CN109792077A - 二次电池用复合固体电解质及其制备方法 - Google Patents

二次电池用复合固体电解质及其制备方法 Download PDF

Info

Publication number
CN109792077A
CN109792077A CN201680089445.9A CN201680089445A CN109792077A CN 109792077 A CN109792077 A CN 109792077A CN 201680089445 A CN201680089445 A CN 201680089445A CN 109792077 A CN109792077 A CN 109792077A
Authority
CN
China
Prior art keywords
solid electrolyte
composite solid
electrolyte
laminated film
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680089445.9A
Other languages
English (en)
Inventor
金在光
孙志沅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seven King Energy Co Ltd
Original Assignee
Seven King Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seven King Energy Co Ltd filed Critical Seven King Energy Co Ltd
Publication of CN109792077A publication Critical patent/CN109792077A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

根据本发明的一实施例的复合固体电解质包括:复合薄膜,其包括70至100重量份的离子导电性陶瓷和1至30重量份的高分子;以及离子性液体电解质,其含有锂离子或者钠离子,并且,上述离子性液体电解质浸渍在上述复合薄膜。本发明的二次电池用复合固体电解质及其制备方法可以提供一种通过适用具有低界面阻抗和高稳定性的电解质来改善稳定性及电化学特性部分的二次电池。

Description

二次电池用复合固体电解质及其制备方法
技术领域
本发明涉及一种提高电池的稳定性及电化学特性的二次电池用复合固体电解质及其制备方法。
背景技术
最近,对于电池而言,在汽车用电池、固定用电池中以蓄电用途而使用的大型电池备受关注。其原因在于,相对于到目前为止主流的手机用小型电池,对以电动汽车固定用蓄电池用途等而使用的大型电池的需求剧增。
随着对大型电池的要求变高,在确保二次电池的稳定性和增加电池寿命方面需要比目前的二次电池更加提高的性能。
虽然在如锂二次电池的已经商用化的二次电池中广泛使用了液体电解质,但是液体电解质的可燃性高且稳定性低,由此存在降低电池的稳定性的问题。
为了提高上述锂二次电池的稳定性,正在进行能够代替液体电解质来适用的固体电解质的研究。如陶瓷类固体电解质的固体电解质虽然重量轻,没有电解质的漏液,可变性优异,但是在常温下离子导电率低,且与电极的界面阻抗高,由此存在电池的特性不太明显的问题。
发明内容
本发明要解决的技术问题
本发明的目的在于,提供一种为了提高电池的稳定性和电化学特性,而一起适用离子导电性陶瓷和高分子、液体电解质来制作的复合固体电解质及其制备方法。
技术方案
为了实现上述目的,根据本发明的一实施例的复合固体电解质包括:复合薄膜,其包括60至100重量份的离子导电性陶瓷和1至40重量份的高分子;以及液体电解质,其含有锂离子或者钠离子和溶剂所混合的溶液,并且,上述液体电解质浸渍在上述复合薄膜。
能够包括60至100:1至40的重量比的上述复合薄膜和上述液体电解质。
上述液体电解质可以是在溶剂内溶解0.1M以上的锂盐或者钠盐的溶液。
上述溶剂可以包括离子性液体(ionic liquid)。并且,上述溶剂可以由离子性液体形成。
上述复合固体电解质的厚度可以是30微米以下。并且上述复合固体电解质的厚度可以是0.1微米以上30微米以下。
上述复合固体电解质可以具有400℃以上的热稳定性。
根据本发明的另一个实施例的二次电池包括上述复合固体电解质。
根据本发明的再一个实施例的复合固体电解质的制备方法,包括:通过混合60至100重量份的离子导电性陶瓷和1至40重量份的高分子来制备混合物浆料的步骤(1);通过使上述混合物浆料成型为薄膜形态来制备复合薄膜的步骤(2);以及通过将液体电解质吸收在上述复合薄膜来制备复合固体电解质的步骤(3)。
在上述步骤(3)中适用于吸收的上述液体电解质中,溶剂可以包括离子性液体(ionic liquid),上述溶剂也可以由离子性液体形成。
在上述步骤(3)中,可以提供60至100:1至40的重量比的上述复合薄膜和上述液体电解质来进行上述吸收。
以下,更详细地说明本发明。
本发明的发明人意识到如下的缺点:虽然陶瓷固体电解质的离子电导率和锂(或者钠)离子运输率高,但是界面阻抗高,由此具有降低二次电池的电化学特性的缺点,虽然高分子固体电解质的可变性优异,但是具有在常温下的离子电导率和电化学氧化稳定性低且与电极的界面阻抗大的缺点,此后,对改善上述缺点且提高二次电池的稳定性的同时,常温下的离子电导率高且可通过减少与电极的界面阻抗来提高电池的电化学特性的复合高分子电解质进行研究,结果,通过本发明的结构制备出了具有400度(℃)以上的热稳定性和6V以上的电化学氧化稳定性以及低界面阻抗的复合固体电解质来完成了本发明。
根据本发明的一实施例的复合固体电解质包括:复合薄膜,其包括离子导电性陶瓷和高分子;以及液体电解质,其含有锂离子或者钠离子和溶剂所混合的溶液。上述液体电解质以被吸收而浸渍在上述复合薄膜的状态存在。
上述离子导电性陶瓷可以包括Al2O3类、SiO2类、BaTiO3类、TiO2类和如作为离子导电性陶瓷的Li1.3Al0.3Ti1.7(PO4)3(LTAP)、Li7La3Zr2O12(LLZO)、Li5La3Ta2O12、Li9SiAlO8的锂氧化物类、如Li10GeP2S12、Li2S-P2S5、Li2S-Ga2S3-GeS2的锂硫化物类、如Na3Zr2Si2PO12的钠氧化物类。并且,可以适用从由非晶体离子导电性物质(phosphorus-based glass,oxide-basedglass,oxide/sulfide based glass)、钠超离子导体(Na superionic conductor,NASICON)、钠硫化物类固体电解质、如Na3Zr2Si2PO12的钠氧化物类固体电解质及它们的组合组成的组中选择的任一种。
具体地,上述离子导电性陶瓷可以包括:锂氧化物陶瓷,其为从由Li1.3Al0.3Ti1.7(PO4)3、Li7La3Zr2O12、Li5La3Ta2O12、Li9SiAlO8及它们的组合组成的组中选择的任一种;锂硫化物陶瓷,其为从由Li10GeP2S12、Li2S-P2S5、Li2S-Ga2S3-GeS2及它们的组合组成的组中选择的任一种;钠超离子导体(Na superionic conductor,NASICON);钠硫化物陶瓷,其为从由Na2S-SiS2、Na2S-GeS2及它们的组合组成的组中选择的任一种;或者钠化合物陶瓷,其为从由NaTi2(PO4)3、NaFe2(PO4)3、Na2(SO4)3、Na3Zr2Si2PO12及它们的组合组成的组中选择的任一种。作为上述离子导电性陶瓷可以适用Li1.3Al0.3Ti1.7(PO4)3(LTAP)或者Na3Zr2Si2PO12,在这种情况时,可以容易地制备且进一步提高离子电导率。
上述高分子可以适用从由聚偏二氟乙烯(Polyvinylidene fluoride,PVdF)类高分子、聚偏二氟乙烯-三氟乙烯共聚物(poly[vinylidenefluoride-co-trifluoroethylene],P(VDF-TrFE))类高分子、聚乙二醇(Polyethylene glycol,PEO)类高分子、聚丙烯腈(Polyacrylonitrile,PAN)类高分子、聚甲基丙烯酸甲酯(Poly(methylmethacrylate),PMMA)类高分子、聚氯乙烯(Polyvinyl chloride)类高分子、聚乙烯吡咯烷酮(Polyvinylpyrrolidone,PVP)类高分子、聚酰亚胺(Polyimide,PI)类高分子、聚乙烯(Polyethylene,PE)类高分子、聚氨酯(Polyurethane,PU)类高分子、聚丙烯(Polypropylene,PP)类高分子、聚环氧丙烷(poly(propylene oxide),PPO)类高分子、聚乙烯亚胺[poly(ethylene imine),PEI]类高分子、聚亚乙基硫醚(poly(ethylenesulphide),PES)类高分子、聚醋酸乙烯酯(poly(vinyl acetate),PVAc)类高分子、聚乙烯琥珀酸酯(poly(ethylenesuccinate),PESc)类高分子、聚酯(Polyester)类高分子、聚胺(Polyamine)类高分子、聚硫化物(Polysulfide)类高分子、硅基(Siloxane-based)高分子及它们的组合组成的组中选择的任一种的高分子。具体地,作为上述高分子可以适用包括聚偏二氟乙烯(PVdF)的高分子,在这种情况时,离子电导率和热、电化学稳定性得到提高,可以获得能够充分吸收下文说明的液状的电解质而保持为浸渍在复合薄膜内的状态的复合固体电解质。
对于上述离子导电性陶瓷和上述高分子,可以采用60至100重量份的离子导电性陶瓷和1至40重量份的高分子的比例,且可以采用60至78重量份的离子导电性陶瓷和22至40重量份的高分子的比例,并且可以采用95至85重量份的离子导电性陶瓷和5至15重量份的高分子。当以如上的重量份混合上述离子导电性陶瓷和上述高分子时,将足够量的离子导电性陶瓷分散在复合薄膜内,并且充分获得由于高分子的结合效果、或者以后适用的液体电解质能够充分地浸渍而不发生漏液的效果的同时,可以获得复合固体电解质的优异的稳定性和在常温下的高离子电导率。
上述离子导电性陶瓷和上述高分子在相互混合之后以混合物形态成型而用作复合薄膜。此时,必要时,可以将适当的溶剂添加到上述混合物(或者混合物浆料)来进行混合,例如,作为上述溶剂可以适用N-甲基吡咯烷酮(N-methyl-2-pyrrolidone,NMP):丙酮(aceton)(1:3vol)的溶剂,但并不限于此。
上述复合薄膜包括离子导电性陶瓷和高分子,从而本身起到离子导电性优异的固体电解质的作用,但是为了确保更优异的电池的电化学性能,浸渍液体电解质而以上述液体电解质被吸收在复合薄膜的状态用作复合固体电解质。
上述液体电解质含有处于锂离子或者钠离子溶解在溶剂的状态的溶液。此时,锂离子或者钠离子可能来源于适用于二次电池的锂盐或者钠盐,但只要可适用于二次电池,则均可以进行适用。
上述锂盐是从由LiClO4、LiPF6、LiBF4、CF3SO2NLiSO2CF3(LiTFSI)、LiB(C2O4)2、Li[N(SO2F)2](LiFSI)、Li[B(C2O4)2]、LiAsF6及它们的组合组成的组中选择的任一种,上述钠盐可以是从由NaClO4、NaBF4、NaPF4、NaPF6、NaAsF6、CF3SO2NNaSO2CF3(NaTFSI)、NaB(C2O4)2、Na[(C2F5)3PF3]、Na[B(C2O4)2]、Na[N(SO2F)2](NaFSI)、NaN[SO2C2F5]2及它们的组合组成的组中选择的任一种。
上述溶剂可以采用非水类有机溶剂,上述非水类有机溶剂可以采用从由碳酸酯类,酯类,醚类,酮类,醇类及它们的组合组成的组中选择的任一种,也可以适用非质子溶剂。
上述溶剂可以采用离子性液体(ionic liquid),在这种情况下,具有能够进一步提高电解质的稳定性(尤其热稳定性)的优点。具体地,对于上述离子性液体而言,咪唑鎓盐(imidazolium)类离子性液体、吡啶鎓盐(pyridinium)类离子性液体、吡咯烷鎓盐(pyrrolidinium)类离子性液体、铵(ammonium)类离子性液体、哌啶鎓盐(piperidinium)类离子性液体可以用作溶剂。
更具体地,上述离子性液体可以包括从由咪唑鎓盐(imidazolium)类、吡啶鎓盐(pyridinium)类、吡咯烷鎓盐(pyrrolidinium)类、铵(ammonium)类、哌啶鎓盐(piperidinium)类及它们的组合组成的组中选择的任一种阳离子和,从BF4 -、PF6 -、AsF6 -、SbF6 -、AlCl4 -、HSO4 -、ClO4 -、Cl-、Br-、I-、SO4 -、CF3SO3 -、CF3CO2 -、(C2F5SO2)(CF3SO2)N-、NO3 -、Al2Cl7 -、CH3COO-、[N(SO2F)2]-、CH3SO3 -、CF3SO3及它们的组合中选择的任一种阴离子。
更具体地,上述离子性液体可以是从由N-甲基-N-丁基吡咯烷双(三氟甲基磺酰基)亚胺盐(N-methyl-N-butyl pyrrolidinium bis(trifluoromethylsulfonyl)imide)、N-甲基-N-丙基吡咯烷双(三氟甲基磺酰基)亚胺盐(N-methyl-N-propylpyrrolidiniumbis(trifluoromethanesulfonyl)imide)、N-丁基-N-甲基吡咯烷双(3-三氟甲基磺酰基)亚胺盐(N-butyl-N-methylpyrrolidium bis(3-trifluoromethylsulfonyl)imide)、1-丁基-3-甲基咪唑双(三氟甲基磺酰基)亚胺盐(1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide)及1-乙基-3-甲基咪唑双(三氟甲基磺酰基)亚胺盐(1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide)以及它们的组合组成的组中选择的任一种,在这种情况下,可以进一步提高所制备的复合固体电解质的稳定性。
