CN1074172C - 储氢合金及其制造方法 - Google Patents

储氢合金及其制造方法 Download PDF

Info

Publication number
CN1074172C
CN1074172C CN95118779A CN95118779A CN1074172C CN 1074172 C CN1074172 C CN 1074172C CN 95118779 A CN95118779 A CN 95118779A CN 95118779 A CN95118779 A CN 95118779A CN 1074172 C CN1074172 C CN 1074172C
Authority
CN
China
Prior art keywords
alloy
powder
mentioned
powdered
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN95118779A
Other languages
English (en)
Other versions
CN1128412A (zh
Inventor
李光敏
崔钟书
金根培
朱圭楠
崔龟锡
李相沅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung Electron Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electron Devices Co Ltd filed Critical Samsung Electron Devices Co Ltd
Publication of CN1128412A publication Critical patent/CN1128412A/zh
Application granted granted Critical
Publication of CN1074172C publication Critical patent/CN1074172C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S420/00Alloys or metallic compositions
    • Y10S420/90Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

提供一种储氢合金及其制造方法:可提高初期的放电特性,且使机械合金时锰的成分容易控制。包括四个工序:把Zr-Mn-V-Cr-Ni系的Laves合金和LaNi5或稀土类金属La、Ce、Pr、Nd……等,及Mm-Mn-Ni-Al-Co系的CaCu5型合金混合,将其粉末化;对该混合的粉末以高能球磨法施加冲击,从而形成机械合金;除去包含在上面工序形成的制模板中的残留气体;及除去上面工序中的残留气体后,评价制模板的储氢特性。

Description

储氢合金及其制造方法
本发明涉及应用于镍-氢二次电池阴极的储氢合金,特别是关于提高初期放电特性的吸氢合金及其制造方法。
一般,作为碱性二次电池,使用镍-镉电池,但是上述镉会给环境带来不利影响,所以,最近作为其替代品,正在开发可望高容量化的储氢合金。
但是,到目前为止,在初期放电容量和循环寿命方面,还没能得到满意的结果。
并且,不久前,使用于镍-氢二次电池阴极的储氢合金普遍用浆糊方法制造。
不过,这时,LaNi5系合金,具有储氢率不足的缺点,AB2型合金构成的Laves相循环的初期特性还存在问题。
为了解决这样的问题所采用的电弧熔融法、高温烧结法,由于CaCu5型合金元素中稀土类金属La、Ce是低熔点金属,所以在上述制造过程中,在合金均匀化,合金元素的成分组成上有困难。
即,熔点相对低的低熔点金属的合金在进行熔融过程中,由于比高熔点金属先熔融,那么会带来低熔点金属的蒸发及偏析问题。
因此,本发明是为解决上述种种问题而完成的,本发明的目的在于提供一种储氢合金及其制造方法,对往Zr-Mn-V-Cr-Ni系的Laves合金中混合的LaNi5或Mn-Mn-Ni-Al-Co系的CaCu5型合金的粉末,用具有高能量的球磨法施加冲击,形成机械合金,据此,不仅可使初期的放电特性得到提高,而且处于机械合金时锰的成分容易控制。
为了达到上述目的,本发明的储氢合金及其制造方法,其特征在于由以下四个工序组成:第一工序,把Zr-Mn-V-Cr-Ni系的Laves合金和LaNi5或Mm-Mn-Ni-Al-Co系的CaCu5型合金混合,并将其粉末化;第二工序,对该第一工序中混合的粉末,以使用了碾磨机的高能球磨法施加冲击形成机械合金;第三工序,去除该第二工序形成的合金粉末中的残留气体,用由上述高能球磨法制造的机械合金粉末成形制模板及为使合金均匀化在500~700℃范围的真空中进行热处理;第四工序,该第三工序中的残留气体去除后,评价合金粉末的储氢特性。
下面,就本发明的一实施例根据附图详细加以说明。
图1是本发明合金化机器装置的剖面图,图中标号意义如下:18冷却壳,20粉碎罐,22旋转杆,24球
在第一工序中,将90~99wt%的Zr-Mn-V-Cr-Ni系的Laves合金和LaNi5或Mm-Mn-Ni-Al-Co系的CaCu5型合金以1~10wt%混合成粉末。
在第二工序中,上述Zr-Mn-V-Cr-Ni系的Laves合金中,把LaNi5或Mm-Mn-Ni-Al-Co系的CaCu5型合金以机械方法合金化于其中,这时采用高能球磨等方法。
前述使用了碾磨机的高能球磨法,也可以使用砂磨振动法或振动器法。
上述球磨法,旋转速度为300-700rpm,工序时间为1-500小时,作为工序控制溶剂,添加硬脂酸或1-5wt%的甲醇,球和粉末的重量比wt%取50∶1-150∶1。
上述第二工序,如图所示,上述第一工序中混合的粉末投入粉碎罐20后,操纵图中未示出的操作开关,则配置于上述粉碎罐20内的旋转杆22旋转,与此同时,气体通过气体入口10流入,随着上述旋转杆22的转动,位于上述粉碎罐20内的球24相互碰撞,由于上述旋转杆22的旋转及相互碰撞的球的作用,位于上述粉碎罐20内的粉末,即Zr-Mn-V-Cr-Ni系的Laves合金中混合了LaNi5或Mm-Mn-Ni-Al-Co系的CaCu5型合金的粉末受到巨大的冲击,使上述混合粉末形成合金。
这时,由于球的碰撞,在粉碎罐20内,温度上升。
上述那样粉碎罐20内上升的温度,由从配设在上述粉碎罐20外侧的冷却壳18的下侧流入,从上侧流出的冷却水来降低。
在第三工序中,在真空状态,使其温度范围维持在350-600℃,据此,把包含在上述合金中的残留气体H2O、O2、(OH)2通过出口12排出。
在第四工序中,评价初期放电特性、储氢特性及排氢特性后,决定储氢合金的性能是否合适。
由上述工序制造的储氢合金,放电容量及氢气吸收特性优越,为解决循环的初期特性所产生的问题,以Laves系合金为基底金属来使用,所以放电容量良好,为把气体吸收特性存在问题的LaNi5合金粉末,或者原料粉末,通过机械合金化工序进行合金,上述合金粉末或原料粉末由上述基底金属构成的Laves合金均匀地分散处理,能够制造出只具备上述两种合金优点的出色的储氢合金。
而且,上述机械合金工序,由于是只由固体反应制造合金的工序,所以,能够使构成CaCu5型合金元素的La、Ce等低熔点稀土类金属容易合金化,还能够抑制Laves系的合金元素的锰蒸发,或向其他化合物的变化,因此,具有容易控制机械合金时锰的成分的优点。

Claims (3)

1、一种储氢合金的制造方法,其特征在于包括以下四个工序:把Zr-Mn-V-Cr-Ni系的Laves合金和由LaNi5或Mm-Mn-Ni-Al-Co系的CaCu5型合金中选出的一种混合,并将其粉末化的第一工序,使用了碾磨机的高能球磨法对该第一工序中混合的粉末施加冲击而形成机械合金的第二工序,去除该第二工序形成的合金粉末中的残留气体,用由上述高能球磨法制造的机械合金粉末成形制模板及为使合金均匀化在500~700℃范围的真空中或惰性气体中进行热处理的第三工序,该第三工序中的残留气体去除后,评价合金粉末的储氢特性的第四工序;
上述球磨法,其旋转速度是300~700rpm,工序时间是1-500小时,工序控制剂是硬脂酸、或甲醇,球与粉末的重量比wt%为50∶1-150∶1;
上述Zr-Mn-V-Cr-Ni系的Laves合金以90-99wt%,辅助成分LaNi5或Mm-Mn-Ni-Al-Co系的CaCu5型合金以1-10wt%的比率混合。
2、如权利要求1所述的储氢合金的制造方法,其特征在于,上述使用了碾磨机的高能球磨法由砂磨振动机或振动器实现。
3、如权利要求1所述的方法制造的储氢合金。
CN95118779A 1994-12-26 1995-11-03 储氢合金及其制造方法 Expired - Fee Related CN1074172C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR38129/94 1994-12-26
KR38129/1994 1994-12-26
KR1019940038129A KR100312699B1 (ko) 1994-12-28 1994-12-28 수소흡장합금및그제조방법

Publications (2)

Publication Number Publication Date
CN1128412A CN1128412A (zh) 1996-08-07
CN1074172C true CN1074172C (zh) 2001-10-31

Family

ID=19404424

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95118779A Expired - Fee Related CN1074172C (zh) 1994-12-26 1995-11-03 储氢合金及其制造方法

Country Status (9)

Country Link
US (1) US5679130A (zh)
EP (1) EP0719870B1 (zh)
JP (1) JPH09118941A (zh)
KR (1) KR100312699B1 (zh)
CN (1) CN1074172C (zh)
DE (1) DE69516383T2 (zh)
HU (1) HUT73269A (zh)
MY (1) MY121939A (zh)
RU (1) RU2110365C1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5876869A (en) * 1995-12-07 1999-03-02 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy electrodes
JP3397981B2 (ja) * 1996-06-11 2003-04-21 三洋電機株式会社 水素吸蔵合金及び製造方法
DE10128100A1 (de) * 2001-06-11 2002-12-19 Hannover Med Hochschule Medizinisches Implantat für den menschlichen und tierischen Körper
CN103240412B (zh) * 2013-05-22 2014-10-15 北京科技大学 一种近终形制备粉末超合金的方法
CN104644539A (zh) * 2015-01-30 2015-05-27 覃芳菲 一种保健保养调理洗发水及其制作方法
CN104741614B (zh) * 2015-04-10 2017-03-08 哈尔滨工业大学 一种高Zr含量Ti50.5‑xNi49.5Zrx三元合金粉末的制备方法
CN107838419A (zh) * 2017-12-02 2018-03-27 桂林理工大学 一种利用双希夫碱表面改性ab3型储氢合金的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0206776A2 (en) * 1985-06-21 1986-12-30 Kabushiki Kaisha Toshiba Rechargeable electrochemical cell with a negative electrode comprising a hydrogen absorbing alloy including rare earth component
JPH04162355A (ja) * 1990-10-25 1992-06-05 Matsushita Electric Ind Co Ltd 電池用水素吸蔵合金極
EP0591606A1 (en) * 1992-10-09 1994-04-13 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery and a process for producing a hydrogen storage alloy therefor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3890166A (en) * 1972-11-17 1975-06-17 Aluminum Co Of America Activation of particulate aluminum
US4893756A (en) * 1988-09-22 1990-01-16 Energy Conversion Devices, Inc. Hydride reactor apparatus for hydrogen comminution of metal hydride hydrogen storage material
JPH02209447A (ja) * 1989-02-07 1990-08-20 Sanyo Electric Co Ltd 水素吸蔵合金
US5284619A (en) * 1990-03-24 1994-02-08 Japan Storage Battery Company, Limited Hydrogen absorbing electrode for use in nickel-metal hydride secondary batteries
JPH05101819A (ja) * 1991-03-29 1993-04-23 Matsushita Electric Ind Co Ltd 水素吸蔵合金電極およびその製造法
DE4110543A1 (de) * 1991-03-30 1992-10-01 Pm Hochtemperatur Metall Gmbh Oxiddispersionsgehaertete ausscheidungshaertbare nickel-chromlegierung
JP2560565B2 (ja) * 1991-04-23 1996-12-04 株式会社栗本鐵工所 水素吸蔵合金の製造方法
JP2560567B2 (ja) * 1991-04-23 1996-12-04 株式会社栗本鐵工所 水素吸蔵合金の製造方法
JPH05179372A (ja) * 1992-01-06 1993-07-20 Tokin Corp 水素吸蔵合金粉末の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0206776A2 (en) * 1985-06-21 1986-12-30 Kabushiki Kaisha Toshiba Rechargeable electrochemical cell with a negative electrode comprising a hydrogen absorbing alloy including rare earth component
JPH04162355A (ja) * 1990-10-25 1992-06-05 Matsushita Electric Ind Co Ltd 電池用水素吸蔵合金極
EP0591606A1 (en) * 1992-10-09 1994-04-13 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery and a process for producing a hydrogen storage alloy therefor

Also Published As

Publication number Publication date
JPH09118941A (ja) 1997-05-06
EP0719870B1 (en) 2000-04-19
EP0719870A1 (en) 1996-07-03
CN1128412A (zh) 1996-08-07
KR960027030A (ko) 1996-07-22
HUT73269A (en) 1996-07-29
RU2110365C1 (ru) 1998-05-10
US5679130A (en) 1997-10-21
HU9503758D0 (en) 1996-02-28
MY121939A (en) 2006-03-31
DE69516383D1 (de) 2000-05-25
KR100312699B1 (ko) 2002-06-29
DE69516383T2 (de) 2000-09-21

Similar Documents

Publication Publication Date Title
EP0645833B1 (en) Method for producing a hydrogen absorbing alloy electrode
CN1074172C (zh) 储氢合金及其制造方法
EP2123782B1 (en) Hydrogen storage alloy, and electrode for nickel-hydrogen battery
US5135589A (en) Metastable hydrogen storage alloy material
EP0867957B1 (en) Negative electrode for alkaline storage batteries
US5277998A (en) Hydrogen-absorbing alloy electrode
JP2001294958A (ja) ニッケル−水素二次電池用水素吸蔵合金とその製造方法
JP3079890B2 (ja) 水素吸蔵合金粉末とニッケル−水素電池
JPH06223827A (ja) 電池用水素吸蔵合金粉末の製造方法
JP3432870B2 (ja) 金属水素化物電極の製造方法
JP3022019B2 (ja) Ni−水素電池用水素吸蔵合金の熱処理方法
JPH11269501A (ja) 水素吸蔵合金粉末の製造方法及び水素吸蔵合金電極
JPH10265875A (ja) 水素吸蔵合金,その製造方法およびニッケル水素二次電池
JP3043143B2 (ja) 水素吸蔵合金電極及びその製造方法
JP2005050800A (ja) 二次電池及び二次電池を用いた電源
JPH10265888A (ja) 水素吸蔵合金,その製造方法およびニッケル水素二次電池
US6074783A (en) Hydrogen storage alloys for use in rechargeable electrochemical cells, and methods of producing them
JP3816138B2 (ja) 金属酸化物−金属水素化物のアルカリ電池及び該電池用の水素蓄積性合金負極の製造方法
JP3816138B6 (ja) 金属酸化物−金属水素化物のアルカリ電池及び該電池用の水素蓄積性合金負極の製造方法
JPH07258703A (ja) 水素吸蔵合金粉末およびその製造方法
JP3462685B2 (ja) 水素吸蔵合金電極の製造方法
JPH07316610A (ja) 水素吸蔵合金粉末の表面改質方法
KR19990081330A (ko) 고용량 마그네슘계 합금의 전극수명 개량방법
JPH08143986A (ja) 水素吸蔵合金の製造方法
JPH07230807A (ja) 金属酸化物・水素二次電池の製造方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee