CN105682790A - 用于柴油氧化催化剂用途的协同pgm催化剂体系 - Google Patents

用于柴油氧化催化剂用途的协同pgm催化剂体系 Download PDF

Info

Publication number
CN105682790A
CN105682790A CN201580002403.2A CN201580002403A CN105682790A CN 105682790 A CN105682790 A CN 105682790A CN 201580002403 A CN201580002403 A CN 201580002403A CN 105682790 A CN105682790 A CN 105682790A
Authority
CN
China
Prior art keywords
pgm
spgm
catalyst system
type
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580002403.2A
Other languages
English (en)
Inventor
Z·纳扎波尔
S·高登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clean Diesel Technologies Inc
Original Assignee
Clean Diesel Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clean Diesel Technologies Inc filed Critical Clean Diesel Technologies Inc
Publication of CN105682790A publication Critical patent/CN105682790A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8986Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/405Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

公开了协同铂族金属(SPGM)氧化催化剂体系。所公开的SPGM氧化催化剂体系可包括具有Cu-Mn尖晶石结构的载体涂层和包括负载在载体材料氧化物上的PGM,如钯(Pd)、铂(Pt)、铑(Rh)或其组合的外覆涂层。SPGM体系表现出未燃烃(HC)和一氧化碳(CO)减排以及NO氧化成NO2的显著改进,这能够降低燃料消耗。所公开的SPGM氧化催化剂体系与PGM氧化体系相比表现出增强的催化活性,表明在所公开的SPGM氧化催化剂体系内的PGM和Cu-Mn尖晶石组合物之间存在协同效应。所公开的SPGM氧化催化剂体系可用于许多DOC用途。

Description

用于柴油氧化催化剂用途的协同PGM催化剂体系
对相关申请的交叉引用
本申请与2014年4月11日提交的名称为SynergizedPGMCatalystSystemsforDieselOxidationCatalystApplications的美国专利申请No.14/251169相关,其要求2013年11月26日提交的名称为SystemandMethodsforUsingSynergizedPGMasaThree-WayCatalyst的美国专利申请No.14/090861的优先权。
背景
技术领域
本公开大体上涉及低载量PGM催化剂体系,更特别涉及具有至少两层复合材料并用于柴油氧化催化剂(DOC)用途、具有改进的起燃性能和催化活性的协同PGM催化剂体系。
背景信息
柴油机废气排出物是不仅包括一氧化碳(CO)、未燃烃(HC)和氮氧化物(NOX),还包括被称作颗粒物(PM)的液体和固体形式的凝相材料的多相混合物。
通常,在柴油机排气系统中提供的DOC包括分散在金属氧化物载体上的铂族金属(PGM)以将一些或所有这些排气组分转化成较无害的组分。除HC、CO和PM的转化外,包括PGM的DOC促进NOX氧化成NO2。PGM独自或与其它贵金属结合用作氧化催化剂中的活性组分,但贵金属在该催化剂体系中以不同效率催化不同的氧化反应。
早期的柴油氧化催化剂由在高表面积载体上的铂构成并通常在高达500℃至600℃的温度下工作。更最近,已要求柴油氧化催化剂在更高温度下工作以再生传统上位于该氧化催化剂下游的微粒过滤器。
混合铂(Pt)和钯(Pd)催化剂已知与单独的铂相比提供改进的热稳定性,因此催化剂工业已转向制造Pt/Pd基柴油氧化催化剂。但是,目前可得的Pt/Pd基氧化催化剂受困于铂和钯之间的不良合金化和在铂浓度提高时和在使用过程中金属粒子的尺寸增长的趋势的问题。这两个因素都限制催化剂的性能和热稳定性进一步增强的可能性。尽管Pd的成本低于Pt,但Pd基催化剂复合材料通常表现出用于CO和HC氧化的较高起燃温度,可能造成HC和/或CO起燃的延迟。另外,Pd基催化剂复合材料可能毒化Pt的转化烃和/或氧化NOX的活性并也可能使该催化剂复合材料在用于柴油机排气系统时更易于硫中毒。
铑(Rh)在催化剂体系中用于在过量氧存在下通过CO还原NOX。由于Rh是Pt开采的副产物,任何催化剂体系中的Rh必须在该催化剂体系的使用寿命期间有效使用。另外,由于Rh在氧化条件下在升高的温度下强相互作用,其可能扩散并溶解以致在催化剂体系上再次建立还原条件时仅部分回收Rh。因此,包括Rh的催化剂体系暴露在高温条件下可能导致在该催化剂体系的寿命期间作为有效催化剂材料的Rh的损失。
因此,随着排放法规变更严格,对开发具有为有效利用改进的性质,特别具有改进的初始活性、改进的热稳定性、受控和稳定的金属粒度和降低的老化的柴油氧化催化剂很感兴趣。持续目标是开发包括提供改进的起燃性能以及残留烃、一氧化碳和NOX的脱除的催化剂复合材料的DOC。另外,随着NO排放标准变严格且PGM变稀少,同时市场流通量小、价格不断波动并始终存在稳定供应的风险等,越来越需要用于DOC用途的新型组合物,包括具有低量PGM催化剂的组合催化剂体系,其可以在提供在柴油氧化条件下增强的催化剂活性方面表现出协同性能并可成本有效地制造。
概述
本公开提供协同铂族金属(SPGM)氧化催化剂体系,其与PGM体系相比表现出在DOC起燃条件下的高催化活性和因此改进的烃、一氧化碳和氮氧化物的起燃性能和氧化。
根据各种实施方案,本公开中的SPGM氧化催化剂可包括至少基底、载体涂层(washcoat)和外覆涂层(overcoat),其中基底可包括许多材料,如陶瓷材料,载体涂层可包括负载在许多载体金属氧化物,如掺杂ZrO2上的Cu-Mn尖晶石结构,外覆涂层可包括负载在载体材料氧化物,如氧化铝上的特定PGM材料,如钯(Pd)或不同PGM材料的组合,如铂(Pt)和铑(Rh)的双金属复合材料。
为了比较性能和测定具有PGM层的Cu-Mn尖晶石结构的协同效应,可以制备无Cu-Mn尖晶石结构的PGM氧化催化剂作为对照样品。该PGM氧化体系可包括陶瓷基底、包含掺杂ZrO2的载体涂层和包含负载在载体材料氧化物,如氧化铝上的PGM材料,如Pd或Pt和Rh的双金属复合材料的外覆涂层。
所公开的SPGM氧化催化剂和PGM对照体系可以使用如本领域中已知的合适的合成方法,如共研磨法和共沉淀法等制备。
根据本公开的一个方面,为了测定PGM载量和Cu-Mn尖晶石结构在协同和非协同PGM氧化体系的催化性能中对氧化活性的影响,可以使用Pd和Pt/Rh材料的不同载量制备所公开的SPGM体系的新鲜样品和不包括Cu-Mn尖晶石结构的PGM对照体系的新鲜样品。在本公开中,总PGM载量可以低至1.0克/立方英尺。
根据本公开的另一方面,可以对本公开中所用的新鲜SPGM和PGM对照样品进行DOC标准起燃试验。对于在NO、CO和HC转化中的催化活性,可以在稳态条件下进行标准起燃试验。可以为新鲜SPGM样品和PGM对照样品开发催化活性的分析,包括由用于查证Cu-Mn尖晶石的协同效应对催化剂活性的影响和用于测量NO转化成NO2的转化率的起燃试验程序得出的HC和CO起燃温度T50
本公开的SPGM柴油氧化催化剂可提供在稀燃运行条件下的NO转化率的显著改进,这归因于Pd基和Pt/Rh基PGMDOC中包含的Cu-Mn尖晶石结构的协同效应。此外,所公开的包括Cu-Mn尖晶石结构的SPGM催化剂体系能使催化转化器使用低量的PGM材料。
根据上文,由于ZPGM组合物提供的性能影响(改进柴油氧化催化中的催化层),本公开中用作协同增效材料的Cu-Mn尖晶石结构形式的催化活性ZPGM材料组合物可获得SPGM氧化催化剂的高分散体系,其可以成本有效地制造以使它们易用于许多DOC用途。
从与附图一起作出的下列详述中可看出本公开的许多其它方面、特征和益处。
附图简述
参照示意性并且无意按比例绘制的附图举例描述本公开的非限制性实施方案。除非被指明代表背景技术,附图代表本公开的方面。
图1相当于根据一个实施方案的具有氧化铝载钯外覆涂层和掺杂氧化锆载Cu-Mn尖晶石载体涂层的SPGM氧化催化剂配置,被称作1型SPGM氧化催化剂体系。
图2图解根据一个实施方案的具有氧化铝载钯外覆涂层和掺杂氧化锆载体涂层的PGM对照体系配置,被称作2型PGM体系。
图3描绘根据一个实施方案的具有氧化铝载铂和铑外覆涂层和掺杂氧化锆载Cu-Mn尖晶石载体涂层的SPGM氧化催化剂配置,被称作3型SPGM氧化催化剂体系。
图4显示根据一个实施方案的具有氧化铝载铂和铑外覆涂层和掺杂氧化锆载体涂层的PGM对照体系配置,被称作4型PGM体系。
图5代表根据一个实施方案1型SPGM氧化催化剂体系和2型PGM对照体系的新鲜样品在大约150℃至大约500℃的温度范围内和大约54,000h-1的空速(SV)和大约1.0克/立方英尺的PGM载量下的CO和HC转化率比较。图5A显示1型SPGM氧化催化剂体系和2型PGM对照体系的新鲜样品的CO转化率比较图,图5B描绘HC转化率比较图。
图6描绘1型SPGM氧化催化剂体系和2型PGM对照体系的新鲜样品在大约150℃至大约500℃的温度范围内和大约54,000h-1的空速(SV)、大约1.0克/立方英尺的PGM载量下的NO转化率和NO2产量比较。图6A代表1型SPGM氧化催化剂体系和2型PGM对照体系的新鲜样品的NO转化率比较图,图6B描绘NO2产量比较图。
图7图解根据一个实施方案3型SPGM氧化催化剂体系和4型PGM对照体系的新鲜样品在大约150℃至大约500℃的温度范围内和大约54,000h-1的空速(SV)和大约0.5克/立方英尺的Pt载量和大约0.5克/立方英尺的Rh载量下的CO和HC转化率比较。图7A显示3型SPGM氧化催化剂体系和4型PGM对照体系的新鲜样品的CO转化率比较图,图7B描绘HC转化率比较图。
图8显示3型SPGMDOC体系和4型PGM对照体系的新鲜样品在大约150℃至大约500℃的温度范围内和大约54,000h-1的空速(SV)、大约0.5克/立方英尺的Pt载量和大约0.5克/立方英尺的Rh载量下的NO转化率和NO2产量比较。图8A代表3型SPGMDOC体系和4型PGM对照体系的新鲜样品的NO转化率比较图,图8B描绘NO2产量比较图。
详述
在下列详述中,参考构成本文的一部分的附图。在不按比例的附图中,除非上下文中另行规定,类似符号通常指定类似组件。详述、附图和权利要求书中描述的示例性实施方案无意构成限制。可以使用其它实施方案和/或可以作出其它改变而不背离本公开的精神或范围。
定义
本文所用的下列术语可具有下列定义:
“催化剂体系”是指具有至少两层的体系,包括至少一个基底、载体涂层和/或外覆涂层。
“基底”是指提供足以沉积载体涂层和/或外覆涂层的表面积的任何形状或构造的任何材料。
“载体涂层”是指可沉积在基底上的至少一个包括至少一种氧化物固体的涂层。
“外覆涂层”是指可沉积在至少一个载体涂层上的至少一个涂层。
“催化剂”是指可用于一种或多种其它材料的转化的一种或多种材料。
“研磨”是指将固体材料粉碎成所需的颗粒或粒子大小的操作。
“共沉淀”是指在所用条件下通常可溶的物质随沉淀物沉淀下来。
“煅烧”是指在空气存在下在低于固体材料的熔点的温度下施加于固体材料以引起热分解、相变或除去挥发分的热处理过程。
“铂族金属(PGM)”是指铂、钯、钌、铱、锇和铑。
“Zero铂族(ZPGM)催化剂”是指完全或基本不含铂族金属的催化剂。
“协同铂族金属(SPGM)催化剂”是指在不同配置下用非PGM族金属化合物协同增效的PGM催化剂体系。
“处理”是指干燥、烧制、加热、蒸发、煅烧或它们的混合。
“柴油氧化催化剂”是指利用化学过程破坏来自柴油机或稀燃汽油机的排气流中的污染物以将它们转化成较无害的组分的装置。
“转化”是指至少一种材料化学变化成一种或多种其它材料。
“尖晶石”是指任何具有AB2O4结构的与铝、铬、铜或铁结合的镁、铁、锌或锰的各种矿物氧化物。
“T50”是指50%的材料转化时的温度。
附图描述
本公开可提供包括在载体氧化物上的化学计量Cu-Mn尖晶石(在所选贱金属载量下)的催化剂层的材料组合物和它们对柴油氧化催化剂(DOC)体系的起燃性能的影响以能够提供可确保高化学反应性的合适的催化层。本公开中论述的方面可能表现出适用于许多DOC用途并与PGM体系相比具有增强的催化性能的许多协同PGM(SPGM)氧化催化剂体系的总体催化转化能力在该方法中的改进。
本公开的实施方案将更活性的组分并入具有DOC性质的相材料中并提供可包括在外覆涂层中不同的钯(Pd)载量或铂(Pt)/铑(Rh)载量的所公开的SPGM体系和PGM对照体系的催化剂性能比较。
根据本公开中的实施方案,可以用包括化学计量含掺杂氧化锆载体氧化物的Cu-Mn尖晶石的载体涂层、包括PGM催化剂,如含氧化铝基载体的Pd或含氧化铝基载体的Pt/Rh复合材料的外覆涂层和合适的陶瓷基底构造SPGM氧化催化剂,在此分别被称作1型SPGM氧化催化剂体系和3型SPGM氧化催化剂体系。根据本公开中的其它实施方案,可以用包括掺杂氧化锆载体氧化物的载体涂层、包括PGM催化剂,如含氧化铝基载体的Pd或含氧化铝基载体的Pt/Rh复合材料的外覆涂层和合适的陶瓷基底构造PGM对照体系,在此分别被称作2型PGM对照体系和4型PGM对照体系。
SPGM氧化催化剂和PGM对照催化剂配置
图1显示根据一个实施方案的氧化催化剂配置100,在此被称作1型SPGM氧化催化剂体系。
如图1中所示,1型SPGM氧化催化剂体系可包括至少基底102、载体涂层104和外覆涂层106,其中载体涂层104可包括负载在掺杂氧化锆上的Cu-Mn尖晶石结构且外覆涂层106可包括负载在载体材料氧化物上的PGM催化剂材料。
根据本公开中的实施方案,1型SPGM催化剂体系的基底102材料可包括折射材料、陶瓷材料、蜂窝结构、金属材料、陶瓷泡沫、金属泡沫、网状泡沫或合适的组合,其中基底102可具有许多孔隙率合适的通道。孔隙率可根据基底102材料的特定性质而变。另外,通道数可随基底102而变,其类型和形状对本领域普通技术人员是可显而易见的。根据本公开,优选基底102可以是陶瓷基底。
1型SPGM氧化催化剂体系的载体涂层104可包括在掺杂氧化锆的载体氧化物上的Cu-Mn化学计量尖晶石Cu1.0Mn2.0O4。根据本公开,适用于所公开的载体涂层104的材料可以是Nb2O5-ZrO2
1型SPGM氧化催化剂体系的外覆涂层106可包括PGM催化剂,如钯(Pd)、铂(Pt)、铑(Rh)及其组合,其可负载在载体材料氧化物,如掺杂氧化铝、氧化锆、掺杂氧化锆、氧化钛、氧化锡、二氧化硅、沸石及其混合物上。在本公开中,所公开的外覆涂层106可包括负载在氧化铝上的合适PGM催化剂Pd。
图2图解根据一个实施方案的PGM体系配置200,在此被称作2型PGM对照体系。
如图2中所示,2型PGM对照体系可包括至少基底102、载体涂层202和外覆涂层106,其中载体涂层202可包括掺杂氧化锆且外覆涂层206可包括负载在载体材料氧化物上的PGM催化剂材料。
根据本公开中的实施方案,2型PGM对照体系的基底102材料可包括折射材料、陶瓷材料、蜂窝结构、金属材料、陶瓷泡沫、金属泡沫、网状泡沫或合适的组合。根据本公开,优选基底102可以是陶瓷基底。
2型PGM对照体系的载体涂层202可包括载体氧化物,如氧化锆或掺杂氧化锆。根据本公开,适用于所公开的载体涂层202的材料可以是Nb2O5-ZrO2
2型PGM对照体系的外覆涂层106可包括PGM催化剂,如钯(Pd)、铂(Pt)、铑(Rh)及其组合,其可负载在载体材料氧化物,如掺杂氧化铝、氧化锆、掺杂氧化锆、氧化钛、氧化锡、二氧化硅、沸石及其混合物上。在本公开中,所公开的外覆涂层106可包括负载在氧化铝上的合适PGM催化剂Pd。
图3描绘根据一个实施方案的氧化催化剂配置300,在此被称作3型SPGM氧化催化剂体系。
如图3中所示,3型SPGM氧化催化剂体系可包括至少基底102、载体涂层104和外覆涂层302,其中载体涂层104可包括负载在掺杂氧化锆上的Cu-Mn尖晶石结构且外覆涂层302可包括负载在载体材料氧化物上的PGM催化剂材料。
根据本公开中的实施方案,3型SPGM催化剂体系的基底102材料可包括折射材料、陶瓷材料、蜂窝结构、金属材料、陶瓷泡沫、金属泡沫、网状泡沫或合适的组合,其中基底102可具有许多孔隙率合适的通道。孔隙率可根据基底102材料的特定性质而变。另外,通道数可随基底102而变,其类型和形状对本领域普通技术人员是可显而易见的。根据本公开,优选基底102可以是陶瓷基底。
3型SPGM氧化催化剂体系的载体涂层104可包括在掺杂氧化锆的载体氧化物上的Cu-Mn化学计量尖晶石Cu1.0Mn2.0O4。根据本公开,适用于所公开的载体涂层104的材料可以是Nb2O5-ZrO2
3型SPGM氧化催化剂体系的外覆涂层302可包括PGM催化剂,如钯(Pd)、铂(Pt)、铑(Rh)及其组合,其可负载在载体材料氧化物,如掺杂氧化铝、氧化锆、掺杂氧化锆、氧化钛、氧化锡、二氧化硅、沸石及其混合物上。在本公开中,所公开的外覆涂层302可包括负载在氧化铝上的合适PGM催化剂Pt/Rh。
图4图解根据一个实施方案的PGM体系配置400,在此被称作4型PGM对照体系。
如图4中所示,4型PGM对照体系可包括至少基底102、载体涂层202和外覆涂层302,其中载体涂层202可包括掺杂氧化锆且外覆涂层302可包括负载在载体材料氧化物上的PGM催化剂材料。
根据本公开中的实施方案,4型PGM对照体系的基底102材料可包括折射材料、陶瓷材料、蜂窝结构、金属材料、陶瓷泡沫、金属泡沫、网状泡沫或合适的组合。根据本公开,优选基底102可以是陶瓷基底。
4型PGM对照体系的载体涂层202可包括载体氧化物,如氧化锆或掺杂氧化锆。根据本公开,适用于所公开的载体涂层202的材料可以是Nb2O5-ZrO2
4型PGM对照体系的外覆涂层302可包括PGM催化剂,如钯(Pd)、铂(Pt)、铑(Rh)及其组合,其可负载在载体材料氧化物,如掺杂氧化铝、氧化锆、掺杂氧化锆、氧化钛、氧化锡、二氧化硅、沸石及其混合物上。在本公开中,所公开的外覆涂层302可包括负载在氧化铝上的合适的PGM催化剂Pt/Rh。
可以通过制备所公开的SPGM氧化催化剂体系和PGM对照体系的样品(它们可以在起燃条件下测试)来验证Cu-Mn化学计量尖晶石Cu1.0Mn2.0O4的所选贱金属载量的协同效应。
DOC标准起燃试验程序
在稳态条件下的DOC标准起燃试验可以使用流动反应器进行,其中温度可以以大约40℃/分钟的速率从大约100℃提高到大约500℃,送入大约100ppmNOX、1,500ppmCO、大约4%CO2、大约4%H2O、大约14%O2和大约430ppmC3H6的气体组合物,在大约54,000h-1的空速(SV)下。在DOC起燃试验的过程中,既不形成N2O,也不形成NH3
下列实施例旨在例示本公开的范围。要理解的是,也可以替代性地使用本领域技术人员已知的其它程序。可以根据上文公开的许多DOC体系配置制备本公开中的实施例。
实施例
实施例#1-1型SPGM氧化催化剂体系
实施例#1可例示具有氧化催化剂配置100的1型SPGM氧化催化剂体系的新鲜样品的制备。
载体涂层104的制备可通过研磨Nb2O5-ZrO2载体氧化物以制造水性浆料开始。该Nb2O5-ZrO2载体氧化物可具有大约15重量%至大约30重量%,优选大约25%的Nb2O5载量和大约70重量%至大约85重量%,优选大约75%的ZrO2载量。
可通过将适量的硝酸锰溶液(Mn(NO3)2)和硝酸铜溶液(CuNO3)混合大约1至2小时来制备Cu-Mn溶液。随后,可以将硝酸铜-锰溶液与Nb2O5-ZrO2载体氧化物浆料混合大约2至4小时,其中硝酸铜-锰溶液可以在Nb2O5-ZrO2载体氧化物水性浆料上沉淀。可以添加合适的碱溶液,如氢氧化钠(NaOH)溶液、碳酸钠(Na2CO3)溶液、氢氧化铵(NH4OH)溶液和四乙基氢氧化铵(TEAH)溶液等以将该浆料的pH调节到合适的范围。沉淀的Cu-Mn/Nb2O5-ZrO2浆料可以在室温下连续搅拌下老化大约12至24小时。
随后,可以将该沉淀浆料涂布在陶瓷基底102上。可以使用真空计量和涂布系统将Cu-Mn/Nb2O5-ZrO2的水性浆料沉积在合适的陶瓷基底102上以形成载体涂层104。在本公开中,可以在合适的陶瓷基底102上涂布多种载体涂层104载量(capacity)。随后,在陶瓷基底102上沉积合适载量的Cu-Mn/Nb2O5-ZrO2浆料后,载体涂层104可以在大约120℃下干燥整夜,随后在大约550℃至大约650℃范围内的合适温度下,优选在大约600℃下煅烧大约5小时。
外覆涂层106可包括Pd在氧化铝基载体上的组合。外覆涂层106的制备可通过单独研磨氧化铝基载体氧化物以制造水性浆料开始。随后,可以将硝酸钯溶液以在大约0.5克/立方英尺至大约25.0克/立方英尺范围内,在本公开中优选大约1.0克/立方英尺的载量与氧化铝的水性浆料混合。在Pd和氧化铝浆料混合后,可以用适量的一种或多种碱溶液,如氢氧化钠(NaOH)溶液、碳酸钠(Na2CO3)溶液、氢氧化铵(NH4OH)溶液和四乙基氢氧化铵(TEAH)溶液等锁定Pd。然后,所得浆料可以老化大约12至24小时以随后作为外覆涂层106涂布在载体涂层104上,在大约550℃下干燥并烧制大约4小时。
实施例#2-2型SGM对照体系
实施例#2可例示具有PGM体系配置200的2型PGM对照体系的新鲜样品的制备。
载体涂层202的制备可通过研磨Nb2O5-ZrO2载体氧化物以制造水性浆料开始。该Nb2O5-ZrO2载体氧化物可具有大约15重量%至大约30重量%,优选大约25%的Nb2O5载量和大约70重量%至大约85重量%,优选大约75%的ZrO2载量。可以在大约4微米至大约5微米的范围内调节载体涂层202粒度(d50)。
随后,可以将载体涂层202浆料涂布在基底102上。可以使用真空计量和涂布系统将载体涂层202浆料沉积在合适的陶瓷基底102上以形成载体涂层202。在本公开中,可以在合适的陶瓷基底102上涂布多种载体涂层202载量。载体涂层202可以在大约120℃下干燥整夜,随后在大约550℃至大约650℃范围内的合适温度下,优选在大约550℃下煅烧大约4小时。
外覆涂层106可包括Pd在氧化铝基载体上的组合。外覆涂层106的制备可通过单独研磨氧化铝基载体氧化物以制造水性浆料开始。随后,可以将硝酸钯溶液以在大约0.5克/立方英尺至大约25.0克/立方英尺范围内,在本公开中优选大约1.0克/立方英尺的载量与氧化铝的水性浆料混合。在Pd和氧化铝浆料混合后,可以用适量的一种或多种碱溶液,如氢氧化钠(NaOH)溶液、碳酸钠(Na2CO3)溶液、氢氧化铵(NH4OH)溶液和四乙基氢氧化铵(TEAH)溶液等锁定Pd。然后,所得浆料可以老化大约12至24小时以随后作为外覆涂层106涂布在载体涂层104上,在大约550℃下干燥并烧制大约4小时。
可通过制备各催化剂配方和配置的新鲜样品来比较1型SPGM氧化催化剂体系和2型PGM对照体系的DOC起燃性能,以测量/分析将Cu-Mn尖晶石添加到可用于DOC用途的PGM催化剂材料中的协同效应并显示所带来的氧化活性的改进。为了比较所公开的1型SPGMDOC体系和2型PGM对照体系的起燃性能和DOC活性,可以进行DOC标准起燃试验。
实施例#3-3型SPGM氧化催化剂体系
实施例#3可例示具有氧化催化剂配置300的3型SPGM氧化催化剂体系的新鲜样品的制备。
载体涂层104的制备可通过研磨Nb2O5-ZrO2载体氧化物以制造水性浆料开始。该Nb2O5-ZrO2载体氧化物可具有大约15重量%至大约30重量%,优选大约25%的Nb2O5载量和大约70重量%至大约85重量%,优选大约75%的ZrO2载量。
可通过将适量的硝酸锰溶液(Mn(NO3)2)和硝酸铜溶液(CuNO3)混合大约1至2小时来制备Cu-Mn溶液。随后,可以将硝酸铜-锰溶液与Nb2O5-ZrO2载体氧化物浆料混合大约2至4小时,其中硝酸铜-锰溶液可以在Nb2O5-ZrO2载体氧化物水性浆料上沉淀。可以添加合适的碱溶液,如氢氧化钠(NaOH)溶液、碳酸钠(Na2CO3)溶液、氢氧化铵(NH4OH)溶液和四乙基氢氧化铵(TEAH)溶液等以将该浆料的pH调节到合适的范围。沉淀的Cu-Mn/Nb2O5-ZrO2浆料可以在室温下连续搅拌下老化大约12至24小时。
随后,可以将该沉淀浆料涂布在陶瓷基底102上。可以使用真空计量和涂布系统将Cu-Mn/Nb2O5-ZrO2的水性浆料沉积在合适的陶瓷基底102上以形成载体涂层104。在本公开中,可以在合适的陶瓷基底102上涂布多种载体涂层104载量。随后,在陶瓷基底102上沉积合适载量的Cu-Mn/Nb2O5-ZrO2浆料后,载体涂层104可以在大约120℃下干燥整夜,随后在大约550℃至大约650℃范围内的合适温度下,优选在大约600℃下煅烧大约5小时。
外覆涂层302可包括Pt和Rh在氧化铝基载体上的组合。外覆涂层302的制备可通过单独研磨氧化铝基载体氧化物以制造水性浆料开始。随后,可以将硝酸铂和硝酸铑的溶液以在大约0.5克/立方英尺至大约25.0克/立方英尺范围内,优选大约0.5克/立方英尺Pt和大约0.5克/立方英尺Rh的载量与氧化铝的水性浆料混合。在Pt/Rh和氧化铝浆料混合后,可以用适量的一种或多种碱溶液,如氢氧化钠(NaOH)溶液、碳酸钠(Na2CO3)溶液、氢氧化铵(NH4OH)溶液和四乙基氢氧化铵(TEAH)溶液等锁定Pt/Rh。然后,所得浆料可以老化大约12至24小时以随后作为外覆涂层106涂布在载体涂层104上,在大约550℃下干燥并烧制大约4小时。
实施例#4-4型PGM对照体系
实施例#4可例示具有PGM体系配置400的4型PGM对照体系的新鲜样品的制备。
载体涂层202的制备可通过研磨Nb2O5-ZrO2载体氧化物以制造水性浆料开始。该Nb2O5-ZrO2载体氧化物可具有大约15重量%至大约30重量%,优选大约25%的Nb2O5载量和大约70重量%至大约85重量%,优选大约75%的ZrO2载量。可以在大约4微米至大约5微米的范围内调节载体涂层202粒度(d50)。
随后,可以将载体涂层202浆料涂布在基底102上。可以使用真空计量和涂布系统将载体涂层202浆料沉积在合适的陶瓷基底102上以形成载体涂层202。在本公开中,可以在合适的陶瓷基底102上涂布多种载体涂层202载量。载体涂层202可以在大约120℃下干燥整夜,随后在大约550℃至大约650℃范围内的合适温度下,优选在大约550℃下煅烧大约4小时。
外覆涂层302可包括Pt和Rh在氧化铝基载体上的组合。外覆涂层302的制备可通过单独研磨氧化铝基载体氧化物以制造水性浆料开始。随后,可以将硝酸铂和硝酸铑的溶液以在大约0.5克/立方英尺至大约25.0克/立方英尺范围内,优选大约0.5克/立方英尺Pt和大约0.5克/立方英尺Rh的载量与氧化铝的水性浆料混合。在Pt/Rh和氧化铝浆料混合后,可以用适量的一种或多种碱溶液,如氢氧化钠(NaOH)溶液、碳酸钠(Na2CO3)溶液、氢氧化铵(NH4OH)溶液和四乙基氢氧化铵(TEAH)溶液等锁定Pt/Rh。然后,所得浆料可以老化大约12至24小时以随后作为外覆涂层106涂布在载体涂层104上,在大约550℃下干燥并烧制大约4小时。
可通过制备各催化剂配方和配置的新鲜样品来比较3型SPGM氧化催化剂体系和4型PGM对照体系的DOC起燃性能,以测量/分析将Cu-Mn尖晶石添加到可用于DOC用途的PGM催化剂材料中的协同效应并显示所带来的氧化活性的改进。为了比较所公开的3型SPGMDOC体系和4型PGM对照体系的起燃性能和DOC活性,可以进行DOC标准起燃试验。SPGM氧化催化剂和PGM对照体系的新鲜样品的氧化性质的分析
图5代表根据一个实施方案1型SPGM氧化催化剂体系和2型PGM对照体系的新鲜样品分别在起燃条件下、在大约150℃至大约500℃的温度范围内和大约54,000h-1的空速(SV)下的CO和HC转化率比较500。图5A显示1型SPGM氧化催化剂体系和2型PGM对照体系的CO转化率比较曲线502,图5B描绘HC转化率比较曲线504。
相应地,如图5A中可以看出,分别地,转化率曲线506代表1型SPGM氧化催化剂体系新鲜样品的CO转化率,转化率曲线508描绘2型PGM对照体系新鲜样品的CO转化率。在图5A中可以观察到,1型SPGM氧化催化剂体系的新鲜样品的COT50为大约235℃,而2型PGM对照体系的新鲜样品的COT50为大约325℃。协同PGM样品的CO起燃温度低于PGM对照样品,表明1型SPGM的CO氧化性能增强。尽管PGM样品在CO转化方面表现出合意的氧化活性,但协同PGM样品在CO转化方面明显优于PGM样品,证实Cu-Mn尖晶石和Pd之间的协同效应。
如图5B中可以看出,分别地,转化率曲线510代表1型SPGM氧化催化剂体系新鲜样品的HC转化率,转化率曲线512描绘2型PGM对照体系新鲜样品的HC转化率。在图5B中可以观察到,1型SPGM氧化催化剂体系的新鲜样品的HCT50为大约235℃,而2型PGM对照体系的HCT50为大约350℃。协同PGM样品的HC起燃温度低于PGM对照样品,表明1型SPGM氧化催化剂体系的HC氧化活性增强,证实Cu-Mn尖晶石和Pd之间的协同效应。
1型SPGM氧化催化剂体系带来的CO和HC氧化改进水平表明Cu-Mn尖晶石和Pd之间的协同效应可提供用于DOC用途的具有大约1.0克/立方英尺的超低Pd载量的改进的氧化催化剂。
图6描绘根据一个实施方案1型SPGM氧化催化剂体系和2型PGM对照体系的新鲜样品在大约150℃至大约500℃的温度范围和大约54,000h-1的空速(SV)下的NO转化率和NO2产量比较600。图6A代表1型SPGM氧化催化剂体系和2型PGM对照体系的新鲜样品的NO转化率比较602,图6B描绘NO2产量比较604。
相应地,如图6A中可以看出,分别地,转化率曲线606代表1型SPGM氧化催化剂体系新鲜样品的NO转化率,转化率曲线608描绘2型PGM对照体系新鲜样品在DOC起燃条件下的NO转化率。
如图6B中可以看出,分别地,浓度分布曲线610代表1型SPGM氧化催化剂体系的NO2产量,浓度分布曲线612描绘2型PGM对照体系在DOC起燃条件下的NO2产量。
在图6A中可以观察到,1型SPGM氧化催化剂体系的NO转化率在大约390℃下达到大约34%的最大转化率,而2型PGM对照体系新鲜样品在大约465℃下达到大约18%的最大NO转化率。
1型SPGM氧化催化剂体系表现出明显高于2型PGM对照体系的在NO氧化方面的催化活性。大约83%的明显高的NOX转化率改进表明1型SPGM氧化催化剂体系可提供增强的氧化活性,证实Cu-Mn与pd的协同效应。
如图6B中可以看出,来自浓度分布曲线610的NO2产量在大约390℃下为大约35ppm,而来自浓度分布曲线612的NO2产量在大约465℃下为大约18ppm。通过考虑进料流中的NO浓度(100ppm),来自图6B的NO2浓度与来自图6A的NO转化率的比较证实NO转化成NO2并且没有形成其它产物,如NH3或N2O。
可以指出,1型SPGM氧化催化剂体系可提供比2型PGM对照体系高的NO氧化产生NO2的水平。1型SPGM氧化催化剂体系的提高的NO2产量和带来的NO转化水平可表明由Cu-Mn尖晶石提供的协同效应也可提供在柴油氧化条件和大约1.0克/立方英尺的Pd载量下改进的NO氧化活性。这些结果可以证实,改进源自Cu-Mn尖晶石和Pd之间的协同效应,这也能够提供用于在真实条件下运行的许多发动机用途的协同PGM柴油氧化催化剂体系。可以在OC层中使用更高的Pd载量获得更高的NO氧化水平。
图7图解根据一个实施方案3型SPGM氧化催化剂体系和4型PGM对照体系的新鲜样品分别在DOC起燃条件下、在大约150℃至大约500℃的温度范围和大约54,000h-1的空速(SV)下的CO和HC转化率比较700。分别地,图7A显示3型SPGM氧化催化剂体系和4型PGM对照体系的新鲜样品的CO转化率比较曲线702,图7B描绘HC转化率比较曲线704。
相应地,如图7A中可以看出,分别地,转化率曲线706代表3型SPGM氧化催化剂体系的CO转化率,转化率曲线708描绘4型PGM对照体系在DOC起燃条件下的CO转化率。在图7A中可以观察到,3型SPGM氧化催化剂体系的COT50为大约245℃,而4型PGM对照体系的COT50为大约265℃。协同PGM样品的CO起燃温度低于PGM对照样品,表明3型SPGM氧化催化剂体系的CO氧化性能增强。尽管PGM样品在CO转化方面表现出显著的氧化活性,但协同PGM样品在CO转化方面优于PGM样品,证实Cu-Mn尖晶石和Pt/Rh之间的协同效应。
如图7B中可以看出,分别地,转化率曲线710代表3型SPGM氧化催化剂体系的HC转化率,转化率曲线712描绘4型PGM对照体系在DOC起燃条件下的HC转化率。在图7B中可以观察到,3型SPGM氧化催化剂体系的HCT50为大约250℃,而4型PGM对照体系的HCT50为大约285℃。协同PGM样品的HC起燃温度低于PGM对照样品,表明增强的HC氧化性能。尽管PGM样品在HC转化方面表现出显著的氧化活性,但协同PGM样品在HC转化方面优于PGM样品,证实Cu-Mn尖晶石和Pt/Rh之间的协同效应。
3型SPGM氧化催化剂体系带来的CO和HC氧化改进水平表明Cu-Mn尖晶石和Pt/Rh之间的协同效应可提供用于DOC用途的具有大约1.0克/立方英尺的超低PGM载量的改进的氧化催化剂。
图8描绘根据一个实施方案3型SPGM氧化催化剂体系和4型PGM对照体系的新鲜样品在DOC起燃条件和大约54,000h-1的空速(SV)下的NO转化率和NO2产量比较800。图8A代表3型SPGM氧化催化剂和4型PGM对照体系的新鲜样品的NO转化率比较802,图8B描绘NO2产量比较804。
相应地,如图8A中可以看出,分别地,转化率曲线806代表3型SPGM氧化催化剂的NO转化率,转化率曲线808描绘4型PGM对照体系在DOC起燃条件下的NO转化率。
如图8B中可以看出,分别地,浓度分布曲线810代表3型SPGM氧化催化剂体系的NO2产量,浓度分布曲线812描绘4型PGM对照体系在DOC起燃条件下的NO2产量。
在图8A中可以观察到,3型SPGM氧化催化剂体系新鲜样品的NO转化率在大约385℃下达到大约32%的最大转化率,而4型PGM对照体系新鲜样品在大约460℃下达到大约19%的最大NOX转化率。
3型SPGM氧化催化剂体系表现出高于4型PGM对照体系样品的在NO氧化方面的催化活性。大约55%的NOX转化率改进表明3型SPGM氧化催化剂体系可提供增强的NO氧化活性。
如图8B中可以看出,来自浓度分布曲线810的NO2产量在大约385℃下为大约35ppm,而来自浓度分布曲线812的NO2产量在大约460℃下为大约20ppm。这些结果可以证实,3型SPGM氧化催化剂体系的新鲜样品的催化性能优于4型PGM对照体系的样品的催化性能。Cu-Mn尖晶石在3型SPGM氧化催化剂体系中的存在提高用于产生NO2的DOC活性。
可以指出,3型SPGM氧化催化剂体系可提供比4型PGM对照体系高的NO氧化产生NO2的水平。3型SPGM氧化催化剂体系的提高的NO2产量和带来的NO转化水平可表明由Cu-Mn尖晶石提供的协同效应也可提供在柴油氧化条件和大约1.0克/立方英尺的Pt/Rh载量下改进的NO氧化活性。这些结果可以证实,改进源自Cu-Mn尖晶石和PGM之间的协同效应,这也能够提供用于在真实条件下运行的许多发动机用途的协同PGM柴油氧化催化剂体系。可以在OC层中使用更高的Pt/Rh载量获得更高的NO氧化水平。
使用这些催化剂在DOC起燃条件下进行1型和3型SPGM氧化催化剂体系的催化氧化以显示和证实所公开的体系的DOC催化性能比2型和4型PGM对照体系的氧化活性提高。如通过它们的相应起燃性能与无Cu-Mn组合物的相同PGM体系的比较测定,这两种SPGM体系都已表明是用于柴油氧化的显著活性催化剂。在所有公开的SPGM体系中可以观察到,Cu-Mn尖晶石的存在与非协同PGM体系没有表现出的增强的氧化活性相关联。所公开的SPGM氧化催化剂体系可以为稀燃发动机运行中的许多用途提供基础。
尽管已经公开了各种方面和实施方案,但可能想出其它方面和实施方案。本文中公开的各种方面和实施方案用于举例说明而无意构成限制,由下列权利要求书指示真实范围和精神。

Claims (15)

1.一种协同铂族金属(SPGM)催化剂体系,其包含:
至少一个基底,其包含至少一种金属;
至少一个载体涂层,其包含至少一种储氧材料,所述储氧材料进一步包含具有铌-氧化锆载体氧化物的Cu-Mn;和
至少一个外覆涂层,其包含至少一种铂族金属催化剂;
其中所述至少一种铂族金属催化剂包括选自钯、铂和铑的双金属复合材料及其组合的至少一种;
其中所述至少一个外覆涂层负载在至少一种包括氧化铝的载体材料氧化物上。
2.权利要求1的催化剂体系,其中Cu-Mn尖晶石包括CuMn2O4
3.权利要求1的催化剂体系,其中所述至少一种铂族金属催化剂以大约0.5克/立方英尺至大约25.0克/立方英尺存在。
4.权利要求1的催化剂体系,其中所述至少一种铂族金属催化剂以大约1.0克/立方英尺存在。
5.权利要求1的催化剂体系,其中CO的T50为大约235℃至大约325℃。
6.权利要求1的催化剂体系,其中HC的T50为大约235℃至大约325℃。
7.权利要求1的催化剂体系,其中在390℃下的NO转化率为大约34%。
8.权利要求1的催化剂体系,其中在465℃下的NO转化率为大约18%。
9.权利要求1的催化剂体系,其中在460℃下的NOx转化率为大约19%。
10.权利要求1的催化剂体系,其中所述Cu-Mn为尖晶石形式。
11.权利要求1的催化剂体系,其中所述铌-氧化锆载体氧化物包括Nb2O5-ZrO2
12.权利要求1的催化剂体系,其进一步包含至少一个浸渍层。
13.权利要求1的催化剂,其中所述至少一种基底包括陶瓷。
14.权利要求1的催化剂,其中所述至少一种铂族金属催化剂通过共研磨制备。
15.权利要求1的催化剂,其中所述至少一种铂族金属催化剂通过共沉淀制备。
CN201580002403.2A 2013-11-26 2015-04-10 用于柴油氧化催化剂用途的协同pgm催化剂体系 Pending CN105682790A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US14/090,861 US9511355B2 (en) 2013-11-26 2013-11-26 System and methods for using synergized PGM as a three-way catalyst
US14/251,169 2014-04-11
US14/251,169 US20150290630A1 (en) 2013-11-26 2014-04-11 Synergized PGM Catalyst Systems for Diesel Oxidation Catalyst Applications
PCT/US2015/025267 WO2015157614A1 (en) 2013-11-26 2015-04-10 Synergized pgm catalyst systems for diesel oxidation catalyst applications

Publications (1)

Publication Number Publication Date
CN105682790A true CN105682790A (zh) 2016-06-15

Family

ID=53183126

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201480073866.3A Active CN106413881B (zh) 2013-11-26 2014-11-26 使用协同的pgm作为三效催化剂的系统和方法
CN201580002403.2A Pending CN105682790A (zh) 2013-11-26 2015-04-10 用于柴油氧化催化剂用途的协同pgm催化剂体系

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201480073866.3A Active CN106413881B (zh) 2013-11-26 2014-11-26 使用协同的pgm作为三效催化剂的系统和方法

Country Status (3)

Country Link
US (4) US9511355B2 (zh)
CN (2) CN106413881B (zh)
WO (2) WO2015081156A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111644182A (zh) * 2020-03-05 2020-09-11 王金波 一种用于高空速条件下快速催化氧化co的蜂窝陶瓷整体催化剂及其制备方法
CN113944937A (zh) * 2021-11-15 2022-01-18 浙江传化合成材料有限公司 顺丁橡胶废气高效处理及综合利用方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140274662A1 (en) 2013-03-15 2014-09-18 Cdti Systems and Methods for Variations of ZPGM Oxidation Catalysts Compositions
US9216383B2 (en) 2013-03-15 2015-12-22 Clean Diesel Technologies, Inc. System and method for two and three way ZPGM catalyst
US9511355B2 (en) * 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) System and methods for using synergized PGM as a three-way catalyst
US9511350B2 (en) 2013-05-10 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) ZPGM Diesel Oxidation Catalysts and methods of making and using same
US9259716B2 (en) 2013-03-15 2016-02-16 Clean Diesel Technologies, Inc. Oxidation catalyst systems compositions and methods thereof
US9227177B2 (en) 2013-03-15 2016-01-05 Clean Diesel Technologies, Inc. Coating process of Zero-PGM catalysts and methods thereof
US20140336038A1 (en) * 2013-05-10 2014-11-13 Cdti ZPGM Catalytic Converters (TWC application)
US9771534B2 (en) 2013-06-06 2017-09-26 Clean Diesel Technologies, Inc. (Cdti) Diesel exhaust treatment systems and methods
US9545626B2 (en) 2013-07-12 2017-01-17 Clean Diesel Technologies, Inc. Optimization of Zero-PGM washcoat and overcoat loadings on metallic substrate
US8853121B1 (en) 2013-10-16 2014-10-07 Clean Diesel Technology Inc. Thermally stable compositions of OSM free of rare earth metals
US9511358B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. Spinel compositions and applications thereof
US9579604B2 (en) 2014-06-06 2017-02-28 Clean Diesel Technologies, Inc. Base metal activated rhodium coatings for catalysts in three-way catalyst (TWC) applications
US9731279B2 (en) 2014-10-30 2017-08-15 Clean Diesel Technologies, Inc. Thermal stability of copper-manganese spinel as Zero PGM catalyst for TWC application
US9427730B2 (en) * 2014-11-17 2016-08-30 Clean Diesel Technologies, Inc. Bimetallic synergized PGM catalyst systems for TWC application
US10179325B2 (en) * 2015-02-13 2019-01-15 Johnson Matthey Public Limited Company Exhaust system for a compression ignition engine having a capture region for volatilised platinum
US9700841B2 (en) 2015-03-13 2017-07-11 Byd Company Limited Synergized PGM close-coupled catalysts for TWC applications
GB201504658D0 (en) * 2015-03-19 2015-05-06 Johnson Matthey Plc Exhaust system for a compression ignition engine having a capture face for volatilised platinum
US9951706B2 (en) 2015-04-21 2018-04-24 Clean Diesel Technologies, Inc. Calibration strategies to improve spinel mixed metal oxides catalytic converters
WO2017037006A1 (en) * 2015-09-04 2017-03-09 Basf Se Integrated scr and ammonia oxidation catalyst systems
US10533472B2 (en) 2016-05-12 2020-01-14 Cdti Advanced Materials, Inc. Application of synergized-PGM with ultra-low PGM loadings as close-coupled three-way catalysts for internal combustion engines
GB201613849D0 (en) * 2016-08-12 2016-09-28 Johnson Matthey Plc Exhaust system for a compression ignition engine having a capture region for volatilised platinum
US9861964B1 (en) 2016-12-13 2018-01-09 Clean Diesel Technologies, Inc. Enhanced catalytic activity at the stoichiometric condition of zero-PGM catalysts for TWC applications
US10265684B2 (en) 2017-05-04 2019-04-23 Cdti Advanced Materials, Inc. Highly active and thermally stable coated gasoline particulate filters
US10738256B1 (en) 2017-12-22 2020-08-11 TerSol, LLC Fuel additive systems, compositions, and methods
CN113769757B (zh) * 2021-09-09 2023-06-16 武汉理工大学 原位光致热制备尖晶石结构Cu1.5Mn1.5O4催化剂的方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188309A (en) * 1977-10-07 1980-02-12 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Shaped catalyst and process for its production
US5157007A (en) * 1989-12-09 1992-10-20 Degussa Ag Catalyst for purification of exhaust gases of diesel engines and method of use
US20090324468A1 (en) * 2008-06-27 2009-12-31 Golden Stephen J Zero platinum group metal catalysts
US20100180581A1 (en) * 2009-01-16 2010-07-22 Basf Catalysts Llc Diesel oxidation catalyst composite with layer structure for carbon monoxide and hydrocarbon conversion

Family Cites Families (299)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3284370A (en) 1962-12-31 1966-11-08 Monsanto Co Alumina supported copper oxide-rare earth oxide catalyst compositions
US3473987A (en) 1965-07-13 1969-10-21 Du Pont Method of making thin-walled refractory structures
US3493325A (en) 1967-09-12 1970-02-03 Monsanto Co Process for catalytically treating exhaust gases
US4029738A (en) 1971-12-02 1977-06-14 Societe Francaise Des Produits Pour Catalyse Decomposing nitrogen oxides with nickel-iron-chromium catalysts
US3896616A (en) 1972-04-21 1975-07-29 Engelhard Min & Chem Process and apparatus
US3904553A (en) 1973-08-20 1975-09-09 Corning Glass Works Thermally stable composite base metal oxide catalysts
US4062810A (en) 1974-03-14 1977-12-13 Hoechst Aktiengesellschaft Carrier-supported catalyst
IL50024A (en) 1976-07-12 1979-05-31 Israel State Secondary cells
US4199328A (en) 1978-12-28 1980-04-22 Texaco Inc. Process for producing methane from naphtha
JPS5610333A (en) 1979-07-06 1981-02-02 Toyota Motor Corp Catalyst for cleaning up exhaust gas and manufacture of said catalyst
JPS5610334A (en) 1979-07-06 1981-02-02 Toyota Motor Corp Catalyst for cleaning up exhaust gas and manufacture of said catalyst
US4297150A (en) 1979-07-07 1981-10-27 The British Petroleum Company Limited Protective metal oxide films on metal or alloy substrate surfaces susceptible to coking, corrosion or catalytic activity
US4297328A (en) 1979-09-28 1981-10-27 Union Carbide Corporation Three-way catalytic process for gaseous streams
US4414023A (en) 1982-04-12 1983-11-08 Allegheny Ludlum Steel Corporation Iron-chromium-aluminum alloy and article and method therefor
JPS606061U (ja) 1983-06-25 1985-01-17 村井 邦彦 空気ハウスビニ−ル・ユニット膜
US4892562A (en) 1984-12-04 1990-01-09 Fuel Tech, Inc. Diesel fuel additives and diesel fuels containing soluble platinum group metal compounds and use in diesel engines
US5749928A (en) 1984-12-04 1998-05-12 Platinum Plus, Inc. Method for reducing emissions from or increasing the utilizable energy of fuel for powering internal combustion engines
US4891050A (en) 1985-11-08 1990-01-02 Fuel Tech, Inc. Gasoline additives and gasoline containing soluble platinum group metal compounds and use in internal combustion engines
JPS61146348A (ja) 1984-12-17 1986-07-04 Toyota Central Res & Dev Lab Inc 酸化触媒
US4686155A (en) 1985-06-04 1987-08-11 Armco Inc. Oxidation resistant ferrous base foil and method therefor
US4629472A (en) 1985-06-19 1986-12-16 Fuel Tech, Inc. Method and apparatus for improving combustion, thermal efficiency and reducing emissions by treating fuel
US4673556A (en) 1985-11-08 1987-06-16 General Motors Corporation Method of simultaneous oxidation of carbon monoxide and unburned fuel in methanol vehicle exhaust
US4790982A (en) 1986-04-07 1988-12-13 Katalistiks International, Inc. Metal-containing spinel composition and process of using same
DE8717392U1 (de) 1987-03-16 1989-05-18 Emitec Gesellschaft für Emissionstechnologie mbH, 5204 Lohmar Katalysator-Trägerkörper
US4906443A (en) 1987-10-26 1990-03-06 Ford Motor Company Construction, method of making and method of using alumina-supported, precious metal oxidation catalysts
US6051040A (en) 1988-12-28 2000-04-18 Clean Diesel Technologies, Inc. Method for reducing emissions of NOx and particulates from a diesel engine
CA1340871C (en) 1988-12-28 2000-01-04 Robert W. Epperly Method for reducing emissions from or increasing the utilizable energy of fuel for powering internal combustion engines
US5034020A (en) 1988-12-28 1991-07-23 Platinum Plus, Inc. Method for catalyzing fuel for powering internal combustion engines
US5266083A (en) 1988-12-28 1993-11-30 Platinum Plus, Inc. Method for reducing pollution emissions from a diesel engine
US5693106A (en) 1992-07-22 1997-12-02 Platinum Plus, Inc. Platinum metal fuel additive for water-containing fuels
US5584894A (en) 1992-07-22 1996-12-17 Platinum Plus, Inc. Reduction of nitrogen oxides emissions from vehicular diesel engines
US5501714A (en) 1988-12-28 1996-03-26 Platinum Plus, Inc. Operation of diesel engines with reduced particulate emission by utilization of platinum group metal fuel additive and pass-through catalytic oxidizer
US5238898A (en) 1989-12-29 1993-08-24 Mobil Oil Corp. Catalyst and process for upgrading methane to higher hydrocarbons
JP3091246B2 (ja) 1990-04-03 2000-09-25 日本碍子株式会社 耐熱性金属質モノリス及びその製造方法
DE69129644T2 (de) 1990-04-03 1998-12-10 Ngk Insulators Ltd Hochhitzebeständiger metallischer Monolith und Verfahren zu seiner Herstellung
US5063193A (en) 1990-06-06 1991-11-05 General Motors Corporation Base metal automotive exhaust catalysts with improved activity and stability and method of making the catalysts
US5168836A (en) 1990-08-08 1992-12-08 Catalytic Solutions, Inc. Emission control system
CN1060793A (zh) 1990-10-22 1992-05-06 华东化工学院 非贵金属三效催化剂
US5203166A (en) 1991-02-22 1993-04-20 Miller John W Method and apparatus for treating diesel exhaust gas to remove fine particulate matter
US5162284A (en) 1991-08-05 1992-11-10 Exxon Research And Engineering Co. Copper promoted cobalt-manganese spinel catalyst and method for making the catalyst for Fischer-Tropsch synthesis
US5185305A (en) 1991-11-08 1993-02-09 Ford Motor Company Catalyst system for treating the exhaust from a lean-burn gasoline-fueled engine
US5175132A (en) 1991-11-19 1992-12-29 Ketcham Thomas D Sinterable ceramic compositions
DE4213018C1 (de) 1992-04-21 1993-12-09 Degussa Katalysator zur oxidativen Reinigung der Abgase von Dieselmotoren
US5747410A (en) 1992-07-03 1998-05-05 Kabushiki Kaisha Riken Exhaust gas cleaner and method of cleaning exhaust gas
US5743922A (en) 1992-07-22 1998-04-28 Nalco Fuel Tech Enhanced lubricity diesel fuel emulsions for reduction of nitrogen oxides
US5580553A (en) 1992-08-21 1996-12-03 Nippon Starch Chemical Co., Ltd. Cosmetic composition containing alkenylsuccinic acid ester of saccharide
KR100279484B1 (ko) 1992-11-10 2001-03-02 파울라 씨. 에이. 반 샘비크-론드 미립자트랩이 장착된 디이젤엔진으로 부터 유해 방출물을 감소시키기 위한 방법
EP0605251A1 (en) 1992-12-28 1994-07-06 Kabushiki Kaisha Riken Exhaust gas cleaner
GB9227152D0 (en) 1992-12-31 1993-02-24 Dow Corning Process for loading ceramic monolith with catalyst
US6003303A (en) 1993-01-11 1999-12-21 Clean Diesel Technologies, Inc. Methods for reducing harmful emissions from a diesel engine
US5364517A (en) 1993-02-19 1994-11-15 Chevron Research And Technology Company Perovskite-spinel FCC NOx reduction additive
AU7359194A (en) 1993-07-12 1995-02-13 Platinum Plus, Inc. Method for reducing emissions of nox and particulates from a diesel engine
US5404841A (en) 1993-08-30 1995-04-11 Valentine; James M. Reduction of nitrogen oxides emissions from diesel engines
US5968462A (en) 1994-02-04 1999-10-19 Toyota Jidosha Kabushiki Kaisha Process for purifying exhaust gases
US5708233A (en) 1994-02-22 1998-01-13 Kabushiki Kaisha Ohara Thermoelectric semiconductor material
US6232253B1 (en) 1994-09-23 2001-05-15 Ford Global Technologies, Inc. Sol-gel alumina membrane for lean NOx catalysts and method of making same
US5732548A (en) 1994-10-07 1998-03-31 Platinum Plus, Inc. Method for reducing harmful emissions from two-stroke engines
KR0136893B1 (ko) 1994-11-03 1998-04-25 강박광 선택적 촉매환원에 의한 배기가스중의 질소산화물의 제거방법
DE19546484A1 (de) 1995-12-13 1997-07-10 Daimler Benz Ag Verfahren zum Betreiben einer Reinigungsanlage für Gase sowie eine Reinigungsanlage für Gase
US5721188A (en) 1995-01-17 1998-02-24 Engelhard Corporation Thermal spray method for adhering a catalytic material to a metallic substrate
US6129834A (en) 1995-05-05 2000-10-10 W. R. Grace & Co. -Conn. NOx reduction compositions for use in FCC processes
WO1997004045A1 (en) 1995-07-18 1997-02-06 Clean Diesel Technologies, Inc. Methods for reducing harmful emissions from a diesel engine
WO1997009523A1 (en) 1995-09-01 1997-03-13 Clean Diesel Technologies, Inc. Methods for improving the operation of a catalyzed engine
US5898015A (en) 1995-09-19 1999-04-27 Ngk Spark Plug Co., Ltd. Material for absorbing nitrogen oxides comprising hollandite-type complex oxide
DE29517373U1 (de) 1995-11-02 1996-03-07 Trw Repa Gmbh Gassack-Seitenaufprall-Schutzeinrichtung für Fahrzeuginsassen
DE19546481C2 (de) 1995-12-13 1998-08-13 Daimler Benz Ag Katalysator und Verfahren zu dessen Herstellung und Verwendung desselben
WO1997028358A1 (en) 1996-01-31 1997-08-07 Clean Diesel Technologies, Inc. Method and apparatus for reducing harmful emissions from a diesel engine by post combustion catalyst injection
US6696389B1 (en) 1996-02-23 2004-02-24 Daimlerchrysler Ag Process and apparatus for cleaning a gas flow
AU2434597A (en) 1996-04-02 1997-10-22 Clean Diesel Technologies, Inc. Method and apparatus for reducing harmful emissions from a diesel engine by urea injection scr
JPH09271665A (ja) 1996-04-04 1997-10-21 Nippon Soken Inc 排気ガス浄化触媒
US5977017A (en) 1996-04-10 1999-11-02 Catalytic Solutions, Inc. Perovskite-type metal oxide compounds
US5939354A (en) 1996-04-10 1999-08-17 Catalytic Solutions, Inc. Perovskite-type metal oxide compounds and method for preparing the compounds
US7014825B2 (en) 1996-04-10 2006-03-21 Catalytic Solutions, Inc. Perovskite-type metal oxide compounds and methods of making and using thereof
JP3454334B2 (ja) 1996-06-18 2003-10-06 トヨタ自動車株式会社 排気浄化方法及びその装置
US5809774A (en) 1996-11-19 1998-09-22 Clean Diesel Technologies, Inc. System for fueling and feeding chemicals to internal combustion engines for NOx reduction
WO1998022209A1 (en) 1996-11-20 1998-05-28 Clean Diesel Technologies, Inc. SELECTIVE CATALYTIC NOx REDUCTION UTILIZING UREA WITHOUT CATALYST FOULING
US6921738B2 (en) 1996-12-06 2005-07-26 Engelhard Corporation Catalytic metal plate
AU5618598A (en) 1996-12-20 1998-07-17 Clean Diesel Technologies, Inc. Method and apparatus for reducing harmful emissions from a lean-burn engine by urea injection scr
ES2232936T3 (es) 1997-01-31 2005-06-01 Clean Diesel Technologies Inc. Metodo para reducir emisiones de un motor de gasolina equipado con un convertidor catalitico de tres vias.
US5921080A (en) 1997-03-07 1999-07-13 The Lubrizol Corporation Oxidation catalytic converter system for small spark ignited engines
US6361754B1 (en) 1997-03-27 2002-03-26 Clean Diesel Technologies, Inc. Reducing no emissions from an engine by on-demand generation of ammonia for selective catalytic reduction
US5809775A (en) 1997-04-02 1998-09-22 Clean Diesel Technologies, Inc. Reducing NOx emissions from an engine by selective catalytic reduction utilizing solid reagents
US6063350A (en) 1997-04-02 2000-05-16 Clean Diesel Technologies, Inc. Reducing nox emissions from an engine by temperature-controlled urea injection for selective catalytic reduction
US5976475A (en) 1997-04-02 1999-11-02 Clean Diesel Technologies, Inc. Reducing NOx emissions from an engine by temperature-controlled urea injection for selective catalytic reduction
US5924280A (en) 1997-04-04 1999-07-20 Clean Diesel Technologies, Inc. Reducing NOx emissions from an engine while maximizing fuel economy
TW509719B (en) 1997-04-17 2002-11-11 Clean Diesel Tech Inc Method for reducing emissions from a diesel engine
US5968464A (en) 1997-05-12 1999-10-19 Clean Diesel Technologies, Inc. Urea pyrolysis chamber and process for reducing lean-burn engine NOx emissions by selective catalytic reduction
DE19724545A1 (de) 1997-06-11 1998-12-24 Basf Ag Speicherkatalysator
US6124130A (en) 1998-08-10 2000-09-26 Clean Diesel Technologies, Inc. Microbial catalyst for desulfurization of fossil fuels
US6279603B1 (en) 1998-10-01 2001-08-28 Ambac International Fluid-cooled injector
JP2002530175A (ja) 1998-11-20 2002-09-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コードレス走査ヘッドの充電器を備える超音波診断イメージングシステム
AU1632900A (en) 1998-11-24 2000-06-13 Clean Diesel Technologies, Inc. Catalyzed particulate oxidizer for reducing particulate emissions from a diesel engine and method
JP2002542015A (ja) 1999-04-19 2002-12-10 エンゲルハード・コーポレーシヨン セリアと白金族金属を含んで成る触媒組成物
AU4465000A (en) 1999-04-26 2000-11-10 Ferro Corporation Continuous calcination of mixed metal oxides
AU6402100A (en) 1999-06-09 2000-12-28 Clean Diesel Technologies, Inc. Methods and compositions for assuring reduction of NOx emissions from an engine by selective catalytic reduction
US6293096B1 (en) 1999-06-23 2001-09-25 Southwest Research Institute Multiple stage aftertreatment system
US6573213B1 (en) 1999-07-16 2003-06-03 Degussa Ag Metal catalysts
US6632557B1 (en) 1999-10-26 2003-10-14 The Gillette Company Cathodes for metal air electrochemical cells
WO2001037988A1 (fr) 1999-11-25 2001-05-31 Kawasaki Jukogyo Kabushiki Kaisha Catalyseur pour la reaction exothermique ou endothermique, catalyseur pour la reaction de conversion et catalyseur pour l'oxydation selective de monoxyde de carbone et reformeur du type a echange de chaleur a ailette en plaques
WO2001045833A1 (en) 1999-12-20 2001-06-28 Eltron Research, Inc. CATALYSTS AND METHODS FOR LOW-TEMPERATURE DESTRUCTION OF VOCs IN AIR AND SELECTIVE REMOVAL OF CO
JP3489048B2 (ja) 2000-02-01 2004-01-19 日産自動車株式会社 排気ガス浄化用触媒
US6606856B1 (en) 2000-03-03 2003-08-19 The Lubrizol Corporation Process for reducing pollutants from the exhaust of a diesel engine
WO2001085876A1 (en) 2000-05-08 2001-11-15 Clean Diesel Technologies, Inc. Low-emissions diesel fuel
US7063729B2 (en) 2000-05-09 2006-06-20 Clean Diesel Technologies, Inc. Low-emissions diesel fuel
DE10023439A1 (de) 2000-05-12 2001-11-22 Dmc2 Degussa Metals Catalysts Verfahren zur Entfernung von Stickoxiden und Rußpartikeln aus dem mageren Abgas eines Verbrennungsmotors und Abgasreinigungssystem hierfür
US20050160663A1 (en) 2000-08-01 2005-07-28 Valentine James M. Cleaner burning diesel fuel
US20050188605A1 (en) 2000-08-01 2005-09-01 Valentine James M. Reduced-emissions combustion utilizing multiple-component metallic combustion catalyst
GB2381534B (en) 2000-08-01 2004-08-18 Clean Diesel Tech Inc Low-Emissions Diesel Fuel Blend
WO2002026918A1 (en) 2000-09-28 2002-04-04 Clean Diesel Technologies, Inc. Low-emissions diesel fuel emulsions
US6468941B1 (en) * 2000-10-17 2002-10-22 Delphi Technologies, Inc. Niobium containing zirconium-cerium based soild solutions
JP4144174B2 (ja) 2000-10-25 2008-09-03 トヨタ自動車株式会社 排ガス浄化装置
US7641875B1 (en) 2000-11-15 2010-01-05 Catalytic Solutions, Inc. Mixed-phase ceramic oxide three-way catalyst formulations and methods for preparing the catalysts
US6624113B2 (en) 2001-03-13 2003-09-23 Delphi Technologies, Inc. Alkali metal/alkaline earth lean NOx catalyst
US6576587B2 (en) 2001-03-13 2003-06-10 Delphi Technologies, Inc. High surface area lean NOx catalyst
US6696386B2 (en) 2001-05-10 2004-02-24 Matsushita Electric Industrial Co., Ltd. Exhaust gas purification catalyst and exhaust gas purification material
KR100392943B1 (ko) 2001-05-16 2003-07-28 (주)케이에이치 케미컬 디젤엔진 배기가스의 정화용 촉매
JP5189236B2 (ja) 2001-07-25 2013-04-24 日本碍子株式会社 排ガス浄化用ハニカム構造体及び排ガス浄化用ハニカム触媒体
EP1287886A1 (de) 2001-08-09 2003-03-05 OMG AG & Co. KG Katalysator für die Reinigung der Abgase eines Verbrennungsmotors
DE60226070T2 (de) 2001-11-09 2009-06-25 Clean Diesel Technologies Inc., Stamford Stufenlos einstellbare steuerung von umweltverschmutzung verringernden chemikalien für verbrennungsquellen
EP1316354A1 (de) 2001-11-30 2003-06-04 OMG AG & Co. KG Katalysator zur Verminderung der Stickoxide im Abgas von Magermotoren
US6948926B2 (en) 2002-02-04 2005-09-27 Clean Diesel Technologies, Inc. Reduced-emissions combustion utilizing multiple-component metallic combustion catalyst
US20050164139A1 (en) 2002-02-04 2005-07-28 Valentine James M. Reduced-emissions combustion utilizing multiple-component metallic combustion catalyst and lightly catalyzed diesel particulate filter
US20050160724A1 (en) 2002-02-04 2005-07-28 Valentine James M. Reduced-emissions combustion utilizing multiple-component metallic combustion catalyst and lightly catalyzed diesel oxidation catalyst
WO2003068363A1 (en) 2002-02-12 2003-08-21 Clean Diesel Technologies, Inc. Multi-stage exhaust gas purifier
CN1630556B (zh) 2002-02-15 2012-10-03 株式会社Ict 内燃机废气净化用催化剂、其制备方法以及内燃机废气的净化方法
US6915629B2 (en) 2002-03-07 2005-07-12 General Motors Corporation After-treatment system and method for reducing emissions in diesel engine exhaust
JP2005520927A (ja) 2002-03-22 2005-07-14 クリーン ディーゼル テクノロジーズ インコーポレーテッド 触媒金属添加剤濃縮物及びその製造方法と使用方法
JP2003293729A (ja) 2002-04-02 2003-10-15 Purearth Inc 炭素粒子の減少装置
EP1378289A3 (en) 2002-04-18 2004-02-04 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Platinum-group-metal free catalytic washcoats for particulate exhaust gas filter applications
US7332135B2 (en) 2002-10-22 2008-02-19 Ford Global Technologies, Llc Catalyst system for the reduction of NOx and NH3 emissions
US7071141B2 (en) 2002-10-24 2006-07-04 Ford Global Technologies, Llc Perovskite catalyst system for lean burn engines
US6946013B2 (en) 2002-10-28 2005-09-20 Geo2 Technologies, Inc. Ceramic exhaust filter
DE10252103A1 (de) 2002-11-08 2004-05-27 Süd-Chemie AG Ce/Cu/Mn-Katalysatoren
US20050265920A1 (en) 2002-11-11 2005-12-01 Conocophillips Company Supports and catalysts comprising rare earth aluminates, and their use in partial oxidation
US6774080B2 (en) 2002-11-25 2004-08-10 Delphi Technologies, Inc. Gas treatment device comprising SMSI material and methods for making and using the same
AU2003299644A1 (en) 2002-12-17 2004-07-22 Clean Diesel Technologies, Inc. Nox control for ic engines
US7160832B2 (en) 2003-06-16 2007-01-09 Umicore Ag & Co. Kg Catalyst system for generating carbon monoxide for use with automotive catalysts
JP2007516073A (ja) 2003-12-05 2007-06-21 インターカット インコーポレイテッド 混合金属酸化物吸着剤
US7875250B2 (en) 2003-12-11 2011-01-25 Umicore Ag & Co. Kg Exhaust treatment device, and methods of making the same
US20090004083A1 (en) 2003-12-17 2009-01-01 Valentine James M NOx control for IC engines
JP2005180262A (ja) 2003-12-18 2005-07-07 Tetsuo Toyoda 粒子状物質の減少装置
US7291576B2 (en) 2003-12-30 2007-11-06 Ford Global Technologies, Llc SOx trap for diesel and lean-burn gasoline automotive applications
US20050197244A1 (en) 2004-03-05 2005-09-08 L'vovich Moroz B. Exhaust treatment system and catalyst system
US7216681B2 (en) 2004-03-05 2007-05-15 Clean Diesel Technologies, Inc. Gravity feed ball-in-seat valve with extension unit for dosing fuel additives
JP4199691B2 (ja) 2004-03-25 2008-12-17 田中貴金属工業株式会社 触媒
US7374729B2 (en) 2004-03-30 2008-05-20 Basf Catalysts Llc Exhaust gas treatment catalyst
US20060166816A1 (en) 2004-06-23 2006-07-27 Catalytic Solutions, Inc. Catalysts and processes for selective hydrogenation of acetylene and dienes in light olefin feedstreams
US7523722B2 (en) 2004-07-01 2009-04-28 Clean Diesel Technologies, Inc. Fuel additive concentrate dosing system
GB0420245D0 (en) 2004-09-13 2004-10-13 Johnson Matthey Plc Improvements in catalyst coatings
US7129194B2 (en) 2004-09-23 2006-10-31 Corning Incorporated Catalyst system with improved corrosion resistance
US8318629B2 (en) 2004-10-14 2012-11-27 Catalytic Solutions, Inc. Platinum group metal-free catalysts for reducing the ignition temperature of particulates on a diesel particulate filter
EP1656993A1 (en) 2004-11-03 2006-05-17 Albemarle Netherlands B.V. Alkylation catalyst, its preparation and use
WO2006064684A1 (ja) 2004-12-14 2006-06-22 Nissan Motor Co., Ltd. 触媒、排ガス浄化触媒、及び触媒の製造方法
US7743737B2 (en) 2004-12-23 2010-06-29 Clean Diesel Technologies, Inc. Engine on pulsed fuel additive concentrate dosing system and controller
US8580216B2 (en) 2005-02-28 2013-11-12 Ecs Holdings, Inc. Catalyst and method for reducing nitrogen oxides in exhaust streams with hydrocarbons or alcohols
DE102005019000A1 (de) 2005-04-22 2006-10-26 Degussa Ag Katalytisch beschichteter Träger, Verfahren zu dessen Herstellung und damit ausgestatteter Reaktor sowie dessen Verwendung
US20060260185A1 (en) 2005-04-28 2006-11-23 Clean Diesel Technologies, Inc. Fuel Additive and Catalyst Treatment Process
FR2886636B1 (fr) 2005-06-02 2007-08-03 Inst Francais Du Petrole Materiau inorganique presentant des nanoparticules metalliques piegees dans une matrice mesostructuree
US7803338B2 (en) 2005-06-21 2010-09-28 Exonmobil Research And Engineering Company Method and apparatus for combination catalyst for reduction of NOx in combustion products
JP5042633B2 (ja) 2005-06-27 2012-10-03 イビデン株式会社 ハニカム構造体
WO2007011912A2 (en) 2005-07-18 2007-01-25 Clean Diesel Technologies, Inc. Fuel additive and fuel treatment process
US8242045B2 (en) 2006-01-12 2012-08-14 Siemens Energy, Inc. Ceramic wash-coat for catalyst support
FR2898887B1 (fr) 2006-03-21 2008-05-02 Rhodia Recherches & Tech Composition a base d'oxyde de zirconium et d'oxyde de cerium a reductibilite elevee et a surface specifique stable procede de preparation et utilisation dans le traitement des gaz d'echappement
US7943104B2 (en) 2006-04-13 2011-05-17 Umicore Ag & Co. Kg CE-ZR based solid solutions and methods for making and using the same
BRPI0712665A2 (pt) 2006-05-18 2012-09-04 Clean Diesel Tech Inc melhoras no controle de particulados no diesel
US7576031B2 (en) 2006-06-09 2009-08-18 Basf Catalysts Llc Pt-Pd diesel oxidation catalyst with CO/HC light-off and HC storage function
EP2040835A4 (en) 2006-06-12 2010-12-15 Nanox Inc PROCESS FOR OPTIMIZING THE CATALYTIC ACTIVITY OF A CATALYST BASED ON PEROVSKITE
WO2007145030A1 (ja) 2006-06-15 2007-12-21 Murata Manufacturing Co., Ltd. 熱電材料
US7749472B2 (en) 2006-08-14 2010-07-06 Basf Corporation Phosgard, a new way to improve poison resistance in three-way catalyst applications
US8389432B2 (en) 2006-09-25 2013-03-05 Umicore Ag & Co. Kg Structured automotive catalyst with improved thermal ageing stability
KR101120699B1 (ko) 2006-11-20 2012-03-22 나노스텔라 인코포레이티드 금속 나노입자를 함유하는 불균질 촉매의 제조방법
US7534738B2 (en) 2006-11-27 2009-05-19 Nanostellar, Inc. Engine exhaust catalysts containing palladium-gold
US20080190099A1 (en) 2006-12-20 2008-08-14 Aleksey Yezerets System and method for inhibiting uncontrolled regeneration of a particulate filter for an internal combustion engine
US8802582B2 (en) 2007-01-09 2014-08-12 Catalytic Solutions, Inc. High temperature ammonia SCR catalyst and method of using the catalyst
US7767175B2 (en) 2007-01-09 2010-08-03 Catalytic Solutions, Inc. Ammonia SCR catalyst and method of using the catalyst
US7527776B2 (en) 2007-01-09 2009-05-05 Catalytic Solutions, Inc. Ammonia SCR catalyst and method of using the catalyst
JP2008221200A (ja) 2007-02-16 2008-09-25 Japan Science & Technology Agency 酸素含有炭化水素の改質触媒、それを用いた水素又は合成ガスの製造方法及び燃料電池システム
DE102007042618A1 (de) 2007-09-07 2009-03-12 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zur Erzeugung einer Oxidschicht auf einer metallischen Folie, Folie mit Oxidschicht und daraus hergestellter Wabenkörper
US20090220697A1 (en) 2008-02-29 2009-09-03 William Peter Addiego Washcoat composition and methods of making and using
FR2928364B1 (fr) 2008-03-05 2011-10-14 Rhodia Operations Composition a base d'un oxyde de zirconium,d'un oxyde de titane ou d'un oxyde mixte de zirconium et de titane sur un support en alumine,procedes de preparation et utilisation comme catalyseur
US7998444B2 (en) 2008-04-30 2011-08-16 Johnson Matthey Inc. Method of reducing nitrogen oxides in a gas stream with vaporized ammonia
US8716165B2 (en) 2008-04-30 2014-05-06 Corning Incorporated Catalysts on substrates and methods for providing the same
US8220274B2 (en) 2008-05-15 2012-07-17 Johnson Matthey Inc. Emission reduction method for use with a heat recovery steam generation system
US8496896B2 (en) 2008-06-27 2013-07-30 Catalytic Solutions, Inc. Zero platinum group metal catalysts
KR100962082B1 (ko) 2008-07-31 2010-06-09 희성촉매 주식회사 수소를 이용한 질소산화물의 환원제거용 촉매 및 이를이용한 질소산화물의 환원제거 방법
WO2010029431A2 (en) 2008-09-10 2010-03-18 Advent Technologies Internal reforming alcohol high temperature pem fuel cell
US20100081563A1 (en) 2008-09-26 2010-04-01 Andrew Edgar-Beltran Adhesion and coating integrity of washcoats and overcoats
US8524185B2 (en) 2008-11-03 2013-09-03 Basf Corporation Integrated SCR and AMOx catalyst systems
KR100999635B1 (ko) 2008-11-21 2010-12-08 기아자동차주식회사 디젤 산화 촉매 및 이를 구비한 배기 장치
US20100152032A1 (en) 2008-12-16 2010-06-17 Basf Catalysts Llc Aircraft Air Treatment Catalysts, Systems and Methods
US20100168449A1 (en) 2008-12-29 2010-07-01 Grey Roger A Spray dried zeolite catalyst
JP5483539B2 (ja) 2009-02-04 2014-05-07 日本碍子株式会社 接合方法
US8148295B2 (en) 2009-02-16 2012-04-03 Millennium Inorganic Chemicals, Inc. Catalyst promoters in vanadium-free mobile catalyst
US8513155B2 (en) 2009-03-16 2013-08-20 GM Global Technology Operations LLC Perovskite-type compounds for use in lean NOx traps
US8409518B2 (en) 2009-03-16 2013-04-02 GM Global Technology Operations LLC Sulfur tolerant perovskite supported catalysts
US10792647B2 (en) 2009-04-21 2020-10-06 Johnson Matthey Public Limited Company Base metal catalysts for the oxidation of carbon monoxide and volatile organic compounds
CN102414412B (zh) 2009-05-04 2014-12-31 巴斯夫公司 用于稀燃汽油机的改进的twc的稀烃转化
US8246923B2 (en) 2009-05-18 2012-08-21 Umicore Ag & Co. Kg High Pd content diesel oxidation catalysts with improved hydrothermal durability
JP5812987B2 (ja) 2009-05-20 2015-11-17 田中貴金属工業株式会社 リーンバーンエンジン用触媒
US8522536B2 (en) 2009-05-21 2013-09-03 Southwest Research Institute Exhaust aftertreatment systems for gasoline and alternative-fueled engines, with reduction of HC, CO, NOx, and PM
JP5436060B2 (ja) 2009-06-10 2014-03-05 本田技研工業株式会社 排ガス浄化用酸化触媒装置
DE102009056145B3 (de) 2009-11-27 2011-07-28 Süd-Chemie AG, 80333 Beschichtungssuspension zur Beschichtung von Katalysatorsubstraten
JP4950365B2 (ja) 2009-12-02 2012-06-13 田中貴金属工業株式会社 混合相セラミック酸化物三元合金触媒製剤及びその触媒製造方法
US20120015801A1 (en) 2010-07-15 2012-01-19 Airflow Catalyst Systems Process for preparation of a zeolite-based catalyst
US7951976B1 (en) 2010-08-15 2011-05-31 King Abdulaziz City for Science and Technology (KACST) Synthesizing and utilizing novel nano crystalline zinc chromate supported nano palladium catalyst
CN103209765B (zh) 2010-09-15 2016-10-19 巴斯夫欧洲公司 烧结稳定的多相催化剂
US8323599B2 (en) 2010-11-22 2012-12-04 Umicore Ag & Co. Kg Three-way catalyst having an upstream multi-layer catalyst
WO2012093600A1 (ja) 2011-01-05 2012-07-12 本田技研工業株式会社 排気ガス浄化用触媒及び排気ガス浄化用触媒構成体
CN102172527B (zh) 2011-01-28 2013-04-10 华南理工大学 超声-氢气还原制备挥发性有机化合物氧化催化剂的方法
PT2714263T (pt) 2011-06-03 2020-02-20 North Western Univ Composição de catalisador metálico
JP5644739B2 (ja) 2011-06-24 2014-12-24 株式会社デンソー 排ガス浄化触媒
WO2013004814A1 (en) 2011-07-07 2013-01-10 Universite Catholique De Louvain Method of carrying out cc-coupling reactions using oxide supported pd-catalysts
WO2013022958A1 (en) 2011-08-10 2013-02-14 Clean Diesel Technologies, Inc. Palladium solid solution castalyst and methods of making
US9011784B2 (en) 2011-08-10 2015-04-21 Clean Diesel Technologies, Inc. Catalyst with lanthanide-doped zirconia and methods of making
EP2744590A4 (en) 2011-08-19 2016-03-16 Sdcmaterials Inc COATED SUBSTRATES FOR USE IN CATALYSIS AND CATALYSTS AND METHOD FOR COATING SUBSTRATES WITH PRIMING COMPOSITIONS
JP2014531977A (ja) 2011-09-23 2014-12-04 シュビン インコーポレイテッド 混合相酸化物触媒
CN104039442B (zh) 2011-11-07 2017-02-22 索尔维公司 用于直接合成过氧化氢的包括氧化锆的催化剂
TWI440605B (zh) 2011-11-23 2014-06-11 Nat Univ Tsing Hua 應用於化學迴圈燃燒程序中之載氧體
FI123812B (fi) 2012-02-17 2013-11-15 Ecocat Oy Pinnoite typen oksidien pelkistämiseksi
EP2650042B2 (en) 2012-04-13 2020-09-02 Umicore AG & Co. KG Pollutant abatement system for gasoline vehicles
US8668890B2 (en) 2012-04-26 2014-03-11 Basf Corporation Base metal catalyst composition and methods of treating exhaust from a motorcycle
US20140271391A1 (en) 2013-03-15 2014-09-18 Cdti ZPGM TWC Systems Compositions and Methods Thereof
US9259716B2 (en) 2013-03-15 2016-02-16 Clean Diesel Technologies, Inc. Oxidation catalyst systems compositions and methods thereof
US9227177B2 (en) 2013-03-15 2016-01-05 Clean Diesel Technologies, Inc. Coating process of Zero-PGM catalysts and methods thereof
US20140274677A1 (en) 2013-03-15 2014-09-18 Cdti System and Method for Optimized Oxygen Storage Capacity and Stability of OSM Without Rare Metals
US20140274662A1 (en) 2013-03-15 2014-09-18 Cdti Systems and Methods for Variations of ZPGM Oxidation Catalysts Compositions
US9216408B2 (en) 2013-04-04 2015-12-22 Clean Diesel Technologies, Inc. System and method for two and three way mixed metal oxide ZPGM catalyst
US9216382B2 (en) 2013-03-15 2015-12-22 Clean Diesel Technologies, Inc. Methods for variation of support oxide materials for ZPGM oxidation catalysts and systems using same
US9511350B2 (en) 2013-05-10 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) ZPGM Diesel Oxidation Catalysts and methods of making and using same
US20140271390A1 (en) 2013-03-15 2014-09-18 Cdti ZPGM Catalyst Systems and Methods of Making Same
US20140271387A1 (en) 2013-03-15 2014-09-18 Cdti Optimal Composition of Copper-Manganese Spinel in ZPGM Catalyst for TWC Applications
US20140274674A1 (en) 2013-03-15 2014-09-18 Cdti Influence of Support Oxide Materials on Coating Processes of ZPGM Catalyst Materials for TWC Applications
US9511355B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) System and methods for using synergized PGM as a three-way catalyst
US20140271388A1 (en) 2013-03-15 2014-09-18 Cdti Formation and Stability of Cu-Mn Spinel Phase for ZPGM Catalyst Systems
US20140271384A1 (en) 2013-03-15 2014-09-18 Cdti System and Methods for using Copper- Manganese- Iron Spinel as Zero PGM Catalyst for TWC Applications
US9517449B2 (en) 2013-06-26 2016-12-13 Clean Diesel Technologies, Inc. Optimization of washcoat adhesion of zero-PGM catalyst on metallic substrates
US9216383B2 (en) 2013-03-15 2015-12-22 Clean Diesel Technologies, Inc. System and method for two and three way ZPGM catalyst
US8858903B2 (en) 2013-03-15 2014-10-14 Clean Diesel Technology Inc Methods for oxidation and two-way and three-way ZPGM catalyst systems and apparatus comprising same
US9610570B2 (en) 2013-03-22 2017-04-04 Clean Diesel Technologies, Inc. Methods and processes of coating zero-PGM catalysts including with Cu, Mn, Fe for TWC applications
US9216409B2 (en) 2013-03-22 2015-12-22 Clean Diesel Technologies, Inc. Systems and methods for zero-PGM binary catalyst having Cu, Mn, and Fe for TWC applications
US20150105242A1 (en) 2013-03-22 2015-04-16 Clean Diesel Technologies, Inc. Influence of Base Metal Loadings on TWC Performance of ZPGM Catalysts
US20140302983A1 (en) 2013-04-04 2014-10-09 Cdti System and Method for Two and Three Way NB-ZR Catalyst
US20140301909A1 (en) 2013-04-04 2014-10-09 Cdti System and Method for ZPGM Catalytic Converters
US9073011B2 (en) 2013-04-04 2015-07-07 Randal Hatfield Systems and methods for diesel oxidation catalyst with decreased SO3 emissions
US20140298714A1 (en) 2013-04-04 2014-10-09 Cdti Fuel Borne Catalysts for Sulfur Rich Fuels
US20140301906A1 (en) 2013-04-04 2014-10-09 Cdti Three Way Catalyst Double Impregnation Composition and Method Thereof
US20140335626A1 (en) 2013-05-10 2014-11-13 Cdti Test Bench Gas Flow Control System and Method
US20140336044A1 (en) 2013-05-10 2014-11-13 Cdti Copper-Manganese Spinel Catalysts and Methods of Making Same
US20140334978A1 (en) 2013-05-10 2014-11-13 Cdti System and Apparatus for a Laboratory Scale Reactor
US20140335625A1 (en) 2013-05-10 2014-11-13 Cdti Temperature Control Method in a Laboratory Scale Reactor
US20140334990A1 (en) 2013-05-10 2014-11-13 Cdti ZPGM Diesel Oxidation Catalyst Systems and Methods Thereof
US20140336038A1 (en) 2013-05-10 2014-11-13 Cdti ZPGM Catalytic Converters (TWC application)
US20140336045A1 (en) 2013-05-10 2014-11-13 Cdti Perovskite and Mullite-like Structure Catalysts for Diesel Oxidation and Method of Making Same
US20140357479A1 (en) 2013-05-29 2014-12-04 Cdti Variations for Synthesizing Zero Platinum Group Metal Catalyst Systems
US20140357475A1 (en) 2013-05-29 2014-12-04 Cdti Systems and Methods Using Cu-Mn Spinel Catalyst on Varying Carrier Material Oxides for TWC Applications
WO2014194101A1 (en) 2013-05-29 2014-12-04 Clean Diesel Technologies, Inc. Zpgm diesel oxidation catalyst systems
US9498767B2 (en) 2013-05-29 2016-11-22 Clean Diesel Technologies, Inc. (Cdti) Systems and methods for providing ZPGM perovskite catalyst for diesel oxidation applications
PL235905B1 (pl) 2013-06-05 2020-11-16 Univ Jagiellonski Monolityczny katalizator do równoczesnego usuwania NOx i cząstek węglowych w szczególności z gazów odlotowych elektrowni węglowych oraz sposób wytwarzania monolitycznego katalizatora do równoczesnego usuwania NOx i cząstek węglowych w szczególności z gazów odlotowych elektrowni węglowych
US20150182954A1 (en) 2013-06-06 2015-07-02 Clean Diesel Technologies, Inc. Phase Stability of Lanthanum-Manganese Perovskite in the Mixture of Metal Oxides
US9216410B2 (en) 2013-06-06 2015-12-22 Clean Diesel Technologies, Inc. Systems and methods for using Pd1+ in a TWC
US9771534B2 (en) 2013-06-06 2017-09-26 Clean Diesel Technologies, Inc. (Cdti) Diesel exhaust treatment systems and methods
US20160023188A1 (en) 2013-06-06 2016-01-28 Clean Diesel Technologies, Inc. Pseudo-brookite Compositions as Active Zero-PGM Catalysts for Diesel Oxidation Applications
US20150004709A1 (en) 2013-06-26 2015-01-01 Cdti Methods for Identification of Materials Causing Corrosion on Metallic Substrates within ZPGM Catalyst Systems
US20150005159A1 (en) 2013-06-26 2015-01-01 Cdti Optimization of Zero-PGM Metal Loading on Metallic Substrates
US20150005157A1 (en) 2013-06-26 2015-01-01 Cdti Optimization of Zero-PGM Catalyst Systems on Metallic Substrates
US8969228B2 (en) 2013-07-12 2015-03-03 Clean Diesel Technologies, Inc. Process for elimination of hexavalent chromium compounds on metallic substrates within zero-PGM catalyst systems
US20150018202A1 (en) 2013-07-12 2015-01-15 Cdti Variations of Loading of Zero-PGM Oxidation Catalyst on Metallic Substrate
US20150018204A1 (en) 2013-07-12 2015-01-15 Cdti Minimizing Washcoat Adhesion Loss of Zero-PGM Catalyst Coated on Metallic Substrate
US20150018205A1 (en) 2013-07-12 2015-01-15 Zahra Nazarpoor Optimum Loading of Copper-Manganese Spinel on TWC Performance and Stability of ZPGM Catalyst Systems
US9545626B2 (en) 2013-07-12 2017-01-17 Clean Diesel Technologies, Inc. Optimization of Zero-PGM washcoat and overcoat loadings on metallic substrate
US20150031268A1 (en) 2013-07-25 2015-01-29 Nigel Waites Toy vehicle with telemetrics and track system and method
US20150050742A1 (en) 2013-08-16 2015-02-19 Cdti Analysis of Occurrence of Corrosion Products with ZPGM and PGM Catalysts Coated on Metallic Substrates
US20150051067A1 (en) 2013-08-19 2015-02-19 Cdti Oxygen storage material without rare earth metals
US8853121B1 (en) 2013-10-16 2014-10-07 Clean Diesel Technology Inc. Thermally stable compositions of OSM free of rare earth metals
US20150105245A1 (en) 2013-10-16 2015-04-16 Cdti Zero-PGM Catalyst with Oxygen Storage Capacity for TWC Systems
US20150148224A1 (en) 2013-11-26 2015-05-28 Clean Diesel Technologies Inc. (CDTI) Oxygen Storage Capacity and Thermal Stability of Synergized PGM Catalyst Systems
US9511358B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. Spinel compositions and applications thereof
US20150258496A1 (en) 2013-11-26 2015-09-17 Clean Diesel Technologies, Inc. Hybrid PGM-ZPGM TWC Exhaust Treatment Systems
US8845987B1 (en) 2013-11-26 2014-09-30 Clean Diesel Technologies Inc. (CDTI) Method for improving lean performance of PGM catalyst systems: synergized PGM
US20150148222A1 (en) 2013-11-26 2015-05-28 Clean Diesel Technologies Inc. (CDTI) Effect of Support Oxides on Optimal Performance and Stability of ZPGM Catalyst Systems
US20150147239A1 (en) 2013-11-26 2015-05-28 Clean Diesel Technologies Inc. (CDTI) ZPGM Underfloor Catalyst for Hybrid Exhaust Treatment Systems
US20150148225A1 (en) 2013-11-26 2015-05-28 Clean Diesel Technologies Inc. (CDTI) Systems and Methods for Managing a Synergistic Relationship Between PGM and Copper-Manganese in a Three Way Catalyst Systems
US9433930B2 (en) 2013-11-26 2016-09-06 Clean Diesel Technologies, Inc. (Cdti) Methods for selecting and applying a layer of Cu—Mn spinel phase to ZPGM catalyst systems for TWC application
US20150182951A1 (en) 2013-12-05 2015-07-02 Clean Diesel Technologies, Inc. Phase Stability of Copper-Manganese Spinel Oxide within a Mixture of Metal Oxides
US20150352529A1 (en) 2014-06-05 2015-12-10 Zahra Nazarpoor Influence of Type of Support Oxide on Stability of Copper-Manganese Zero-PGM Catalyst
US9579604B2 (en) 2014-06-06 2017-02-28 Clean Diesel Technologies, Inc. Base metal activated rhodium coatings for catalysts in three-way catalyst (TWC) applications
WO2015199688A1 (en) 2014-06-26 2015-12-30 Clean Diesel Technologies, Inc. Optimization of washcoat adhesion of zero-pgm catalyst on metallic substrates
JP2017526853A (ja) 2014-08-14 2017-09-14 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company 排気システム部品のための診断システム
WO2016039747A1 (en) 2014-09-11 2016-03-17 Clean Diesel Technologies, Inc. Methods for oxidation and two-way and three-way zpgm catalyst systems and apparatus comprising same
US20160121304A1 (en) 2014-10-29 2016-05-05 Cdti Sulfur Resistance of Zero-PGM for Diesel Oxidation Application
US20160121309A1 (en) 2014-10-30 2016-05-05 Clean Diesel Technologies, Inc. Thermally Stable Zero PGM Catalysts System for TWC Application
US9731279B2 (en) 2014-10-30 2017-08-15 Clean Diesel Technologies, Inc. Thermal stability of copper-manganese spinel as Zero PGM catalyst for TWC application
US9468912B2 (en) 2014-11-17 2016-10-18 Clean Diesel Technologies, Inc. Zero PGM catalyst including Cu—Co—Mn ternary spinel for TWC applications
US9427730B2 (en) 2014-11-17 2016-08-30 Clean Diesel Technologies, Inc. Bimetallic synergized PGM catalyst systems for TWC application
US20160136619A1 (en) 2014-11-17 2016-05-19 Clean Diesel Technologies, Inc. Cobalt Containing Bimetallic Zero PGM Catalyst for TWC Applications
US20160136617A1 (en) 2014-11-17 2016-05-19 Clean Diesel Technologies, Inc. Synergized PGM Catalyst with Low PGM Loading and High Sulfur Resistance for Diesel Oxidation Application
US20160136618A1 (en) 2014-11-19 2016-05-19 Clean Diesel Technologies, Inc. Sulfur-Resistant Synergized PGM Catalysts for Diesel Oxidation Application
US20160167023A1 (en) 2014-12-11 2016-06-16 Clean Diesel Technologies, Inc. ZPGM Catalyst Including Co-Mn-Fe and Cu-Mn-Fe Materials for TWC Applications
US20160167024A1 (en) 2014-12-16 2016-06-16 Clean Diesel Technologies, Inc. Synergized PGM Catalyst Systems Including Rhodium for TWC Application

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188309A (en) * 1977-10-07 1980-02-12 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler Shaped catalyst and process for its production
US5157007A (en) * 1989-12-09 1992-10-20 Degussa Ag Catalyst for purification of exhaust gases of diesel engines and method of use
US20090324468A1 (en) * 2008-06-27 2009-12-31 Golden Stephen J Zero platinum group metal catalysts
US20100240525A1 (en) * 2008-06-27 2010-09-23 Catalytic Solutions, Inc. Zero Platinum Group Metal Catalysts
US20100180581A1 (en) * 2009-01-16 2010-07-22 Basf Catalysts Llc Diesel oxidation catalyst composite with layer structure for carbon monoxide and hydrocarbon conversion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111644182A (zh) * 2020-03-05 2020-09-11 王金波 一种用于高空速条件下快速催化氧化co的蜂窝陶瓷整体催化剂及其制备方法
CN113944937A (zh) * 2021-11-15 2022-01-18 浙江传化合成材料有限公司 顺丁橡胶废气高效处理及综合利用方法
CN113944937B (zh) * 2021-11-15 2022-08-09 浙江传化合成材料有限公司 顺丁橡胶废气高效处理及综合利用方法

Also Published As

Publication number Publication date
US9555400B2 (en) 2017-01-31
CN106413881A (zh) 2017-02-15
US20150238941A1 (en) 2015-08-27
CN106413881B (zh) 2020-01-24
US20150290630A1 (en) 2015-10-15
US20150148223A1 (en) 2015-05-28
WO2015157614A1 (en) 2015-10-15
US9511355B2 (en) 2016-12-06
US20150238940A1 (en) 2015-08-27
WO2015081156A1 (en) 2015-06-04

Similar Documents

Publication Publication Date Title
CN105682790A (zh) 用于柴油氧化催化剂用途的协同pgm催化剂体系
US20210229078A1 (en) Combination of Pseudobrookite Oxide and Low Loading of PGM as High Sulfur-Resistant Catalyst for Diesel Oxidation Applications
JP6991270B2 (ja) 白金族金属および非白金族金属を含有する触媒物品ならびに該触媒物品の製造方法およびその使用
US9227177B2 (en) Coating process of Zero-PGM catalysts and methods thereof
US9216382B2 (en) Methods for variation of support oxide materials for ZPGM oxidation catalysts and systems using same
US9216384B2 (en) Method for improving lean performance of PGM catalyst systems: synergized PGM
US9486783B2 (en) Systems and methods for using copper-manganese spinel as active phase for diesel oxidation applications
JP5348135B2 (ja) 排気ガス浄化用触媒
US20160136617A1 (en) Synergized PGM Catalyst with Low PGM Loading and High Sulfur Resistance for Diesel Oxidation Application
JP5816648B2 (ja) 排気ガス浄化用触媒組成物及び排気ガス浄化用触媒
US20150018205A1 (en) Optimum Loading of Copper-Manganese Spinel on TWC Performance and Stability of ZPGM Catalyst Systems
CN102405104A (zh) 负载钯的催化剂复合物
JPH0724260A (ja) ディーゼルエンジン排ガス浄化用触媒
US20180141031A1 (en) Multi-zoned synergized-pgm catalysts for twc applications
JP6070495B2 (ja) 排気ガス浄化用触媒
JP5940992B2 (ja) 排気ガス浄化触媒
US20170095803A1 (en) Effect of Type of Support Oxide on Sulfur Resistance of Synergized PGM as Diesel Oxidation Catalyst
JPH09248462A (ja) 排気ガス浄化用触媒
US20200222879A1 (en) Catalyst for low temperature emission control and methods for using same
JP2008221217A (ja) 排ガス浄化用触媒及びその製造方法
US20170326533A1 (en) Oxygen storage capacity of non-copper spinel oxide materials for twc applications
JP5582490B2 (ja) 排ガス処理用触媒およびその製造方法
JP2006142137A (ja) 排ガス浄化用触媒及びその製造方法
JP5607891B2 (ja) 排ガス浄化用触媒
JPH08155301A (ja) 排気ガス浄化用触媒

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160615