上述液体电解质以在溶剂内包括锂离子或者钠离子的状态被吸收在复合薄膜而适用于上述复合固体电解质,缓解离子导电性陶瓷所具有的高界面阻抗且弥补高分子所具有的在常温下的低离子电导率,由于液体电解质被吸收在含有高分子的复合薄膜内而存在,因此液体电解质自身所具有的可燃性、发生漏液的可能性等的问题几乎不产生,使得能够制备具有高的热稳定性和低界面阻抗的电解质。
上述液体电解质可以是在溶剂中含有0.1M以上的锂盐或者钠盐的溶液,且可以是含有0.1M至2M的锂盐或者钠盐的溶液。
上述复合薄膜和上述液体电解质的重量比可以为60至100:1至40的重量比,并且重量比可以为70至80:10至20。如果与上述复合薄膜相比有很多液体电解质的添加量,则可能会浪费液体电解质,如果添加量很少,则使用液体电解质的效果可能不太明显。
上述复合固体电解质的厚度可以是30微米以下。本发明的复合固体电解质的稳定性(尤其热稳定性)得到进一步提高,从而可以将厚度制备为30微米以下来使用,具有可适用于二次电池的稳定性。
具体地,上述复合固体电解质也可以在400℃以上的温度下具有优异的热稳定性。
并且,上述复合固体电解质具有优异的电化学稳定性,具备具有6V以上的电化学稳定性的特性。
同时,上述复合固体电解质显着降低界面阻抗,具体地,可以具有800Ω以下的界面阻抗。
对于本发明的复合固体电解质而言,i)离子(Li或者Na)导电性陶瓷提高离子电导率和离子(Li或者Na)的运输率,ii)高分子则使得陶瓷粒子实现非常好的结合,iii)液体电解质提高离子电导率且降低陶瓷粒子之间和电极与电解质之间的界面阻抗。以这种方式制造的复合固体电解质因陶瓷和高分子而具有优异的热、电化学稳定性,少量的液体电解质可以通过减小界面阻抗来提高二次电池的电化学特性。
根据本发明的另一个实施例的二次电池包括阳极、阴极以及位于上述阳极与上述阴极之间的上述复合固体电解质。
只要是能够适用于锂二次电池或者钠二次电池的阳极或者阴极,都可以适用于上述阳极和上述阴极的内容,因此省略详细的说明。并且,由于上述复合固体电解质与上述说明重复,因此省略对其的记载。
具体地,对于锂二次电池而言,阳极使用LiFePO4,阴极使用Li金属(metal),并且本发明的复合固体电解质可适用为电解质,此时,热、电化学稳定性优异的同时,减少界面阻抗,从而可以获得150mAh/g以上的高容量。
并且,对于钠二次电池而言,阳极使用NaFePO4,阴极使用Na金属(metal),可将本发明的复合固体电解质作为电解质,此时,热、电化学稳定性优异的同时,减少界面阻抗,从而可以获得135mAh/g以上的优异的放电容量。
根据本发明的再一个实施例的复合固体电解质的制备方法包括:通过混合60至100重量份的离子导电性陶瓷和1至40重量份的高分子来制备混合物浆料的步骤(1);通过使上述混合物浆料成型为薄膜形态来制备复合薄膜的步骤(2);以及通过将少量的液体电解质吸收在上述复合薄膜来制备复合固体电解质的步骤(3)。
对于离子导电性陶瓷、高分子、它们的混合比例、复合薄膜、液体电解质及其溶剂等的内容与上述说明重复,因此省略对其的记载。
在利用如印刷法或者刮涂法的方式涂布上述混合物浆料之后,可通过干燥法来制备复合薄膜,只要是将浆料制备为薄膜形态的方法,就可以不受特殊限制地适用。
对于在上述步骤(3)中适用于吸收的上述液体电解质而言,溶剂可以包括离子性液体(ionic liquid),因为对于其具体种类和含量的内容与上述记载重复,所以省略对其的说明。
并且,可以通过以60至100:1至40的重量比提供上述复合薄膜和上述液体电解质来进行上述吸收,省略对与上述说明重复的部分的详细说明。
有益效果
本发明的二次电池用复合固体电解质及其制备方法可以提供一种改善电池的稳定性及电化学特性部分的二次电池。本发明可以通过比较简易的方法来制备的同时,可以适用于锂二次电池或者钠二次电池而具有优异的放电容量,并且具有低界面阻抗和高稳定性,从而可以同时提高二次电池的稳定性和电化学特性。
附图说明
图1是根据本发明的一实施例的复合固体电解质的概念图。
图2是在本发明的实施例1及实施例2中制备的复合固体电解质的表面和截面的扫描电子显微镜-X射线能量色散光谱仪(SEM-EDX)分析数据(上侧:锂离子导电性电解质,下侧:钠离子导电性电解质)。
图3是在本发明的实施例1中制备的锂离子导电性复合固体电解质的热稳定性评价结果[热重分析(Thermogravimetric,TG)曲线图]。
图4是对在本发明的实施例1中制备的锂离子导电性复合固体电解质的电化学稳定性进行评价的结果(LVS)。
图5是确认适用了本发明的实施例1中制备的锂离子导电性复合固体电解质的电池的界面阻抗特性的曲线图。
图6是由在本发明的实施例1中制备的锂离子导电性复合固体电解质和LiFePO4电极构成二次电池时的充-放电曲线。
图7是由在本发明的实施例2中制备的钠离子导电性复合固体电解质和NaFePO4电极构成的钠电池的充-放电曲线。
图8是在本发明的实施例3中制备的锂离子导电性复合固体电解质的全断面的扫描电子显微镜(SEM)照片。
图9是对本发明的实施例3中制备的锂离子导电性复合固体电解质(红色)和实施例1中制备的锂离子导电性复合固体电解质(黑色)的热稳定性进行评价的结果(TG曲线图)。
具体实施方式
以下,参照附图对本发明的多个实施例进行详细的说明,以便本领域技术人员能够容易实施。但是本发明能够以各种不同的方式来实现,且不限于在此说明的实施例。
本发明的实施例中,混合导电性陶瓷和高分子、液体电解质并通过如下的方法来制作稳定性优异、可变性好、电化学特性优异的复合固体电解质,并且评价其物性。
复合固体电解质和电池的制备及特性评价
将70重量份的导电性陶瓷和15重量份的高分子混合在N-甲基吡咯烷酮(N-methyl-2-pyrrolidone,NMP):丙酮(aceton)(1:3vol)的溶剂来制备混合物之后,利用印刷法或者刮涂法平铺浆料,并且通过相分离法来制作复合薄。将15重量份的液体电解质(或者离子性液体电解质)吸收在85重量份的上述复合薄膜,从而制备如图1中所揭示的概念图的形态的复合固体电解质。
并且,为了分析分别适用了所制备的复合电解质的二次电池的电化学特性,而进行了界面阻抗、充放电测试等。
<实施例1>
1)锂离子导电性复合固体电解质的制备
锂导电性陶瓷采用70重量份的Li1.3Al0.3Ti1.7(PO4)3(LTAP)瓷,高分子采用15重量份的聚偏二氟乙烯(PVdF)。通过将1M的LiPF6溶解在碳酸乙烯酯(ethylene carbonate,EC)/碳酸二甲酯(dimethyl carbonate,DMC)混合溶剂而制备液体电解质,并且按每85重量份的复合薄膜适用15重量份的液体电解质来构成锂离子导电性复合固体电解质。
2)锂离子导电性复合固体电解质的物性评价
图2是在本发明的实施例中制备的复合固体电解质的表面和截面的SEM-EDX分析数据,如图2所示,通过EDX确认可知,制备为30微米厚度的复合固体电解质中LTAPO和高分子均匀混合(上:参照锂离子导电性电解质的数据)。
图3和图4分别示出了锂离子导电性复合固体电解质的热稳定性评价结果(TG曲线图)和电化学稳定性评价结果(LSV)。
作为比较例来适用的液体电解质在120度(℃)的温度下发生分解,对于复合固体电解质而言,虽然因180度的温度下所吸收的液体电解质而有轻微的重量损失,但是整体上呈现超过400度的高热稳定性。并且,图4的线性扫描法的曲线图作为分析电解质的电化学稳定性的实验,可以确认复合固体电解质呈现6V以上的高稳定性。
3)利用锂离子导电性复合固体电解质的电池制备及物性评价
阳极使用LiFePO4,阴极使用电位最低的Li金属(metal),电解质适用上述制备的锂离子导电性复合固体电解质来制备二次电池,并且评价物性。
测量使用了复合固体电解质的电池的界面阻抗,将其结果示出在图5中。当使用复合固体电解质时,可以确认呈现800Ω以下的低的电阻。
在常温、0.1C的电流密度的条件下进行充-放电,并将使用了复合固体电解质的电池的充电-放电特性分别示出在图6中。参照示出由使用了锂离子导电性陶瓷(Li1.3Al0.3Ti1.7(PO4)3)的复合固体电解质和LiFePO4阳极构成电池时的结果的图6,呈现150mAh/g的高容量。
<实施例2>
1)钠离子导电性复合固体电解质的制备及物性评价
钠导电性陶瓷采用70重量份的Na3Zr2Si2PO12,高分子采用15重量份的聚偏二氟乙烯(PVdF),并且通过将1M的NaCF3SO3(sodium triflate)溶解在四甘醇二甲醚(tetraethylene glycol dimethyl ether,TEGDME)溶剂而制备液体电解质,且按每85重量份的复合薄膜适用15重量份的液体电解质来构成钠离子导电性复合固体电解质。
上述复合固体电解质的厚度是30微米,EDX示出陶瓷和高分子均匀混合(参照图2的下侧照片)。
2)利用钠离子导电性复合固体电解质的电池制备及物性评价
阳极使用NaFePO4,阴极使用Na金属(metal),电解质适用上述制备的钠离子导电性复合固体电解质来制备二次电池,并且评价物性。
在常温、0.1C的电流密度的条件下进行充-放电,将使用了复合固体电解质的电池的充电-放电特性示出在图7中。参照示出由使用了钠导电性陶瓷(Na3Zr2Si2PO12)的复合固体电解质和NaFePO4阳极构成钠电池时的结果的图7,呈现135mAh/g的优异的放电容量。
<实施例3>
1)利用离子性液体电解质的锂离子导电性复合固体电解质的制备
锂导电性陶瓷采用70重量份的Li1.3Al0.3Ti1.7(PO4)3(LTAP),高分子采用15重量份的聚偏二氟乙烯(PVdF)。通过将1M的双氟磺酰亚胺锂(Lithium bis(fluorosulfonyl)imide,LiFSI)溶解在离子性液体的N-甲基-N-丁基吡咯烷双(三氟甲基磺酰基)亚胺盐(N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide,Py14TFSI)而制备离子性液体电解质,并且按每85重量份的复合薄膜适用所制成的15重量份的离子性液体电解质来构成锂离子导电性复合固体电解质。
图8是在本发明的实施例3中制备的锂离子导电性复合固体电解质的全断面的SEM照片。参照上述图8,可以确认所制成的复合固体电解质以30μm以下的厚度形成,并且高分子和导电性陶瓷充分混合。
图9是根据实施例3而使用离子性液体电解质作为液体电解质的复合固体电解质的热稳定性TG曲线图,可以通过与使用普通液体电解质的实施例1的复合固体电解质进行比较,来确认实施例3的复合固体电解质具有更优异的热稳定性(>400℃)。
以上,虽然对本发明的优选实施例进行了详细的说明,但是本发明的权利要求范围并不限于此,利用在权利要求书中定义的本发明的基本概念的本领域技术人员的多种变形及改进形态也属于本发明的权利要求范围。

Claims (8)

1.一种复合固体电解质,其特征在于,包括:
复合薄膜,其包括60至100重量份的离子导电性陶瓷和1至40重量份的高分子;以及
液体电解质,其含有锂离子或者钠离子和溶剂所混合的溶液,
并且,所述液体电解质浸渍在所述复合薄膜。
2.根据权利要求1所述的复合固体电解质,其特征在于,
包括60至100:1至40的重量比的所述复合薄膜和所述液体电解质。
3.根据权利要求1所述的复合固体电解质,其特征在于,
所述液体电解质是在溶剂内溶解0.1M以上的锂盐或者钠盐的溶液,并且所述溶剂包括离子性液体。
4.根据权利要求1所述的复合固体电解质,其特征在于,
所述复合固体电解质的厚度为30微米以下。
5.根据权利要求1所述的复合固体电解质,其特征在于,
所述复合固体电解质在400℃以上的温度下具有热稳定性。
6.一种二次电池,其特征在于,包括:
根据权利要求1的复合固体电解质。
7.一种复合固体电解质的制备方法,其特征在于,包括:
步骤(1),通过混合60至100重量份的离子导电性陶瓷和1至40重量份的高分子来制备混合物浆料;
步骤(2),通过使所述混合物浆料成型为薄膜形态来制备复合薄膜;以及
步骤(3),通过使所述复合薄膜吸收液体电解质来制备复合固体电解质。
8.根据权利要求7所述的复合固体电解质的制备方法,其特征在于,
在所述步骤(3)中适用于吸收的所述液体电解质中,溶剂包括离子性液体,
并且,提供60至100:1至40的重量比的所述复合薄膜和所述液体电解质来进行所述吸收。
CN201680089445.9A 2016-09-21 2016-10-06 二次电池用复合固体电解质及其制备方法 Pending CN109792077A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020160120694A KR101879503B1 (ko) 2016-09-21 2016-09-21 이차 전지용 복합 고체 전해질 및 이의 제조방법
KR10-2016-0120694 2016-09-21
PCT/KR2016/011180 WO2018056491A1 (ko) 2016-09-21 2016-10-06 이차 전지용 복합 고체 전해질 및 이의 제조방법

Publications (1)

Publication Number Publication Date
CN109792077A true CN109792077A (zh) 2019-05-21

Family

ID=61690903

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680089445.9A Pending CN109792077A (zh) 2016-09-21 2016-10-06 二次电池用复合固体电解质及其制备方法

Country Status (6)

Country Link
US (1) US10923766B2 (zh)
EP (1) EP3518333A4 (zh)
JP (2) JP7046075B2 (zh)
KR (1) KR101879503B1 (zh)
CN (1) CN109792077A (zh)
WO (1) WO2018056491A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111106380A (zh) * 2019-12-30 2020-05-05 华南师范大学 一种具有表面涂层的固态电解质的制备方法和固态电解质电池
CN111987356A (zh) * 2020-08-31 2020-11-24 上海空间电源研究所 一种长效循环的钠氟化碳二次电池及制备方法
CN112886052A (zh) * 2021-03-12 2021-06-01 昆山宝创新能源科技有限公司 复合电解质材料及其制备方法和准固态电池

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11532836B2 (en) 2018-10-12 2022-12-20 Samsung Electronics Co., Ltd. Composite electrolyte, lithium metal battery comprising the same, and method of preparing the composite electrolyte
KR102219741B1 (ko) * 2019-03-05 2021-02-23 김재광 복합 고체 전해질의 제조 방법 및 이를 이용한 전고체 이차전지
CN111799502B (zh) * 2019-04-08 2022-03-11 北京理工大学 一种石榴石型固态化复合电解质、制备方法及应用
TWI737011B (zh) * 2019-10-22 2021-08-21 輝能科技股份有限公司 固態電解質接面調整材及其混合式電解質系統
WO2021119066A1 (en) * 2019-12-09 2021-06-17 Trustees Of Dartmouth College Polyester-based solid polymer composite electrolytes for energy storage devices
US20230048095A1 (en) * 2019-12-30 2023-02-16 The Board Of Trustees Of The Leland Stanford Junior University High safety and high capacity lithium metal batteries in ionic liquid electrolyte with a sodium additive
KR102499043B1 (ko) * 2020-05-26 2023-02-13 주식회사 에너지11 무기질 섬유를 이용한 복합 고체 전해질 분리막 및 이를 이용한 이차전지
WO2024030111A2 (en) * 2021-03-16 2024-02-08 Alexander Kosyakov A composite solid electrolyte

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1452794A (zh) * 2000-05-24 2003-10-29 株式会社华仁电池 多微孔无机固体电解质及其制备方法
CN1973397A (zh) * 2004-04-20 2007-05-30 德古萨公司 电解液组合物及其用作电化学储能系统的电解液材料的用途
US20080268348A1 (en) * 2007-04-27 2008-10-30 Ohara Inc. Lithium secondary battery and electrode for lithium secondary battery
CN102244292A (zh) * 2011-06-09 2011-11-16 华南师范大学 锂离子电池离子液体基凝胶聚合物电解质及制备与应用
WO2011157958A1 (fr) * 2010-06-17 2011-12-22 Centre National De La Recherche Scientifique Procede pour l'elaboration d'une batterie au lithium ou au sodium
KR20120092918A (ko) * 2011-02-14 2012-08-22 한양대학교 산학협력단 리튬 이차 전지용 고분자 복합 전해질 및 이를 포함하는 리튬 이차 전지
US20140302399A1 (en) * 2013-04-04 2014-10-09 Honda Motor Co., Ltd. Electrolyte-positive electrode structure, and lithium ion secondary battery comprising the same
CN104377385A (zh) * 2014-09-26 2015-02-25 珠海光宇电池有限公司 锂离子二次电池复合电解质薄膜及其制备方法、应用
KR20150037397A (ko) * 2013-09-30 2015-04-08 주식회사 포스코 하이브리드 전해질, 그 제조 방법 및 이를 포함하는 플렉시블 리튬 이온 전지
KR20150041217A (ko) * 2013-10-04 2015-04-16 한국기계연구원 고체 전해질 - 리튬 이온 전도성 고분자 복합 필름 및 그 제조 방법
CN104871272A (zh) * 2012-11-19 2015-08-26 弗劳恩霍弗应用技术研究院 具有无机-有机杂化聚合物粘结剂的固体材料/凝胶电解质蓄电池及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030007659A (ko) * 2002-11-20 2003-01-23 주식회사 파인셀 미세 다공성 고체 무기전해질 및 그의 제조방법
KR100739337B1 (ko) * 2004-09-02 2007-07-12 주식회사 엘지화학 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학 소자
JP5664864B2 (ja) * 2011-03-07 2015-02-04 日産化学工業株式会社 ゲル電解質
KR101987008B1 (ko) * 2012-06-15 2019-06-12 한국전자통신연구원 고체 고분자 전해질, 그 제조방법, 및 이를 포함하는 리튬전지
JP6290264B2 (ja) * 2013-02-14 2018-03-07 カリフォルニア インスティチュート オブ テクノロジー 架橋ポリマー電解質
JP6081400B2 (ja) * 2014-03-18 2017-02-15 本田技研工業株式会社 固体電解質、複合電解質、及びそれらを備えるリチウムイオン二次電池。
JP6007211B2 (ja) * 2014-07-04 2016-10-12 本田技研工業株式会社 リチウムイオン二次電池
KR101747864B1 (ko) * 2014-08-28 2017-06-27 삼성전자주식회사 복합전해질 및 이를 포함하는 리튬전지
KR101704172B1 (ko) * 2015-03-09 2017-02-07 현대자동차주식회사 나노 고체 전해질을 포함하는 전고체 전지 및 이의 제조방법
KR101796749B1 (ko) * 2015-12-24 2017-11-10 주식회사 포스코 세라믹 복합 전해질, 이의 제조방법, 및 이를 포함하는 리튬 이차 전지

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1452794A (zh) * 2000-05-24 2003-10-29 株式会社华仁电池 多微孔无机固体电解质及其制备方法
CN1973397A (zh) * 2004-04-20 2007-05-30 德古萨公司 电解液组合物及其用作电化学储能系统的电解液材料的用途
US20080268348A1 (en) * 2007-04-27 2008-10-30 Ohara Inc. Lithium secondary battery and electrode for lithium secondary battery
WO2011157958A1 (fr) * 2010-06-17 2011-12-22 Centre National De La Recherche Scientifique Procede pour l'elaboration d'une batterie au lithium ou au sodium
KR20120092918A (ko) * 2011-02-14 2012-08-22 한양대학교 산학협력단 리튬 이차 전지용 고분자 복합 전해질 및 이를 포함하는 리튬 이차 전지
CN102244292A (zh) * 2011-06-09 2011-11-16 华南师范大学 锂离子电池离子液体基凝胶聚合物电解质及制备与应用
CN104871272A (zh) * 2012-11-19 2015-08-26 弗劳恩霍弗应用技术研究院 具有无机-有机杂化聚合物粘结剂的固体材料/凝胶电解质蓄电池及其制备方法
US20140302399A1 (en) * 2013-04-04 2014-10-09 Honda Motor Co., Ltd. Electrolyte-positive electrode structure, and lithium ion secondary battery comprising the same
KR20150037397A (ko) * 2013-09-30 2015-04-08 주식회사 포스코 하이브리드 전해질, 그 제조 방법 및 이를 포함하는 플렉시블 리튬 이온 전지
KR20150041217A (ko) * 2013-10-04 2015-04-16 한국기계연구원 고체 전해질 - 리튬 이온 전도성 고분자 복합 필름 및 그 제조 방법
CN104377385A (zh) * 2014-09-26 2015-02-25 珠海光宇电池有限公司 锂离子二次电池复合电解质薄膜及其制备方法、应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEOUNG SOO LEE: "Electrochemical properties of a ceramic-polymer-composite-solid electrolyte for Li-ion batteries", 《SOLID STATE IONICS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111106380A (zh) * 2019-12-30 2020-05-05 华南师范大学 一种具有表面涂层的固态电解质的制备方法和固态电解质电池
CN111987356A (zh) * 2020-08-31 2020-11-24 上海空间电源研究所 一种长效循环的钠氟化碳二次电池及制备方法
CN112886052A (zh) * 2021-03-12 2021-06-01 昆山宝创新能源科技有限公司 复合电解质材料及其制备方法和准固态电池

Also Published As

Publication number Publication date
KR101879503B1 (ko) 2018-07-18
EP3518333A1 (en) 2019-07-31
WO2018056491A1 (ko) 2018-03-29
EP3518333A4 (en) 2020-04-29
KR20180032037A (ko) 2018-03-29
JP7046075B2 (ja) 2022-04-01
US20190260077A1 (en) 2019-08-22
US10923766B2 (en) 2021-02-16
JP2019530195A (ja) 2019-10-17
JP2021101428A (ja) 2021-07-08

Similar Documents

Publication Publication Date Title
CN109792077A (zh) 二次电池用复合固体电解质及其制备方法
Mauger et al. Tribute to Michel Armand: from rocking chair–Li-ion to solid-state lithium batteries
Yue et al. All solid-state polymer electrolytes for high-performance lithium ion batteries
Strauss et al. On the way to high-conductivity single lithium-ion conductors
CN101087035B (zh) 一种二次锂电池用电解液及含有该电解液的二次锂电池
CN110518277B (zh) 固态电解质及其制备方法和包含该固态电解质的固态电池
KR102592147B1 (ko) 복합분리막, 그 제조방법 및 이를 포함하는 리튬이차전지
CN105914405A (zh) 一种由环氧化合物原位开环聚合制备全固态聚合物电解质的制备方法以及在全固态锂电池中应用
KR102390373B1 (ko) 리튬공기전지 및 그 제조방법
CN106654362A (zh) 复合固态电解质膜、制备方法及锂离子电池
JP5487458B2 (ja) リチウムイオン二次電池
KR102255538B1 (ko) 이차전지용 폴리머 전해질 및 이를 포함하는 이차전지
CN101783422B (zh) 一种添加剂及含该添加剂的电解液及锂离子电池
CN109830746B (zh) 固态电解质及其应用和阴极材料及其制备方法和应用
JP2001526451A (ja) 電気化学系中のビス(ペルフルオロアルキルスルホニル)イミド界面活性剤塩
Li et al. Enhancement of electrochemical performance of lithium-ion battery by single-ion conducting polymer addition in ceramic-coated separator
CN103579677A (zh) 一种电解液及含有该电解液的二次锂电池和电容器
CN109950614A (zh) 聚合物固体电解质的制备方法、聚合物固体电解质二次锂电池及制备方法
KR101868210B1 (ko) 리튬 이차 전지 및 이의 제조 방법
CN110581305A (zh) 一种固态电池及其制备方法
KR20170083387A (ko) 리튬이차전지용 전해질 및 이를 포함하는 리튬이차전지
Li et al. Constructing Rechargeable Solid‐State Lithium‐Oxygen Batteries
US10998582B2 (en) Improving the ionic conductivity of an electrolyte based on lithium imidazolate salts
CN110690500A (zh) 一种高电压窗口的聚合物电解质
KR20120003203A (ko) 리튬 이차전지용 분리막, 이의 제조방법, 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination