CN105870022B - 屏蔽栅沟槽mosfet的制造方法 - Google Patents

屏蔽栅沟槽mosfet的制造方法 Download PDF

Info

Publication number
CN105870022B
CN105870022B CN201610374749.1A CN201610374749A CN105870022B CN 105870022 B CN105870022 B CN 105870022B CN 201610374749 A CN201610374749 A CN 201610374749A CN 105870022 B CN105870022 B CN 105870022B
Authority
CN
China
Prior art keywords
polysilicon
source
layer
groove mosfet
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610374749.1A
Other languages
English (en)
Other versions
CN105870022A (zh
Inventor
颜树范
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huahong Grace Semiconductor Manufacturing Corp filed Critical Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority to CN201610374749.1A priority Critical patent/CN105870022B/zh
Publication of CN105870022A publication Critical patent/CN105870022A/zh
Application granted granted Critical
Publication of CN105870022B publication Critical patent/CN105870022B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Element Separation (AREA)

Abstract

本发明公开了一种屏蔽栅沟槽MOSFET的制造方法,栅极结构采用如下步骤形成:形成硬质掩模层并定义出栅极形成区域;对半导体衬底进行刻蚀形成深沟槽;形成底部氧化层;形成源多晶硅;进行多晶硅回刻使源多晶硅和硬质掩模层顶部表面相平;去除硬质掩模层形成源多晶硅的顶部凸出结构;在源多晶硅的凸出部分的侧面形成氧化物刻蚀阻挡层组成的侧壁;以侧壁为自对准掩模对底部氧化层进行刻蚀形成顶部沟槽和源多晶硅的两个侧面的多晶硅间隔离氧化层;在顶部沟槽的侧面形成栅介质层;在顶部沟槽中填充形成多晶硅栅。本发明能在降低器件的阈值电压的同时降低器件的栅源漏电。

Description

屏蔽栅沟槽MOSFET的制造方法
技术领域
本发明涉及一种半导体集成电路制造方法,特别是涉及一种屏蔽栅(Shield GateTrench,SGT)深沟槽MOSFET的制造方法。
背景技术
如图1A至图1N所示,是现有屏蔽栅沟槽MOSFET的制造方法各步骤中的器件结构示意图;这种方法是采用自下而上的方法形成具有屏蔽栅的深沟槽分离侧栅结构,包括如下步骤:
步骤一、如图1A所示,提供一半导体衬底如硅衬底101;在半导体衬底101的表面形成硬质掩模层102,硬质掩模层102能采用氧化层,或采用氧化层加氮化层。
如图1B所示,之后采用光刻工艺对硬质掩模层102进行刻蚀定义出栅极形成区域,之后再以硬质掩模层102为掩模对半导体衬底101进行刻蚀形成深沟槽103。
步骤二、如图1C所示,在深沟槽103的侧面和底部表面形成氧化层104。
步骤三、如图1D所示,在所述深沟槽103中填充源多晶硅105,该源多晶硅105即为源多晶硅,源多晶硅105一般和源极相连,用于形成屏蔽栅。
步骤四、如图1E所示,对源多晶硅105进行回刻,该回刻将深沟槽103外的源多晶硅105都去除,深沟槽103内的源多晶硅105顶部和半导体衬底101相平。
如图1F所示,将深沟槽103顶部区域的氧化层104去除。
步骤五、如图1G所示,进行热氧化工艺同时形成栅氧化层106a和多晶硅间隔离介质层106b。
如图1H所示,形成多晶硅栅107,多晶硅栅107即为深沟槽栅。
如图1I所示,对多晶硅栅107进行回刻,回刻后的多晶硅栅107仅位于深沟槽103顶部的源多晶硅105两侧;由此可知,同一深沟槽103的两侧面之间的多晶硅栅107呈分离结构,为了和完全填充于深沟槽顶部的多晶硅栅组成的深沟槽栅相区别,将这种形成于深沟槽侧壁的具有分离式结构的深沟槽栅称为深沟槽分离侧栅。
步骤六、如图1I所示,形成阱区108,源区109。
如图1J所示,形成层间膜110,接触孔,标记111a所对应的接触孔对应于未填充金属之前的结构。较佳为,在刻蚀形成接触孔111a之后,还需要在源区109顶部所对应的接触孔111a的底部形成阱区接触区。
如图1K所示,之后在接触孔111a中填充金属,填充金属后的接触孔用标记111标示。
如图1L所示,形成正面金属层112。
如图1M所示,采用光刻刻蚀工艺对正面金属层112进行图形化分别形成源极和栅极,其中源极通过接触孔和底部的源区109、阱区接触区109以及源多晶硅105接触,栅极通过接触孔和多晶硅栅107接触。
如图1N所示,之后形成在半导体衬底101的背面形成漏区和背面金属层113,由背面金属层113组成漏极。
现有方法中,多晶硅栅107的一个侧面通过栅氧化层106a和阱区108隔离,阱区108的被多晶硅栅107侧面覆盖的表面用于形成沟道。由图1N所示可知,上述现有方法形成的多晶硅栅107仅位于深沟槽顶部的侧壁,这种具有侧壁多晶硅结构的垂直器件能够增加工作电流;同时源多晶硅105填充于整个深沟槽中,源多晶硅105能形成良好的屏蔽,具有较小的底部电容,从而能减少源漏或栅漏的输入电容,提高频率特性。
由上可知,上述具有侧壁多晶硅结构的多晶硅栅为具有屏蔽栅的分离侧栅结构的深沟槽栅MOSFET器件,或称左右结构的屏蔽栅沟槽MOSFET,在现有形成工艺方法中是使用自底向上的工艺实现方法,由图1G所示可知栅氧化层106a以及屏蔽栅的隔离介质层即多晶硅间隔离介质层106b同时形成,这样栅极氧化层106a就决定了深沟槽栅即多晶硅栅107和屏蔽栅即源多晶硅105之间的隔离水平,当栅氧化层106a厚度较薄时,容易造成栅源之间的漏电,这样就束缚了该结构在低阈值电压即开启电压器件中的应用。由此可知,为了得到低阈值电压器件,就需要采用较薄的栅氧化层106a,而较薄的栅氧化层106a会同时使多晶硅间隔离介质层106b的厚度降低从而增加栅源之间的漏电,所以现有方法无法解决降低阈值电压和降低栅源漏电之间的矛盾。
发明内容
本发明所要解决的技术问题是提供一种屏蔽栅沟槽MOSFET的制造方法,能在降低器件的阈值电压的同时降低器件的栅源漏电。
为解决上述技术问题,本发明提供的屏蔽栅沟槽MOSFET的制造方法的栅极结构采用如下步骤形成:
步骤一、提供一半导体衬底,所述半导体衬底表面形成硬质掩模层,采用光刻工艺定义出栅极形成区域,采用刻蚀工艺将所述栅极形成区域的所述硬质掩模层去除。
步骤二、以刻蚀后的所述硬质掩模层为掩模对所述半导体衬底进行刻蚀形成深沟槽。
步骤三、采用淀积工艺在所述深沟槽的底部表面和侧面形成底部氧化层。
步骤四、进行第一次多晶硅生长在所述深沟槽中填充多晶硅形成源多晶硅。
步骤五、对所述源多晶硅进行回刻,回刻后的所述源多晶硅的顶部表面和所述硬质掩模层顶部表面相平。
步骤六、去除所述硬质掩模层,所述硬质掩模层去除后所述源多晶硅的顶部表面凸出于所述半导体衬底表面。
步骤七、进行氧化物刻蚀阻挡层的生长和回刻从而在所述源多晶硅的凸出部分的侧面形成由所述氧化物刻蚀阻挡层组成的侧壁。
步骤八、以所述侧壁为自对准掩模对所述底部氧化层进行刻蚀,该刻蚀后在所述源多晶硅两侧形成顶部沟槽以及在所述源多晶硅的两个侧面形成多晶硅间隔离氧化层;所述多晶硅间隔离氧化层由位于所述侧壁底部的未被刻蚀掉的所述底部氧化层组成。
步骤九、在所述顶部沟槽的侧面形成栅介质层。
步骤十、进行第二次多晶硅生长并进行多晶硅回刻在所述顶部沟槽中填充由多晶硅组成的多晶硅栅。
进一步的改进是,栅极结构形成之后,还包括如下步骤:
步骤十一、进行离子注入在所述半导体衬底中形成第二导电类型的阱区;进行第一导电类型重掺杂的源注入在所述阱区表面形成源区;对所述阱区和所述源区进行热退火推进工艺。
步骤十二、在所述半导体衬底正面形成层间膜、接触孔和正面金属层,对所述正面金属层进行光刻刻蚀形成源极和栅极,所述源极通过接触孔和所述源区以及所述源多晶硅接触,所述栅极通过接触孔和所述所述多晶硅栅接触。
步骤十三、对所述半导体衬底背面进行减薄并形成第一导电类型重掺杂的漏区,在所述漏区的背面形成背面金属层作为漏极。
进一步的改进是,屏蔽栅沟槽MOSFET的导通区由多个原胞周期性排列组成,在所述导通区外侧形成有源多晶硅引出区,所述源多晶硅引出区中的栅极结构和所述导通区的栅极结构采用相同的工艺形成;所述导通区中的各所述原胞的深沟槽和所述源多晶硅引出区的深沟槽相连通,所述导通区中的各所述原胞的源多晶硅和所述源多晶硅引出区的源多晶硅相连接并通过形成于所述源多晶硅引出区的源多晶硅顶部的接触孔连接到所述源极。
进一步的改进是,所述半导体衬底为硅衬底,在所述硅衬底表面形成有硅外延层,所述深沟槽都位于所述硅外延层内。
进一步的改进是,步骤一中所述硬质掩模层由氧化层组成。
进一步的改进是,步骤七中所述氧化物刻蚀阻挡层由氮化硅组成。
进一步的改进是,步骤八中所述多晶硅间隔离氧化层的厚度由所述侧壁的横向宽度确定。
进一步的改进是,步骤九中所述栅介质层为栅氧化层;所述栅氧化层采用热氧化工艺形成。
进一步的改进是,步骤十二中所述接触孔的开口形成后、金属填充前,还包括在和所述源区相接触的接触孔的底部进行重掺杂注入形成阱区接触区的步骤。
进一步的改进是,屏蔽栅沟槽MOSFET为N型器件,第一导电类型为N型,第二导电类型为P型,所述半导体衬底为N型掺杂;或者,屏蔽栅沟槽MOSFET为P型器件,第一导电类型为P型,第二导电类型为N型,所述半导体衬底为P型掺杂。
本发明实现了栅介质层和多晶硅间隔离氧化层之间的分开形成,这样栅介质层和多晶硅间隔离氧化层的厚度各自独立,本发明能够通过降低栅介质层的厚度而得到低阈值电压器件,同时能够通过增加多晶硅间隔离氧化层来降低栅源之间的漏电,所以本发明消除了现有方法在降低阈值电压和降低栅源漏电之间具有矛盾的问题,使得本发明能在降低器件的阈值电压的同时降低器件的栅源漏电;也即本发明解决了现有器件中栅源漏电会随栅介质层减薄而增加的工艺瓶颈问题,尤其适用于低开启电压器件的制作。
另外,本发明的多晶硅间隔离氧化层是通过在源多晶硅的顶部形成凸出部分并在凸出部分的侧面形成侧壁并以侧壁为自对准掩模对底部氧化层进行刻蚀形成,所以多晶硅间隔离氧化层的单独形成采用自对准工艺就能实现,不需要增加额外的光刻工艺,具有较低的工艺成本。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明:
图1A-图1N是现有屏蔽栅沟槽MOSFET的制造方法各步骤中的器件结构示意图;
图2是本发明实施例方法流程图;
图3A-图3K是本发明实施例方法各步骤中的器件结构示意图。
具体实施方式
如图2所示,是本发明实施例方法流程图;如图3A至图3K所示,是本发明实施例方法各步骤中的器件结构示意图。本发明实施例屏蔽栅沟槽MOSFET的制造方法的栅极结构采用如下步骤形成:
步骤一、如图3A所示,提供一半导体衬底1,所述半导体衬底1表面形成硬质掩模层201,采用光刻工艺定义出栅极形成区域,采用刻蚀工艺将所述栅极形成区域的所述硬质掩模层201去除。
较佳为,所述半导体衬底1为硅衬底,在所述硅衬底1表面形成有硅外延层。所述硬质掩模层201由氧化层组成。
步骤二、如图3A所示,以刻蚀后的所述硬质掩模层201为掩模对所述半导体衬底1进行刻蚀形成深沟槽202。较佳为,所述深沟槽202都位于所述硅外延层内。
本发明实施例中,屏蔽栅沟槽MOSFET的导通区由多个原胞周期性排列组成,每一个原胞和一个深沟槽202相对应,最后各原胞会形成并联结构。在所述导通区外侧形成有源多晶硅引出区。
所述源多晶硅引出区中的栅极结构和所述导通区的栅极结构采用相同的工艺形成;步骤二中所述源多晶硅引出区的深沟槽单独用沟槽202a标记,所述导通区中的各所述原胞的深沟槽202和所述源多晶硅引出区的深沟槽202a相连通。
步骤三、如图3B所示,采用淀积工艺在所述深沟槽202的底部表面和侧面形成底部氧化层2。由于本发明实施例中是采用淀积工艺形成所述底部氧化层2,淀积工艺会在所述深沟槽2的内侧的所述半导体衬底1表面和所述深沟槽顶端的所述硬质掩模层201的侧面以及所述深沟槽外的所述硬质掩模层201的表面同时形成。由于所述底部氧化层2会同时形成于所述深沟槽2的内侧的所述半导体衬底1表面和所述深沟槽顶端的所述硬质掩模层201的侧面,故形成所述底部氧化层2后的所述深沟槽202的顶部到底部之间的侧面呈连续结构。
步骤四、如图3B所示,进行第一次多晶硅生长在所述深沟槽202中填充多晶硅形成源多晶硅3;所述源多晶硅引出区的源多晶硅单独用标记3a表示。
步骤五、如图3B所示,对所述源多晶硅3进行回刻,回刻后的所述源多晶硅3的顶部表面和所述硬质掩模层201顶部表面相平。
步骤六、如图3C所示,去除所述硬质掩模层201,所述硬质掩模层201去除后所述源多晶硅3的顶部表面凸出于所述半导体衬底1表面。
步骤七、如图3D所示,进行氧化物刻蚀阻挡层的生长和回刻从而在所述源多晶硅3的凸出部分的侧面形成由所述氧化物刻蚀阻挡层组成的侧壁203。
所述氧化物刻蚀阻挡层用于进行氧化物刻蚀时对所述氧化物刻蚀阻挡层底部的氧化物进行保护,较佳为,所述氧化物刻蚀阻挡层由氮化硅组成。
步骤八、如图3E所示,以所述侧壁203为自对准掩模对所述底部氧化层2进行刻蚀,该刻蚀后在所述源多晶硅3两侧形成顶部沟槽204以及在所述源多晶硅3的两个侧面形成多晶硅间隔离氧化层4;所述多晶硅间隔离氧化层4由位于所述侧壁203底部的未被刻蚀掉的所述底部氧化层2组成。
本发明实施例中,所述多晶硅间隔离氧化层4的厚度由所述侧壁203的横向宽度确定。所述侧壁203的横向宽度则能够通过所述源多晶硅3的上凸部分的厚度和宽度、所述氧化物刻蚀阻挡层的生长和回刻工艺的参数进行调节,这些都很方便实现。
步骤九、如图3F所示,在所述顶部沟槽204的侧面形成栅介质层5。
较佳为,所述栅介质层5为栅氧化层;所述栅氧化层采用热氧化工艺形成。
步骤十、如图3G所示,进行第二次多晶硅生长并进行多晶硅回刻在所述顶部沟槽204中填充由多晶硅组成的多晶硅栅6。
栅极结构形成之后,还包括如下步骤:
步骤十一、如图3H所示,进行离子注入在所述半导体衬底1中形成第二导电类型的阱区7;进行第一导电类型重掺杂的源注入在所述阱区7表面形成源区8;对所述阱区7和所述源区8进行热退火推进工艺。
步骤十二、如图3I所示,在所述半导体衬底1正面形成层间膜9,之后进行光刻刻蚀形成接触孔205,标记205表示接触孔开口形成后、金属填充前的状态。
较佳为,所述接触孔205的开口形成后、金属填充前,还包括在和所述源区8相接触的接触孔205的底部进行重掺杂注入形成阱区接触区的步骤。
如图3J所示,在进行接触孔的金属填充,填充金属后的接触孔用标记10表示。之后形成正面金属层11,对所述正面金属层11进行光刻刻蚀形成源极和栅极。
所述源极通过接触孔10和所述源区8以及所述源多晶硅3接触,且本发明实施例中,所述导通区中的各所述原胞的源多晶硅3和所述源多晶硅引出区的源多晶硅3a相连接并通过形成于所述源多晶硅引出区的源多晶硅3a顶部的接触孔10连接到所述源极。
所述栅极通过接触孔10和所述所述多晶硅栅6接触。
步骤十三、如图3K所示,对所述半导体衬底1背面进行减薄并形成第一导电类型重掺杂的漏区,在所述漏区的背面形成背面金属层12作为漏极。
本发明实施例中,屏蔽栅沟槽MOSFET为N型器件,第一导电类型为N型,第二导电类型为P型,所述半导体衬底1为N型掺杂。在其它实施例中,也能为:屏蔽栅沟槽MOSFET为P型器件,第一导电类型为P型,第二导电类型为N型,所述半导体衬底1为P型掺杂。
以上通过具体实施例对本发明进行了详细的说明,但这些并非构成对本发明的限制。在不脱离本发明原理的情况下,本领域的技术人员还可做出许多变形和改进,这些也应视为本发明的保护范围。

Claims (10)

1.一种屏蔽栅沟槽MOSFET的制造方法,其特征在于,栅极结构采用如下步骤形成:
步骤一、提供一半导体衬底,所述半导体衬底表面形成硬质掩模层,采用光刻工艺定义出栅极形成区域,采用刻蚀工艺将所述栅极形成区域的所述硬质掩模层去除;
步骤二、以刻蚀后的所述硬质掩模层为掩模对所述半导体衬底进行刻蚀形成深沟槽;
步骤三、采用淀积工艺在所述深沟槽的底部表面和侧面形成底部氧化层;
步骤四、进行第一次多晶硅生长在所述深沟槽中填充多晶硅形成源多晶硅;
步骤五、对所述源多晶硅进行回刻,回刻后的所述源多晶硅的顶部表面和所述硬质掩模层顶部表面相平;
步骤六、去除所述硬质掩模层,所述硬质掩模层去除后所述源多晶硅的顶部表面凸出于所述半导体衬底表面;
步骤七、进行氧化物刻蚀阻挡层的生长和回刻从而在所述源多晶硅的凸出部分的侧面形成由所述氧化物刻蚀阻挡层组成的侧壁;
步骤八、以所述侧壁为自对准掩模对所述底部氧化层进行刻蚀,该刻蚀后在所述源多晶硅两侧形成顶部沟槽以及在所述源多晶硅的两个侧面形成多晶硅间隔离氧化层;所述多晶硅间隔离氧化层由位于所述侧壁底部的未被刻蚀掉的所述底部氧化层组成;
步骤九、在所述顶部沟槽的侧面形成栅介质层;
步骤十、进行第二次多晶硅生长并进行多晶硅回刻在所述顶部沟槽中填充由多晶硅组成的多晶硅栅。
2.如权利要求1所述的屏蔽栅沟槽MOSFET的制造方法,其特征在于:栅极结构形成之后,还包括如下步骤:
步骤十一、进行离子注入在所述半导体衬底中形成第二导电类型的阱区;进行第一导电类型重掺杂的源注入在所述阱区表面形成源区;对所述阱区和所述源区进行热退火推进工艺;
步骤十二、在所述半导体衬底正面形成层间膜、接触孔和正面金属层,对所述正面金属层进行光刻刻蚀形成源极和栅极,所述源极通过接触孔和所述源区以及所述源多晶硅接触,所述栅极通过接触孔和所述所述多晶硅栅接触;
步骤十三、对所述半导体衬底背面进行减薄并形成第一导电类型重掺杂的漏区,在所述漏区的背面形成背面金属层作为漏极。
3.如权利要求2所述的屏蔽栅沟槽MOSFET的制造方法,其特征在于:屏蔽栅沟槽MOSFET的导通区由多个原胞周期性排列组成,在所述导通区外侧形成有源多晶硅引出区,所述源多晶硅引出区中的栅极结构和所述导通区的栅极结构采用相同的工艺形成;所述导通区中的各所述原胞的深沟槽和所述源多晶硅引出区的深沟槽相连通,所述导通区中的各所述原胞的源多晶硅和所述源多晶硅引出区的源多晶硅相连接并通过形成于所述源多晶硅引出区的源多晶硅顶部的接触孔连接到所述源极。
4.如权利要求1或2所述的屏蔽栅沟槽MOSFET的制造方法,其特征在于:所述半导体衬底为硅衬底,在所述硅衬底表面形成有硅外延层,所述深沟槽都位于所述硅外延层内。
5.如权利要求1所述的屏蔽栅沟槽MOSFET的制造方法,其特征在于:步骤一中所述硬质掩模层由氧化层组成。
6.如权利要求1所述的屏蔽栅沟槽MOSFET的制造方法,其特征在于:步骤七中所述氧化物刻蚀阻挡层由氮化硅组成。
7.如权利要求1所述的屏蔽栅沟槽MOSFET的制造方法,其特征在于:步骤八中所述多晶硅间隔离氧化层的厚度由所述侧壁的横向宽度确定。
8.如权利要求1所述的屏蔽栅沟槽MOSFET的制造方法,其特征在于:步骤九中所述栅介质层为栅氧化层;所述栅氧化层采用热氧化工艺形成。
9.如权利要求2所述的屏蔽栅沟槽MOSFET的制造方法,其特征在于:步骤十二中所述接触孔的开口形成后、金属填充前,还包括在和所述源区相接触的接触孔的底部进行重掺杂注入形成阱区接触区的步骤。
10.如权利要求2所述的屏蔽栅沟槽MOSFET的制造方法,其特征在于:屏蔽栅沟槽MOSFET为N型器件,第一导电类型为N型,第二导电类型为P型,所述半导体衬底为N型掺杂;或者,屏蔽栅沟槽MOSFET为P型器件,第一导电类型为P型,第二导电类型为N型,所述半导体衬底为P型掺杂。
CN201610374749.1A 2016-05-31 2016-05-31 屏蔽栅沟槽mosfet的制造方法 Active CN105870022B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610374749.1A CN105870022B (zh) 2016-05-31 2016-05-31 屏蔽栅沟槽mosfet的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610374749.1A CN105870022B (zh) 2016-05-31 2016-05-31 屏蔽栅沟槽mosfet的制造方法

Publications (2)

Publication Number Publication Date
CN105870022A CN105870022A (zh) 2016-08-17
CN105870022B true CN105870022B (zh) 2019-01-04

Family

ID=56643010

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610374749.1A Active CN105870022B (zh) 2016-05-31 2016-05-31 屏蔽栅沟槽mosfet的制造方法

Country Status (1)

Country Link
CN (1) CN105870022B (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106298941B (zh) * 2016-09-13 2019-04-09 上海华虹宏力半导体制造有限公司 屏蔽栅沟槽功率器件及其制造方法
CN106653831A (zh) * 2016-10-11 2017-05-10 扬州扬杰电子科技股份有限公司 高密度低压沟槽功率mos器件及其制造方法
CN108735742B (zh) * 2017-04-14 2020-07-07 上海磁宇信息科技有限公司 一种高密度随机存储器制造方法
CN109427882B (zh) * 2017-08-23 2021-09-14 深圳尚阳通科技有限公司 具有屏蔽栅的沟槽栅mosfet及其制造方法
CN109427881A (zh) * 2017-08-23 2019-03-05 深圳尚阳通科技有限公司 具有屏蔽栅的沟槽栅mosfet及制造方法
CN107507765A (zh) * 2017-08-31 2017-12-22 上海华虹宏力半导体制造有限公司 屏蔽栅沟槽功率器件及其制造方法
CN107910269B (zh) * 2017-11-17 2023-11-21 杭州士兰集昕微电子有限公司 功率半导体器件及其制造方法
CN109994374B (zh) * 2017-12-29 2021-12-28 深圳尚阳通科技有限公司 一种屏蔽栅功率器件及制造方法
CN108766879B (zh) * 2018-06-28 2023-08-11 长鑫存储技术有限公司 晶体管栅极的制备方法及晶体管结构
CN111370487B (zh) * 2018-12-26 2023-01-06 深圳尚阳通科技有限公司 沟槽栅mosfet器件及其制造方法
CN109830526A (zh) * 2019-02-27 2019-05-31 中山汉臣电子科技有限公司 一种功率半导体器件及其制备方法
TW202038470A (zh) 2019-04-10 2020-10-16 台灣茂矽電子股份有限公司 金氧半場效電晶體及其製造方法
CN110491782B (zh) * 2019-08-13 2021-11-09 上海华虹宏力半导体制造有限公司 沟槽型双层栅mosfet的制造方法
CN111477550B (zh) * 2020-05-26 2022-11-18 上海华虹宏力半导体制造有限公司 一种功率半导体器件及其制作方法
CN112242305B (zh) * 2020-10-27 2024-02-02 上海华虹宏力半导体制造有限公司 半导体器件及其制造方法
CN112201583B (zh) * 2020-10-27 2024-02-27 上海华虹宏力半导体制造有限公司 包含sgt结构的mosfet器件的制作方法
CN112864250A (zh) * 2021-01-11 2021-05-28 江苏东海半导体科技有限公司 改善栅漏电荷的沟槽型功率半导体器件及其制备方法
CN113471278A (zh) * 2021-06-24 2021-10-01 无锡新洁能股份有限公司 屏蔽栅沟槽型半导体器件及其制造方法
CN113471279B (zh) * 2021-06-29 2022-06-28 无锡新洁能股份有限公司 降低导通电阻的功率晶体管结构
CN114497225A (zh) * 2022-02-15 2022-05-13 恒泰柯半导体(上海)有限公司 一种半导体元件及其制备方法
CN117438306A (zh) * 2022-07-12 2024-01-23 无锡华润上华科技有限公司 沟槽型双扩散金属氧化物半导体器件及其制造方法
CN115775830B (zh) * 2022-11-29 2023-07-21 上海功成半导体科技有限公司 屏蔽栅功率器件及其制备方法
CN116031153B (zh) * 2023-03-28 2023-06-27 江苏长晶科技股份有限公司 一种沟槽mosfet器件的制造方法及其结构
CN116913780A (zh) * 2023-07-20 2023-10-20 瑶芯微电子科技(上海)有限公司 一种屏蔽栅沟槽型mos器件结构及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165380A (ja) * 2005-12-09 2007-06-28 Toshiba Corp 半導体装置及びその製造方法
US7998808B2 (en) * 2008-03-21 2011-08-16 International Rectifier Corporation Semiconductor device fabrication using spacers
US8587054B2 (en) * 2011-12-30 2013-11-19 Force Mos Technology Co., Ltd. Trench MOSFET with resurf stepped oxide and diffused drift region
CN103579311A (zh) * 2012-07-27 2014-02-12 株式会社东芝 半导体装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100861213B1 (ko) * 2007-04-17 2008-09-30 동부일렉트로닉스 주식회사 반도체 소자 및 그 제조방법
TWI380448B (en) * 2009-09-16 2012-12-21 Anpec Electronics Corp Overlapping trench gate semiconductor device and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165380A (ja) * 2005-12-09 2007-06-28 Toshiba Corp 半導体装置及びその製造方法
US7998808B2 (en) * 2008-03-21 2011-08-16 International Rectifier Corporation Semiconductor device fabrication using spacers
US8587054B2 (en) * 2011-12-30 2013-11-19 Force Mos Technology Co., Ltd. Trench MOSFET with resurf stepped oxide and diffused drift region
CN103579311A (zh) * 2012-07-27 2014-02-12 株式会社东芝 半导体装置

Also Published As

Publication number Publication date
CN105870022A (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
CN105870022B (zh) 屏蔽栅沟槽mosfet的制造方法
CN106057674B (zh) 屏蔽栅沟槽mosfet的制造方法
CN106298941B (zh) 屏蔽栅沟槽功率器件及其制造方法
CN104733531B (zh) 使用氧化物填充沟槽的双氧化物沟槽栅极功率mosfet
CN107017167A (zh) 具有屏蔽栅的沟槽栅器件的制造方法
CN108010961A (zh) 屏蔽栅沟槽mosfet及其制造方法
CN108039369A (zh) 屏蔽栅沟槽mosfet及其制造方法
CN105225935A (zh) 具有屏蔽栅的沟槽栅结构及其制造方法
CN105551964B (zh) 具有屏蔽栅的沟槽分离侧栅mosfet的制造方法
CN104465404B (zh) 射频ldmos器件的制造方法
CN106057675B (zh) 屏蔽栅沟槽mosfet的制造方法
CN106024630B (zh) 沟槽栅功率器件的制造方法及结构
CN106024894A (zh) 沟槽栅功率mosfet结构及其制造方法
CN105355560A (zh) 具有屏蔽栅的沟槽栅mosfet的制造方法
CN105513971A (zh) 具有屏蔽栅的沟槽栅功率器件的制造方法
CN105514022A (zh) 在沟槽内部表面形成场氧化硅的方法
CN106876278A (zh) 具有屏蔽栅的沟槽栅器件的制造方法
CN109148569A (zh) 沟槽型双层栅mosfet及其制造方法
CN105428241A (zh) 具有屏蔽栅的沟槽栅功率器件的制造方法
CN105355548A (zh) 具有屏蔽栅的沟槽栅mosfet的制造方法
CN107507765A (zh) 屏蔽栅沟槽功率器件及其制造方法
CN104124172B (zh) 鳍式场效应晶体管及其形成方法
CN104617045A (zh) 沟槽栅功率器件的制造方法
CN105529273A (zh) 沟槽栅功率器件的制造方法
CN105655385B (zh) 沟槽型超级结器件的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant