JP3816138B2 - 金属酸化物−金属水素化物のアルカリ電池及び該電池用の水素蓄積性合金負極の製造方法 - Google Patents
金属酸化物−金属水素化物のアルカリ電池及び該電池用の水素蓄積性合金負極の製造方法 Download PDFInfo
- Publication number
- JP3816138B2 JP3816138B2 JP08286396A JP8286396A JP3816138B2 JP 3816138 B2 JP3816138 B2 JP 3816138B2 JP 08286396 A JP08286396 A JP 08286396A JP 8286396 A JP8286396 A JP 8286396A JP 3816138 B2 JP3816138 B2 JP 3816138B2
- Authority
- JP
- Japan
- Prior art keywords
- metal
- negative electrode
- alloy material
- hydrogen
- metal oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/383—Hydrogen absorbing alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0419—Methods of deposition of the material involving spraying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/26—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/34—Gastight accumulators
- H01M10/345—Gastight metal hydride accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/242—Hydrogen storage electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/32—Nickel oxide or hydroxide electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/80—Porous plates, e.g. sintered carriers
- H01M4/808—Foamed, spongy materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S420/00—Alloys or metallic compositions
- Y10S420/90—Hydrogen storage
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
Description
【発明の属する技術分野】
本発明は、金属酸化物を含有する正極と、ミッシュメタルの他にニッケル及びコバルト元素を包含しかつCaCu5型の結晶構造を有する水素蓄積性合金材料から形成されている負極を有する、金属酸化物−金属水素化物のアルカリ電池に関する。
【0002】
【従来の技術】
再充電可能の金属酸化物/金属水素化物系の電池は、一般に、鉛/酸又はニッケル/カドミウム系の従来の蓄電池よりも優れていることが判っている。この優越性は、就中、鉛負極又はカドミウム負極の充電容量と比べて水素蓄積性負極の充電容量が著しく優れていることに起因する。
【0003】
金属水素化物負極の活物質Mによる水素の蓄積は、次式により可逆的に行われる:
M+H2O+e-=MH+OH-(充電)
MH+OH-=M+H2O+e-(放電)
この際充電電流によって水の分解下に水素化物MHが生成し、他方放電時には水素が分離され、OH-イオンと結合してH2Oを生成する。電池の外部電流回路を流れる電流は同時に放出される電子に相当する。
【0004】
水素蓄積−又は金属水素化物負極の正極パートナーは、一般には水素化ニッケル電極であり、この電極においては次の可逆反応が進行する:
Ni(OH)2+OH-=NiOOH+e-+H2O(充電)
NiOOH+H2O+e-=Ni(OH)2+OH-(放電)
両者の電極は、アルカリ電解液中でセパレータによって隔離されている。
【0005】
負極の電気化学的活性物質は、多数の金属酸化物/金属水素化物電池(特にまた冒頭記載の一般的タイプに入る)の場合には、金属間化合物LaNi5から得られる。この化合物においてはランタンの一部もニッケルの一部も他の金属によって置換されているが、金属水素化物を形成する能力はこれによって低下されない。
【0006】
例えばランタンの一部は他の希土類金属によって、ニッケルの一部はコバルト、アルミニウム、マンガン、鉄又はクロムのような金属によって置換されていてもよい。
【0007】
これらのすべての合金は、当業者による文献ではLaNi5、つまりAB5型に分類される。この型はCaCu5構造も有する。
【0008】
LaNi5から得られる合金の場合には、Laは通常、特にLa、Ce及びその他の希土類金属を含有する所謂ミッシュメタル(Mischmetall)(Mm)によって置換されている。ニッケルを他の金属と置換することによって、普通は、電池内の水素−平衡圧を下げるという目的を追求する。
【0009】
特許文献からは、多数のこの種の合金がすでに知られている。例えば米国特許第5,008,164号明細書は、一般的組成MmNiaCobMnc(2.5<a<3.5)の合金を開示している。置換分の一つを部分的に置換することによって合金MmNiaCobMncXd(XはFe、Cu、Mo、W、B、Al、Si及びSの群から選択されていてもよい)の形成下に、AB5−合金の4成分B部分から5成分B部分が得られる。
【0010】
合金組成の具体的例は、ヨーロッパ特許出願公開第206776号明細書(例えばMnNi3.7Co0.5Mn0.6Al0.2)又はヨーロッパ特許第271043号明細書(例えばMnNi3.95Al0.3Co0.75)から多数読みとることができる。同様に従来技術に属しかつ実地において使用される合金は、組成:MnNi4.3 −yCoyAl0.4Mn0.3(0.3≦y≦0.7)を有する。
【0011】
最後にヨーロッパ特許第420669号明細書にはまた、ガスアトマイジングと称される、水素蓄積性合金粉末の調製方法も記載されている。この場合には、溶融がまから圧力下に流出する合金の液体噴流に対してノズルからのアルゴンジェットが垂直に向けられる。この結果溶融物のアトマイジングにより球状粒子を生じ、それらの表面が自由な環境で冷却されかつ冷却室の底部に集められうる。
【0012】
本発明の基礎には、コバルト含量の小さい公知の蓄電合金(storage alloy)は低温でも良好な電流負荷容量を有するけれども、高いサイクル寿命(cycle lifetime)はコバルト含量が大きくなければ得られない、という問題がある。この問題にとってコバルトの不足とその高い価格が支障になっている。
【0013】
【発明が解決しようとする課題】
従って、最後に挙げた合金組成から出発して、コバルト含量をできるだけ小さく保ってサイクル寿命の延長をもたらす、改良された合金材料を提供するという課題が生じた。
【0014】
【課題を解決するための手段】
前記の課題は、負極の活物質として、特許請求の範囲の請求項1に記載されているような水素蓄積合金を有する金属酸化物/金属水素化物電池によって解決される。
【0015】
これにより、合金:
MmNiuAlwMnxCoyMz
[式中、Mmは、20〜60重量%、好ましくは40〜60重量%のLa含量を有し、100重量%までの残余は主としてCeであるミッシュメタルを表し、MはCu又はFeの1種、またはそれらの混合物を表す]が設定された要求を満足する。本発明によれば、個々の成分の分量は次の範囲で変動してもよい:
0.1≦z≦0.4;0.2≦y≦0.4;0.3≦w≦0.5;0.2≦x≦0.4及び4.9≦v+w+x+y+z≦5.1
ミッシュメタルはランタンの他に特にCe(25重量%を越える)ならびにPr及びNdを含有する。Cu及びFeを使用する場合には、Cu/Feの好ましい割合は0.5≦Cu/Fe≦2の範囲にある。
【0016】
次の合金系:
MnNi3.8Al0.4Mn0.3Co0.3M0.2(M=Fe、Cu)
を用いる実験で判明したように、電池のサイクル寿命は、電池の負極のために、コバルトの一部の代わりとして置換金属Cu及び/又はFeを有する合金材料を使用すれば、同じ小さいコバルト含量y=0.3を有する従来の水素蓄積性合金:
MmNi4.3 −yCoyAl0.4Mn0.3(0.3≦y≦0.7)
と比較して極めて著しく延長することができる。Fe又はCuの代わりにSi、V、Sn又はCrを使用すると、小さい容量又はより短いサイクル寿命が得られる。
【0017】
特に、溶融した合金をアトマイジングし、次に熱処理して粉砕することによって本発明の合金を製造するのが有利である。熱処理は、特に700℃〜900℃の温度の場合には、数時間、例えば2〜4時間にわたって行う。
【0018】
電気的実験のためには、その負極として本発明の組成を有する合金が使用された構造サイズAAのNiH電池を使用した。比較電池は従来の合金から成る負極を有していた。
【0019】
合金試料の製造は、通常の基準:出発金属の溶融、注型、真空炉における1000℃での12時間の熱処理、粉砕、75μmより小さい粒度の篩分けに従って行うか、又は本発明により溶融された合金をアトマイジングし、熱処理しかつ粉砕することによって行った。すべての試料はそれらのX線回折図により単相であることが判明し、専らCaCu5構造の代表的ピークを示した。
【0020】
さらに負極に加工する際には、合金を合成樹脂及びポリテトラフルオルエチレンからなる結合剤の配合後にNi多孔板にロール塗布した。
【0021】
正極としては、Ni多孔性骨格に水酸化ニッケルのペーストを塗り込めることにより得られたNi多孔性電極を使用した。
【0022】
セパレータは例えばポリアミドフリースからなる市販のタイプのものであった。
【0023】
電解液は2.1ml/セルからなる調剤中の0.5モルのKOH及び0.5モルのLiOH溶液からなっていた。
【0024】
本来のサイクル化を開始するために、全ての電池を以下の条件化で状態調節した(作動セット):
1×(充電0.1Cで15h;貯蔵60℃で24h;放電終了電圧1Vまで0.2Cで放電)。
【0025】
3×(充電0.2Cで7h;休止0.25h; 放電終了電圧0.9Vまで0.2Cで放電)。
【0026】
サイクル化実験の結果は、サイクル数に依存した放電容量C(Ah)を示す図1に示されている。
【0027】
1で示された曲線は、コバルト含量Co0.3を有する通常の合金に関し、2で示された曲線はコバルト含量Co0.7を有する別の通常の合金に関する。これらの公知の材料の明らかに極めて良好なサイクル寿命はもちろん相応して高いコバルトの使用により達成される。
【0028】
本発明による合金a(M=Cuを有する)又はb(M=Feを有する)は、公知の合金1を寿命特性に関して明らかに上回っている。
【0029】
しかも、本発明による合金は、そのサイクル寿命において低いコバルト含有率にもかかわらず、その製造の際にガスアトマイジングを適用し、これらを以下の工程:溶融、アトマイジング、そうして得られた125μm未満の球状粒子の篩分け、真空炉中800℃で3hの熱処理、粉砕により処理すれば、通常のCo分の多い合金2に極めて近い。この場合、本発明によれば、アトマイジングを後続工程の熱処理及び粉砕と組み合わせて実施することが不可欠である。曲線A(M=Cu)及びB(M=Fe)は、これらのまさに特に有利な製造方法の合金に関する。
【0030】
アトマイジング並びにまた引き続いての熱処理及び粉砕は、著しく容量及びサイクル寿命に貢献し、これらの処理工程に基づきサイクル寿命は通常の方法で製造した試料a及びbにおけるよりも明らかに長い。
【0031】
本発明に基づきアトマイジング、熱処理及び粉砕により製造した合金の特殊性は、その粉末粒子が球状に形成されかつ走査電子顕微鏡(REM)において細胞状の構造を有することにある。該構造は互いに境界領域により分離されている。これらの、粒子の約20容量%までを占有する境界領域は、明らかに化学組成により(及び恐らくまた結晶学的配向において)下部構造から区別される。該境界領域は僅かな水素蓄積容量を有するにすぎないと推察される。熱処理は、境界領域を拡散プロセスによりある程度まで溶解せしめる、このことが恐らく容量上昇の原因と見なされる。それにより電極内に粒子は互いに改良された電気的接点を有し、このことが高められた材料利用率、ひいては一層向上した容量を惹起する。
【0032】
【発明の効果】
従って、本発明の重要な利点は、新規のCuもしくはFe含有合金で高価なコバルトを代用することができることにある。この負極材料を備えたNi−H電池は、コバルト含有率がほぼ2倍程高い通常の合金を有する電池と殆ど同じサイクル寿命(約1000サイクル)を達成することができる。本発明による合金とほぼ同じ少量のCoを含有する通常の合金では、約400サイクルのサイクル寿命を達成できるにすぎない。これは商業上での使用のためには不十分である。他面では、電池の負荷容量に対する実地の要求は低いコバルト含有率を有する通常の合金によって完全に満足される。本発明による合金は、このことに関して通常の合金に劣らない。即ち、コバルトをCuもしくはFeと一部分置き換えるために高い負荷における容量損失を甘受する必要がない。しかも、1C〜5Cの種々の負荷での放電容量の測定が示すように、該放電容量は、高い負荷(約3C)で、従来の合金で達成される容量値を約10%上回る。従って、本発明による合金は、その容量特性に関して負荷変化に対して低い反応性を有する。自己放電又は圧力特性のような別の特性も、慣用の合金に比して劣らない。
【図面の簡単な説明】
【図1】サイクル化実験の結果は、サイクル数に依存した放電容量C(Ah)を示す図である。
Claims (17)
- ミッシュメタルが25〜60重量%の量のLa及び主としてCeからなる残余を有する、請求項1記載の水素蓄積性合金材料。
- Laの量が40〜60重量%である、請求項2記載の水素蓄積性合金材料。
- 残余が付加的に希土類金属を含む、請求項2記載の水素蓄積性合金材料。
- Mが鉄と銅の混合物でありかつ鉄と銅が0.5≦Cu/Fe≦2の範囲のCu/Fe比で混合されている、請求項1記載の水素蓄積性合金材料。
- 請求項1記載の水素蓄積性合金材料を製造する方法において、水素蓄積性合金を溶融した状態でアトマイジングする工程、アトマイジングした合金材料を篩い分けする工程、前記材料を熱処理する工程及び熱処理した合金材料を粉砕する工程からなること特徴とする、水素蓄積性合金材料の製造方法。
- 熱処理工程を700〜900℃で2〜4時間真空下で行う、請求項6記載の方法。
- 篩い分け工程を125μm未満の粒子寸法まで行う、請求項6記載の方法。
- さらに、炭素及び結合剤を粉砕した合金材料と混合しかつ該混合物を電極支持体に施す工程を含む、請求項6記載の方法。
- ミッシュメタルが25〜60重量%の量のLa及び主としてCeからなる残余を有する、請求項10記載の負極。
- Laの量が40〜60重量%である、請求項11記載の負極。
- 残余が付加的に別の希土類金属を含む、請求項11記載の負極。
- Mが鉄と銅の混合物でありかつ鉄と銅が0.5≦Cu/Fe≦2の範囲のCu/Fe比で混合されている、請求項10記載の負極。
- 請求項10の負極を有する、金属酸化物/金属水素化物のアルカリ電池。
- 正極が水酸化ニッケル電極である、請求項15記載の金属酸化物/金属水素化物のアルカリ電池。
- 水酸化ニッケル電極が多孔性の金属電極構造を有する、請求項16記載の金属酸化物/金属水素化物のアルカリ電池。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19512841.9 | 1995-04-06 | ||
DE19512841A DE19512841A1 (de) | 1995-04-06 | 1995-04-06 | Alkalische Metalloxid-Metallhydrid-Batterie |
Publications (3)
Publication Number | Publication Date |
---|---|
JPH08287909A JPH08287909A (ja) | 1996-11-01 |
JP3816138B2 true JP3816138B2 (ja) | 2006-08-30 |
JP3816138B6 JP3816138B6 (ja) | 2007-04-04 |
Family
ID=
Also Published As
Publication number | Publication date |
---|---|
CA2173549C (en) | 2006-10-24 |
KR100355049B1 (ko) | 2002-12-18 |
DE59600304D1 (de) | 1998-08-06 |
EP0736919B1 (de) | 1998-07-01 |
SG101413A1 (en) | 2004-01-30 |
DE19512841A1 (de) | 1996-10-10 |
EP0736919A1 (de) | 1996-10-09 |
HK1008839A1 (en) | 1999-05-21 |
CN1143837A (zh) | 1997-02-26 |
CN1087509C (zh) | 2002-07-10 |
KR960039471A (ko) | 1996-11-25 |
ATE167960T1 (de) | 1998-07-15 |
JPH08287909A (ja) | 1996-11-01 |
CA2173549A1 (en) | 1996-10-07 |
US5738953A (en) | 1998-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5738953A (en) | Alkaline metal oxide/metal hydride battery | |
US5376474A (en) | Hydrogen-absorbing alloy for a negative electrode and manufacturing method therefor | |
JPH0821379B2 (ja) | 水素吸蔵電極 | |
JP3816138B6 (ja) | 金属酸化物−金属水素化物のアルカリ電池及び該電池用の水素蓄積性合金負極の製造方法 | |
JP3903114B2 (ja) | 再充電可能なニッケル−金属水素化物−アルカリ電池の負極用活物質として使用するための合金、およびその製造方法 | |
JP3573937B2 (ja) | アルカリ蓄電池用水素吸蔵合金電極の製造方法 | |
JPH0650634B2 (ja) | 水素吸蔵電極 | |
JP3141140B2 (ja) | 電池用水素吸蔵合金の製造方法 | |
US20020037453A1 (en) | Hydridable alloy | |
JP2680566B2 (ja) | 水素吸蔵電極 | |
JPS61176067A (ja) | 水素吸蔵電極 | |
JPH0949034A (ja) | 水素吸蔵合金の製造方法 | |
JP3611450B2 (ja) | 金属水素化物アルカリ蓄電池 | |
JP3360916B2 (ja) | 水素吸蔵合金の製造方法 | |
JPH11288711A (ja) | 金属酸化物―金属水素化物―アルカリ電池及びその製造方法 | |
JPH05222474A (ja) | Ni−水素電池用水素吸蔵合金とその製造方法 | |
JPH06176756A (ja) | 電池用水素吸蔵合金電極 | |
JP2000243388A (ja) | 水素吸蔵合金電極、電極製造法及びアルカリ蓄電池 | |
JPH06306505A (ja) | 水素吸蔵合金の製造法 | |
JPH08302437A (ja) | 水素吸蔵合金 | |
JPH08143986A (ja) | 水素吸蔵合金の製造方法 | |
JP2000277096A (ja) | アルカリ蓄電池用のペースト式水素吸蔵合金電極 | |
JPH11213996A (ja) | 水素吸蔵合金電極材 | |
JPH0765834A (ja) | 水素吸蔵合金の製造法 | |
JPH05195122A (ja) | 水素吸蔵合金 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20041213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060307 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060510 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060607 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R154 | Certificate of patent or utility model (reissue) |
Free format text: JAPANESE INTERMEDIATE CODE: R154 |
|
LAPS | Cancellation because of no payment of annual fees |