSX颗粒的分析]
LSX颗粒A1的硅颗粒的微晶尺寸为15nm,所述微晶尺寸由利用XRD分析而得的归属于Si(111)面的衍射峰使用谢勒公式计算。另外,利用上述方法(高频感应加热炉燃烧-红外线吸收法、非活性气体熔解-非色散型红外线吸收法、电感耦合等离子体发射光谱法(ICP-AES))分析硅酸锂相的组成,结果是Si/Li比为1.05,利用Si-NMR测定的Li2Si2O5的含量为48质量%。观察LSX颗粒A1的截面SEM照片,结果确认:在LSX颗粒A1中,在由Li2Si2O5·0.1SiO2构成的基体中大致均匀地分散有平均粒径50nm的硅颗粒。确认LSX颗粒A1的XRD图案中主要是来自单质Si和Li2Si2O5的衍射峰,峰强度为Si>Li2Si2O5。用Si-NMR测定LSX颗粒A1的结果是,SiO2的含量为7质量%以下。
[负极的制作]
将具有导电层的LSX颗粒A1与石墨以5:95的质量比混合,用作负极活性物质A1。将负极活性物质A1、羧甲基纤维素钠(CMC-Na)和苯乙烯-丁二烯橡胶(SBR)以97.5:1:1.5的质量比混合,添加水后用混合机(Primix公司制、T.K.HIVIS MIX)搅拌,由此制备负极浆料。然后,在铜箔的表面按照每1m2的负极合剂的质量为190g的方式涂布负极浆料,将涂膜干燥后进行压延,由此制作在铜箔的两面形成有密度1.5g/cm3的负极合剂层的负极。
[正极的制作]
将钴酸锂、乙炔黑和聚偏氟乙烯以95:2.5:2.5的质量比混合,添加N-甲基-2-吡咯烷酮(NMP),然后用混合机(Primix公司制、T.K.HIVIS MIX)搅拌,由此制备了正极浆料。然后,在铝箔的表面涂布正极浆料,将涂膜干燥后进行压延,由此制作在铝箔的两面形成有密度3.6g/cm3的正极合剂层的正极。
[非水电解液的制备]
向以3:7的体积比包含碳酸亚乙酯(EC)和碳酸二乙酯(DEC)的混合溶剂中,以1.0mol/L浓度溶解LiPF6,由此制备了非水电解液。
[非水电解质二次电池的制作]
在各电极上分别安装集电片,按照集电片位于最外周部的方式将正极和负极夹着分隔件卷绕成螺旋状,由此制作了电极组。将电极组插入铝层压膜制的外壳体内,在105℃下真空干燥2小时,然后注入非水电解液,将外壳体的开口部密封,得到电池A1。
<比较例1~4及实施例2~5>
在工序(i)中,使原子比:Si/Li在0.5~20的范围内变化地加入二氧化硅和碳酸锂而制备表2所示的规定的硅酸锂,除此以外与实施例1同样地形成LSX颗粒A2~A5及B1~B4,使用这些制作了实施例2~5的电池A2~A5及比较例1~4的电池B1~B4。
<实施例6~8>
将实施例1~3的LSX颗粒用硫酸水溶液(4N)清洗,去除作为副产物而生成的Li2SiO3等,由此分别得到X=3、4或9的LSX颗粒A6~A8。使用LSX颗粒A6~A8,除此以外与实施例1同样地制作了实施例6~8的电池A6~8。
<比较例5>
在工序(ii)中,将利用球磨机粉碎的处理时间变更为100小时,除此以外与实施例1同样进行,形成在硅酸锂相的基体中大致均匀地分散有由尺寸5nm的微晶构成的硅颗粒的LSX颗粒B5。使用LSX颗粒B5,除此以外与实施例1同样地制作了比较例5的电池B5。
<比较例6>
在工序(ii)中,将利用球磨机粉碎的处理时间变更为100小时,除此以外与实施例2同样进行,形成在硅酸锂相的基体中大致均匀地分散有由尺寸5nm的微晶构成的硅颗粒的LSX颗粒B6。使用LSX颗粒B6,除此以外与实施例2同样地制作了比较例6的电池B6。
<比较例7>
在工序(ii)中,将利用球磨机粉碎的处理时间变更为100小时,除此以外与实施例3同样进行,形成在硅酸锂相的基体中大致均匀地分散有由尺寸5nm的微晶构成的硅颗粒的LSX颗粒B7。使用LSX颗粒B7,除此以外与实施例3同样地制作了比较例7的电池B7。
<比较例8>
在SiOx(x=0.97、平均粒径5μm)中混合上述煤沥青,在非活性气氛下在800℃下焙烧5小时,由此制备具有导电层的SiOx。然后,将具有导电层的SiOx用硫酸水溶液(4N)清洗。使用用酸清洗后的具有导电层的SiOx(B8),除此以外通过与实施例1同样的方法制作了电池B8。
对于实施例1~5及比较例1~8的各电池,通过以下方法进行评价。将评价结果示于表2。
[初次充放电效率]
<充电>
以1It(800mA)的电流进行恒定电流充电直至电压为4.2V,然后以4.2V的恒定电压进行恒定电压充电直至电流为1/20It(40mA)。
<放电>
以1It(800mA)的电流进行恒定电流放电直至电压为2.75V。
充电与放电之间的停顿期间为10分钟。按照上述充放电条件对各电池测定第1次循环的放电容量相对于充电容量的比例,作为初次充放电效率。
[循环试验]
按照上述充放电条件对各电池进行循环试验。将第200次循环的放电容量相对于第1次循环的放电容量的比例作为循环维持率。
[表2]
Figure BDA0002075526320000171
根据表2,硅颗粒的微晶尺寸为15nm时与硅颗粒的微晶尺寸为5nm时,循环特性显示出不同的行为,可理解为循环特性依赖于x值。另外,根据表2可以理解,硅颗粒的微晶尺寸为5nm时与硅颗粒的微晶尺寸为15nm时不同,初次充放电效率难以提高。而且可以理解,当x值超过18时,初次充放电效率下降。
产业上的可利用性
根据本发明的负极材料LSX,可以提供能够抑制初始效率的下降、并且具有高能量密度和良好的循环特性的非水电解质二次电池。本发明的非水电解质二次电池作为移动通信设备、便携电子设备等的主要电源是有用的。
附图标记说明
4:框体
5:封口板
6:电池壳体
9:电极组
11:负极引线
13:负极端子
14:正极引线
20:LSX颗粒
21:硅酸锂相
22:硅颗粒
23:母颗粒
24:导电层。

Claims (8)

1.一种负极活性物质材料,其为颗粒形状,且包含:硅酸锂相、和分散在所述硅酸锂相内的硅颗粒,
所述硅颗粒的微晶尺寸为10nm以上,
所述硅酸锂相的组成以式Li2Si2O5·(x-2)SiO2表示且满足2<x≤18。
2.根据权利要求1所述的负极活性物质材料,其满足2.1≤x≤18。
3.根据权利要求1所述的负极活性物质材料,其满足3≤x≤8。
4.根据权利要求1~3中任一项所述的负极活性物质材料,其中,所述硅酸锂相和所述硅颗粒形成平均粒径1~25μm的颗粒状材料。
5.根据权利要求4所述的负极活性物质材料,其具备覆盖所述颗粒状材料的表面的至少一部分的导电性材料。
6.根据权利要求1~3中任一项所述的负极活性物质材料,其中,所述硅颗粒的平均粒径为500nm以下。
7.根据权利要求6所述的负极活性物质材料,其中,所述硅颗粒的平均粒径为200nm以下。
8.一种非水电解质二次电池,其具备:包含权利要求1~7中任一项所述的负极活性物质材料和石墨的负极、电化学上能够吸藏及释放锂的正极、和非水电解质。
CN201780073638.XA 2016-11-30 2017-11-17 负极材料及非水电解质二次电池 Active CN110024188B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016-233566 2016-11-30
JP2016233566 2016-11-30
PCT/JP2017/041409 WO2018101072A1 (ja) 2016-11-30 2017-11-17 負極材料および非水電解質二次電池

Publications (2)

Publication Number Publication Date
CN110024188A CN110024188A (zh) 2019-07-16
CN110024188B true CN110024188B (zh) 2022-10-25

Family

ID=62241339

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780073638.XA Active CN110024188B (zh) 2016-11-30 2017-11-17 负极材料及非水电解质二次电池

Country Status (4)

Country Link
US (1) US11196040B2 (zh)
JP (1) JP6876946B2 (zh)
CN (1) CN110024188B (zh)
WO (1) WO2018101072A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003595A1 (ja) * 2018-06-29 2020-01-02 パナソニックIpマネジメント株式会社 非水電解質二次電池
CN110970600B (zh) * 2018-09-28 2023-06-30 贝特瑞新材料集团股份有限公司 一种锂离子二次电池负极材料及其制备方法和应用
CN111293284B (zh) * 2018-12-07 2023-02-28 贝特瑞新材料集团股份有限公司 一种负极材料、及其制备方法和用途
JP2021047980A (ja) * 2019-09-16 2021-03-25 川上 総一郎 リチウムイオン二次電池用負極活物質とその製造方法、および電極構造体、ならびに二次電池
WO2021065173A1 (ja) * 2019-09-30 2021-04-08 パナソニックIpマネジメント株式会社 非水電解質二次電池
CN112751029A (zh) * 2019-10-30 2021-05-04 贝特瑞新材料集团股份有限公司 一种硅氧复合负极材料及其制备方法和锂离子电池
CN112803015A (zh) * 2019-11-14 2021-05-14 贝特瑞新材料集团股份有限公司 一种负极材料及其制备方法和锂离子电池
CN114902447A (zh) * 2019-12-26 2022-08-12 松下知识产权经营株式会社 二次电池用负极活性物质及二次电池
CN111072038B (zh) * 2019-12-27 2021-01-01 江西壹金新能源科技有限公司 一种用于锂离子电池负极的改性一氧化硅材料及其制备方法
CN111403726A (zh) * 2020-03-24 2020-07-10 洛阳联创锂能科技有限公司 一种硅氧锂负极材料的制备方法
JP7497115B2 (ja) 2020-05-21 2024-06-10 株式会社大阪チタニウムテクノロジーズ リチウムダイシリケート含有リチウム含有酸化ケイ素およびその製造方法
KR102286231B1 (ko) * 2020-07-29 2021-08-06 에스케이이노베이션 주식회사 리튬이 도핑된 규소계 산화물 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
EP4283710A1 (en) 2021-01-21 2023-11-29 Panasonic Energy Co., Ltd. Negative electrode active material composite particle, method for manufacturing negative electrode active material composite particle, and nonaqueous electrolyte secondary battery
KR102511822B1 (ko) 2021-02-18 2023-03-17 에스케이온 주식회사 리튬 이차 전지용 음극 활물질 이를 포함하는 리튬 이차 전지
CN114005974B (zh) * 2021-12-30 2022-03-22 常州硅源新能材料有限公司 硅氧负极材料、硅氧负极材料的制备方法及锂离子电池
CN115241436B (zh) * 2022-08-08 2024-02-20 广东凯金新能源科技股份有限公司 高首效锂掺杂硅氧化物复合负极材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251097A (ja) * 2012-05-31 2013-12-12 Toyota Industries Corp 非水電解質二次電池

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3016627B2 (ja) * 1991-06-06 2000-03-06 東芝電池株式会社 非水溶媒二次電池
US20090186267A1 (en) * 2008-01-23 2009-07-23 Tiegs Terry N Porous silicon particulates for lithium batteries
JP5842985B2 (ja) * 2009-12-24 2016-01-13 ソニー株式会社 リチウムイオン二次電池、リチウムイオン二次電池用負極、電動工具、電気自動車および電力貯蔵システム
JP5411781B2 (ja) * 2010-04-05 2014-02-12 信越化学工業株式会社 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池
JP2015512130A (ja) 2012-02-28 2015-04-23 エルジー・ケム・リミテッド リチウム二次電池用電極活物質及びその製造方法
JP5440661B2 (ja) * 2012-06-27 2014-03-12 株式会社豊田自動織機 珪素含有材料および珪素含有材料を含む二次電池用活物質
JP5835141B2 (ja) * 2012-07-23 2015-12-24 株式会社豊田自動織機 二次電池用負極活物質、その製造方法、二次電池用負極、二次電池、及びSi−酸化物固体電解質複合体
CN104603993B (zh) * 2012-09-27 2017-09-01 三洋电机株式会社 非水电解质二次电池用负极活性物质以及使用该负极活性物质的非水电解质二次电池
CN103258992B (zh) 2013-04-28 2016-02-24 浙江大学 一种首次库仑效率高的锂离子电池负极材料的制备方法
JP2014220216A (ja) 2013-05-10 2014-11-20 帝人株式会社 非水電解質二次電池用の複合粒子
CN109244420B (zh) * 2013-05-23 2021-09-24 信越化学工业株式会社 非水电解质二次电池用负极材料和二次电池
JP5870129B2 (ja) * 2014-02-12 2016-02-24 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池の負極用粉末、およびその製造方法
WO2016035290A1 (ja) 2014-09-03 2016-03-10 三洋電機株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池
JP6438287B2 (ja) * 2014-12-05 2018-12-12 株式会社東芝 非水電解質電池用活物質、非水電解質電池用電極、非水電解質二次電池および電池パック
CN107112522B (zh) 2015-01-28 2021-06-01 三洋电机株式会社 非水电解质二次电池用负极活性物质和非水电解质二次电池
US10177403B2 (en) * 2015-02-23 2019-01-08 Sanyo Electric Co., Ltd. Negative-electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251097A (ja) * 2012-05-31 2013-12-12 Toyota Industries Corp 非水電解質二次電池

Also Published As

Publication number Publication date
CN110024188A (zh) 2019-07-16
JPWO2018101072A1 (ja) 2019-10-24
US11196040B2 (en) 2021-12-07
US20190319261A1 (en) 2019-10-17
JP6876946B2 (ja) 2021-05-26
WO2018101072A1 (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
CN110024188B (zh) 负极材料及非水电解质二次电池
CN110521034B (zh) 非水电解质二次电池用负极材料和非水电解质二次电池
CN110462891B (zh) 非水电解质二次电池用负极材料和非水电解质二次电池
JP2009295465A (ja) リチウム二次電池用正極活物質及びその製造方法
CN112136232B (zh) 非水电解质二次电池
CN113165884B (zh) 二次电池和电解液
JP7165913B2 (ja) 非水電解質二次電池
CN110495026B (zh) 负极材料和非水电解质二次电池
CN113632261A (zh) 非水电解质二次电池用负极及非水电解质二次电池
US20240021806A1 (en) Negative electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2020202843A1 (ja) 非水電解質二次電池
CN111033854B (zh) 非水电解质二次电池
CN111357135A (zh) 锂离子电池
WO2019167611A1 (ja) 非水電解質二次電池
CN113646262A (zh) 非水电解质二次电池
CN111630703A (zh) 非水电解质二次电池、电解液和非水电解质二次电池的制造方法
CN111742436A (zh) 非水电解质二次电池
CN111919323A (zh) 二次电池
CN114175315B (zh) 非水电解质二次电池用负极材料和非水电解质二次电池
CN114175315A (zh) 非水电解质二次电池用负极材料和非水电解质二次电池
CN114342110A (zh) 二次电池用负极和非水电解质二次电池
JPWO2020137560A1 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant