CN106413881A - 使用协同的pgm作为三效催化剂的系统和方法 - Google Patents

使用协同的pgm作为三效催化剂的系统和方法 Download PDF

Info

Publication number
CN106413881A
CN106413881A CN201480073866.3A CN201480073866A CN106413881A CN 106413881 A CN106413881 A CN 106413881A CN 201480073866 A CN201480073866 A CN 201480073866A CN 106413881 A CN106413881 A CN 106413881A
Authority
CN
China
Prior art keywords
catalyst system
catalyst
spgm
pgm
spinelle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480073866.3A
Other languages
English (en)
Other versions
CN106413881B (zh
Inventor
萨拉·纳扎普尔
史蒂芬·J·戈尔登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clean Diesel Technologies Inc
Original Assignee
Clean Diesel Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clean Diesel Technologies Inc filed Critical Clean Diesel Technologies Inc
Publication of CN106413881A publication Critical patent/CN106413881A/zh
Application granted granted Critical
Publication of CN106413881B publication Critical patent/CN106413881B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8986Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/405Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

公开了由包括铜‑锰材料组合物和PGM催化剂的催化剂体系的组合所形成的协同效应。测试了催化剂体系构造的变体,来确定用于最佳的协同的PGM(SPGM)催化剂体系的最有效的材料组成,配料和构造。所选择的SPGM催化剂体系的协同效应是在稳态和振荡测试条件测定的,由其最佳的NO/CO交换R‑值显示了与目前的用于TWC应用的PGM催化剂相比,所选择的SPGM催化剂体系的增强的催化行为。根据本发明的原理,将Pd作为外涂层施用到氧化铝基载体上和将负载在Nb2O5‑ZrO2上的Cu‑Mn尖晶石结构作为活化涂层施用到合适的陶瓷基底上,产生了与市售的PGM催化剂相比更高的催化活性,效率和在TWC条件中,特别是在贫含条件下更好的性能。

Description

使用协同的PGM作为三效催化剂的系统和方法
交叉参考的相关申请
这个国际专利申请要求2013年11月26日提交的美国专利申请No.14/098861的优先权,其全部公开内容在此以引文形式并入。
本发明涉及美国专利申请No.14/090887,标题为“Oxygen StorageCapacity and Thermal Stability of Synergized PGM Catalyst Systems”,和美国专利申请No.14/090915,标题为“Method for Improving Lean performance ofPGM Catalyst Systems:Synergized PGM”,以及美国专利申请No.14/090938,标题为“Systems and Methods for Managing a Synergistic Relationship betweenPGM and Copper-Manganese in a Three Way Catalyst Systems”,全部都是2013年11月26日提交的,其全部公开内容在此以引文形式并入。
发明背景
技术领域
本发明通常涉及三效催化剂(TWC)体系,和更具体的涉及协同的PGM催化剂的TWC性能。
背景信息
许多现代功能材料是由多相实体制成的,在其中需要不同组分之间的协作行为来获得最佳的性能。协作行为的典型情形是现代TWC体系,其用于车辆排气中来降低废气排放。TWC体系将车辆排气中三种主要的污染物一氧化碳(CO),未燃烧的烃(HC)和氮的氧化物(NOx)转化成H2O,CO2和氮气。典型的TWC体系包括氧化铝载体,在其上沉积了铂族金属(PGM)材料和促进性氧化物二者。对于期望的催化转化来说关键的是促进性氧化物和PGM金属之间的结构-反应性相互影响,特别是涉及在加工条件下的氧的存储/释放。
目前的TWC曝露于高的运行温度,这归因于使用了接近于发动机的闭路偶合催化剂。此外,TWC对于PGM和稀土金属的需求持续增加,这归因于它们在除去内燃机排气中的污染物中的效力,这同时导致了PGM金属的供给紧张,其抬高了它们的成本和催化剂应用的成本。
因为PGM催化剂通常在接近于化学计量比的条件工作,因此期望的是增加它们在接近于化学计量比条件的贫含条件下的活性。在贫含条件下,NOX转化率可以通过协同的PGM来增加。这种协同效应改进了燃料消耗和提供了燃料经济性。由于前述原因,需要组合的催化剂体系,其可以表现出最佳的协同行为,产生增强的活性和性能,并且高到实际催化剂的理论限度。
发明内容
本发明的一个目标是提供一种包括钯(Pd)的PGM催化剂,其可以协同的加入Cu1.0Mn2.0O4尖晶石来增加具体处于贫含条件下的PGM催化剂的TWC性能,和用于催化剂体系在TWC条件中的最佳性能。
根据一种实施方案,一种催化剂体系可以包括基底,活化涂层(WC),外涂层(OC)和浸渍层。该优化的催化剂体系可以使用具有氧化铝基载体的PGM催化剂,在多个催化剂构造中施用具有铌-氧化锆载体氧化物的Cu1.0Mn2.0O4化学计量比的尖晶石来实现,其包括不同的活化涂层(WC),外涂层(OC)或者浸渍(IM)层。在氧化铝基载体上的PGM催化剂和具有铌-氧化锆载体氧化物的Cu1.0Mn2.0O4尖晶石二者可以使用本领域已知的合适的合成方法来制备。
根据本发明的实施方案,协同的PGM(SPGM)催化剂体系可以配置有WC层(其包括具有铌-氧化锆载体氧化物的Cu-Mn化学计量比的尖晶石),OC层(其包括具有氧化铝基载体的PGM催化剂)和合适的陶瓷基底;或者WC层(其包括具有氧化铝基载体的PGM催化剂),OC层(其包括具有铌-氧化锆载体氧化物的Cu-Mn化学计量比的尖晶石)和合适的陶瓷基底;或者仅仅具有氧化铝基载体的WC层,OC层(其包括具有铌-氧化锆载体氧化物的Cu-Mn化学计量比的尖晶石),IM层(其包括本发明的PGM,Pd)和合适的陶瓷基底;或者仅仅WC层(其包括具有铌-氧化锆载体氧化物的Cu-Mn化学计量比的尖晶石,其是用Pd/氧化铝共研磨的)和合适的陶瓷基底。
所公开的SPGM催化剂体系的最佳的NO/CO交换R-值可以通过使用根据本发明的实施方案所制备的新和水热老化的催化剂样品,进行等温稳态扫描测试来测定。该稳态测试可以使用在多个空速从富含条件到贫含条件的11点R-值,在所选择的入口温度来开发。来自于等温稳态测试的结果可以比较来显示对于在TWC条件下,特别是在贫含条件下的最佳性能来说,所公开的SPGM催化剂体系的最佳的组成和构造,其用于降低使用所公开的SPGM催化剂体系的燃料消耗。
根据一种实施方案,在稳态和振荡条件下,在所选择的NO/CO交换R-值(其可以产生NO,CO和HC转化中增强的催化性能)进行TWC标准起燃测试。
从本发明可以发现虽然催化剂的催化活性和热和化学稳定性在实际使用过程中会受到因素例如催化剂的化学组成的影响,如PGM催化剂通常是接近于化学计量比的条件来工作的,但是令人期望的是在接近于化学计量比的条件的贫含条件下增加催化剂活性。在贫含条件下,NOX转化率可以通过协同PGM催化剂来增加。这种PGM催化剂上的协同效应可以改进燃料消耗和提供燃料经济性。所公开的SPGM催化剂体系的TWC性能可以提供指示,其用于催化剂应用,和更具体的用于在接近于化学计量比的条件的贫含条件下运行的催化剂体系,所公开的SPGM催化剂体系的化学组成可以是更运行有效的,并且从催化剂制造商的观点来说,基本的优点给出了所涉及的经济因素。
本发明的许多其他方面,特征和益处可以从下面的具体实施方式和结合附图而显而易见。
附图说明
本发明可以参考下图来更好的理解。图中的部件不必需是按照尺寸绘制的,代替的,将重点放在说明本发明的原理上。在图中,附图标记表示了整个的不同图中相应的零件。
图1显示了根据一种实施方案,被称作SPGM催化剂体系类型1的一种SPGM催化剂体系构造。
图2显示了根据一种实施方案,被称作SPGM催化剂体系类型2的一种SPGM催化剂体系构造。
图3显示了根据一种实施方案,被称作SPGM催化剂体系类型3的一种SPGM催化剂体系构造。
图4显示了根据一种实施方案,被称作SPGM催化剂体系类型4的一种SPGM催化剂体系构造。
图5显示了根据一种实施方案,在等温稳态扫描条件,在入口温度是大约450℃和空速(SV)是大约40000h-1,SPGM催化剂体系类型1新样品的TWC性能。
图6显示了根据一种实施方案,在等温稳态扫描条件,在入口温度是大约450℃和空速(SV)是大约40000h-1,SPGM催化剂体系类型2新样品的TWC性能。
图7显示了根据一种实施方案,在等温稳态扫描条件,在入口温度是大约450℃和空速(SV)是大约40000h-1,SPGM催化剂体系类型3新样品的TWC性能。
图8显示了根据一种实施方案,在等温稳态扫描条件,在入口温度是大约450℃和SV是大约40000h-1,SPGM催化剂体系类型4新样品的TWC性能。
图9显示了根据一种实施方案,在等温稳态扫描条件,在入口温度是大约450℃和SV是大约40000h-1,SPGM催化剂体系类型1,类型2,类型3,类型4和PGM催化剂的新样品的NO转化率的性能比较。
图10显示了根据一种实施方案,在等温稳态扫描条件,在入口温度是大约450℃和SV是大约40000h-1,SPGM催化剂体系类型1,类型2,类型3,类型4和PGM催化剂的水热老化的样品的NO转化率的性能比较。
图11显示了根据一种实施方案,在SV大约40000h-1和R-值是大约1.05的稳态条件(图11A),和在频率信号是大约1Hz,SV是大约90000h-1和R-值是大约1.05的振荡条件下(图11B),SPGM催化剂体系类型1新样品的TWC标准起燃测试结果的比较。
具体实施方式
本发明在此参考附图所示的实施方案来详细说明,其形成了此处的一部分。可以使用其他实施方案和/或可以进行其他变化,而不脱离本发明的主旨或范围。具体实施方式中所述的示例性实施方案不表示对于本发明主题的限制。
定义
作为此处所用的,下面的术语可以具有下面的定义:
“铂族金属(PGM)”指的是铂,钯,钌,铱,锇和铑。
“协同的铂族金属(SPGM)催化剂”指的是一种PGM催化剂体系,其是通过非PGM族金属化合物在不同的构造下协同的。
“催化剂”指的是一种或多种这样的材料,其可以用于一种或多种其他材料的转化中。
“基底”指的是任何形状或构造的任何材料,其产生了用于沉积活化涂层和/或外涂层的足够的表面积。
“活化涂料”指的是至少一种涂料,其包括至少一种氧化物固体,其可以沉积到基底上。
“外涂料”指的是至少一种涂料,其可以沉积在至少一种活化涂层或者浸渍层上。
“催化剂体系”指的是至少两层的体系,包括至少一种基底,活化涂层和/或外涂层。
“研磨”指的是将固体材料粉碎成期望的粒子或粒度的操作。
“共沉淀”指的是通过将在使用条件下通常可溶性的物质沉淀来取出。
“浸渍”指的是用液体化合物浸透或者饱和固体层的方法或者将一些元素扩散穿过介质或者物质。
“处理着,处理的或者处理”指的是干燥,燃烧,加热,蒸发,煅烧或者其混合。
“煅烧”指的是在空气存在下,对固体材料施加热处理方法,来产生热分解,相变或者在低于该固体材料熔点的温度除去挥发性部分。
“空气/燃料比或者A/F比”指的是空气的重量除以燃料的重量。
“R值”指的是催化剂中材料的氧化潜力除以还原潜力所获得的值。当R等于1时,所述反应可以被认为是化学计量比的。
“富含条件”指的是R值高于1的废气条件。
“贫含条件”指的是R值低于1的废气条件。
“三效催化剂”指的是这样的催化剂,其可以实现三个同时的任务:将氮氧化物还原成氮和氧,将一氧化碳氧化成二氧化碳,和将未燃烧的烃氧化成二氧化碳和水。
“T50”可以指的是50%的材料被转化时的温度。
“转化”指的是至少一种材料向一种或多种其他材料的化学变化。
附图说明
本发明通常可以提供一种协同的PGM(SPGM)催化剂体系,其具有增强的催化性能和热稳定性,将更大活性的组分引入具有三效催化剂(TWC)性能例如改进的氧迁移性的相材料中,来增强所公开的SPGM催化剂体系的催化活性。
根据本发明的实施方案,SPGM催化剂体系可以配置有活化涂层(WC)(其包括具有铌-氧化锆载体氧化物的Cu-Mn化学计量比的尖晶石),外涂层(OC)(其包括钯(Pd)和氧化铝基载体的PGM催化剂)和合适的陶瓷基底,在此称作SPGM催化剂体系类型1;或者WC层(其包括具有氧化铝基载体的Pd的PGM催化剂),OC层(其包括具有铌-氧化锆载体氧化物的Cu-Mn化学计量比的尖晶石)和合适的陶瓷基底,在此称作SPGM催化剂体系类型2;或者仅仅具有氧化铝基载体的WC层,OC层(其包括具有铌-氧化锆载体氧化物的Cu-Mn化学计量比的尖晶石),浸渍(IM)层(其包括本发明的PGM,Pd)和合适的陶瓷基底,在此称作SPGM催化剂体系类型3;或者仅仅WC层,其包括具有铌-氧化锆载体氧化物的Cu-Mn化学计量比的尖晶石,其是用包括Pd和氧化铝的浆体研磨的,和合适的陶瓷基底,在此称作SPGM催化剂体系类型4。
SPGM催化剂体系构造,材料组成和制备
图1显示了用于SPGM催化剂体系类型1的催化剂结构100。在这种系统构造中,WC层102可以包括Cu-Mn尖晶石结构Cu1.0Mn2.0O4,其使用共沉淀方法或者本领域已知的任何其他制备技术负载在Nb2O5-ZrO2上。
WC层102的制备可以通过将Nb2O5-ZrO2载体氧化物研磨来制造含水浆体开始。该Nb2O5-ZrO2载体氧化物的Nb2O5负载量可以是大约15%-大约30%重量,优选大约25%,和ZrO2负载量是大约70%-大约85%重量,优选大约75%。
该Cu-Mn溶液可以通过将适量的硝酸锰溶液(MnNO3)和硝酸铜溶液(CuNO3)混合来制备,这里合适的铜负载量可以包括大约10%-大约15%重量的负载量。合适的锰负载量可以包括大约15%-大约25%重量的负载量。接下来的步骤是硝酸Cu-Mn溶液在Nb2O5-ZrO2载体氧化物含水浆体上沉淀,其可以向其中加入适当的碱溶液,例如来将该浆体的pH调节到合适的范围。该沉淀的浆体可以在连续搅拌下在室温老化大约12-24小时的时间。
随后,该沉淀的浆体可以使用具有蜂窝结构的堇青石材料涂覆到陶瓷基底106上,这里陶瓷基底106可以具有多个具有合适孔隙率的通道。Cu-Mn/Nb2O5-ZrO2的含水浆体可以使用真空加料和涂覆系统沉积到陶瓷基底106上来形成WC层102。在本发明中,多个容量的WC负载量可以涂覆到陶瓷基底106上。该多个WC负载量可以在大约60g/L-大约200g/L变化,在本发明中特别是大约120g/L。随后,在陶瓷基底106上沉积了合适负载量的Cu-Mn/Nb2O5-ZrO2浆体之后,WC层102可以干燥和随后在大约550℃-大约650℃的合适的温度,优选在大约600℃煅烧大约5小时。WC层102的处理可以使用合适的干燥和加热方法。市售的气刀干燥系统可以用于干燥WC层102。热处理(煅烧)可以使用市售燃烧(炉子)系统来进行。
沉积在陶瓷基底106上的WC层102的化学组成(总负载量是大约120g/L)包括Cu-Mn尖晶石结构,其的铜负载量是大约10g/L-大约15g/L和锰负载量是大约20g/L-大约25g/L。Nb2O5-ZrO2载体氧化物的负载量可以是大约80g/L-大约90g/L。
OC层104可以包括Pd在氧化铝基载体上的组合。OC层104的制备可以通过将氧化铝基载体氧化物分别研磨来制造含水浆体而开始。随后,硝酸钯溶液然后可以与氧化铝的含水浆体混合,负载量是大约0.5g/ft3-大约10g/ft3。在这个实施方案中,Pd负载量是大约6g/ft3和WC材料的总负载量是120g/L。在Pd和氧化铝浆体混合后,Pd可以用适量的一种或多种碱溶液锁住,例如氢氧化钠(NaOH)溶液,碳酸钠(Na2CO3)溶液,氢氧化铵(NH4OH)溶液和四乙基氢氧化铵(TEAH)溶液等。不需要pH调节。在这个实施方案中,Pd可以使用四乙基氢氧化铵(TEAH)的碱溶液锁住。然后所形成的浆体可以老化大约12小时-大约24小时,随后作为外涂层涂覆到WC层102上,干燥和在大约550℃燃烧大约4小时。
图2显示了用于SPGM催化剂体系类型2的催化剂结构200。在这种系统构造中,WC层202可以包括Pd在氧化铝基载体上的组合。WC层202的制备可以通过将氧化铝基载体氧化物分别研磨来制造含水浆体而开始。随后,硝酸钯溶液然后可以与氧化铝的含水浆体混合,负载量是大约0.5g/ft3-大约10g/ft3。在这个实施方案中,Pd负载量是大约6g/ft3和WC材料的总负载量是120g/L。在Pd和氧化铝浆体混合后,Pd可以用适量的一种或多种碱溶液锁住,例如氢氧化钠(NaOH)溶液,碳酸钠(Na2CO3)溶液,氢氧化铵(NH4OH)溶液和四乙基氢氧化铵(TEAH)溶液等。不需要pH调节。在这个实施方案中,Pd可以使用四乙基氢氧化铵(TEAH)的碱溶液锁住。然后所形成的浆体可以老化大约12小时-大约24小时,随后作为WC层202涂覆到陶瓷基底206上,其使用了具有蜂窝结构的堇青石材料,这里陶瓷基底106可以具有多个具有合适的孔隙率的通道,干燥和在大约550℃燃烧大约4小时。WC层202可以使用真空加料和涂覆系统沉积在陶瓷基底106上。
OC层204可以包括Cu-Mn化学计量比的尖晶石结构Cu1.0Mn2.0O4,其使用共沉淀方法或者本领域已知的任何其他制备技术负载在Nb2O5-ZrO2上。
OC层204的制备可以通过将Nb2O5-ZrO2载体氧化物研磨来制造含水浆体开始。该Nb2O5-ZrO2载体氧化物的Nb2O5负载量可以是大约15%-大约30%重量,优选大约25%,和ZrO2负载量是大约70%-大约85%重量,优选大约75%。
该Cu-Mn溶液可以通过将适量的硝酸锰溶液(MnNO3)和硝酸铜溶液(CuNO3)混合来制备,这里合适的铜负载量可以包括大约10%-大约15%重量的负载量。合适的锰负载量可以包括大约15%-大约25%重量的负载量。接下来的步骤是硝酸Cu-Mn溶液在Nb2O5-ZrO2载体氧化物含水浆体上沉淀,其可以向其中加入适当的碱溶液,例如来将该浆体的pH调节到合适的范围。该沉淀的浆体可以在连续搅拌下在室温老化大约12-24小时的时间。
随后,该沉淀的浆体可以涂覆到WC层202上。Cu-Mn/Nb2O5-ZrO2的含水浆体可以使用真空加料和涂覆系统来沉积到WC层202上。在本发明中,多个容量的OC负载量可以涂覆到WC层202上。该多个OC负载量可以在大约60g/L-大约200g/L变化,在本发明中特别是大约120g/L。随后,在WC层202上沉积了合适负载量的Cu-Mn/Nb2O5-ZrO2浆体之后,OC层204可以干燥和随后在大约550℃-大约650℃的合适温度,优选在大约600℃煅烧大约5小时。OC层204的处理可以使用合适的干燥和加热方法。市售的气刀干燥系统可以用于干燥OC层204。热处理(煅烧)可以使用市售燃烧(炉子)系统来进行。
沉积在WC层202上的OC层204的化学组成(总负载量是大约120g/L)包括Cu-Mn尖晶石结构,其的铜负载量是大约10g/L-大约15g/L和锰负载量是大约20g/L-大约25g/L。该Nb2O5-ZrO2载体氧化物的负载量可以是大约80g/L-大约90g/L。
图3显示了用于SPGM催化剂体系类型3的催化剂结构300。在这个实施方案中,WC层302可以仅仅包括氧化铝基载体。WC层302的制备可以通过将氧化铝基载体氧化物研磨来制造含水浆体而开始。然后,所形成的浆体可以作为WC层302涂覆到陶瓷基底308上,其使用了具有蜂窝结构的堇青石材料,这里陶瓷基底308可以具有多个具有合适孔隙率的通道。WC负载量是大约120g/L和随后干燥和在大约550℃燃烧大约4小时。WC层302可以使用真空加料和涂覆系统来沉积到陶瓷基底308上。
OC层304可以包括Cu-Mn化学计量比的尖晶石结构Cu1.0Mn2.0O4,其使用共沉淀方法或者本领域已知的任何其他制备技术负载在Nb2O5-ZrO2上。
OC层304的制备可以通过将Nb2O5-ZrO2载体氧化物研磨来制造含水浆体开始。该Nb2O5-ZrO2载体氧化物的Nb2O5负载量可以是大约15%-大约30%重量,优选大约25%,和ZrO2负载量是大约70%-大约85%重量,优选大约75%。
该Cu-Mn溶液可以通过将适量的硝酸锰溶液(MnNO3)和硝酸铜溶液(CuNO3)混合来制备,这里合适的铜负载量可以包括大约10%-大约15%重量的负载量。合适的锰负载量可以包括大约15%-大约25%重量的负载量。接下来的步骤是硝酸Cu-Mn溶液在Nb2O5-ZrO2载体氧化物含水浆体上沉淀,其可以向其中加入适当的碱溶液,例如来将该浆体的pH调节到合适的范围。该沉淀的浆体可以在连续搅拌下在室温老化大约12-24小时的时间。在老化后,Cu-Mn/Nb2O5-ZrO2浆体可以作为OC层304涂覆。在本发明中,多个容量的OC负载量可以涂覆到WC层302上。该多个OC负载量可以在大约60g/L-大约200g/L变化,在本发明中特别是大约120g/L,来包括这样的Cu-Mn尖晶石结构,其的铜负载量是大约10g/L-大约15g/L和锰负载量是大约20g/L-大约25g/L。该Nb2O5-ZrO2载体氧化物的负载量可以是大约80g/L-大约90g/L。
OC层304可以干燥和随后在大约550℃-大约650℃的合适温度,优选在大约600℃煅烧大约5小时。OC层304的处理可以使用合适的干燥和加热方法。市售的气刀干燥系统可以用于干燥OC层304。热处理(煅烧)可以使用市售燃烧(炉子)系统来进行。
随后,IMP层306可以用硝酸Pd溶液来制备,其可以湿浸渍到WC层302和OC层304顶上来干燥和在大约550℃燃烧大约4小时来完成催化剂结构300。Pd在催化剂体系中的最终负载量可以是大约0.5g/ft3-大约10g/ft3。在这个实施方案中,Pd负载量是大约6g/ft3
图4显示了用于SPGM催化剂体系类型4的催化剂结构400。在这个系统构造中,WC层402可以包括Cu-Mn化学计量比的尖晶石结构Cu1.0Mn2.0O4,其使用共沉淀方法或者本领域已知的任何其他制备技术负载于Nb2O5-ZrO2和在氧化铝上负载的PGM上。
WC层402的制备可以通过将Nb2O5-ZrO2载体氧化物研磨来制造含水浆体开始。该Nb2O5-ZrO2载体氧化物的Nb2O5负载量可以是大约15%-大约30%重量,优选大约25%,和ZrO2负载量是大约70%-大约85%重量,优选大约75%。
该Cu-Mn溶液可以通过将适量的硝酸锰溶液(MnNO3)和硝酸铜溶液(CuNO3)混合来制备,这里合适的铜负载量可以包括大约10%-大约15%重量的负载量。合适的锰负载量可以包括大约15%-大约25%重量的负载量。接下来的步骤是硝酸Cu-Mn溶液在Nb2O5-ZrO2载体氧化物含水浆体上沉淀,其可以向其中加入适当的碱溶液,例如来将该浆体的pH调节到合适的范围。该沉淀的浆体可以在连续搅拌下在室温老化大约12-24小时的时间。
在沉淀步骤之后,该Cu-Mn/Nb2O5-ZrO2浆体可以进行过滤和清洗,然后所形成的材料可以在大约120℃干燥一整夜和随后在大约550℃-大约650℃的合适温度,优选在大约600℃煅烧大约5小时。所制备的Cu-Mn/Nb2O5-ZrO2粉末可以研磨成细粒子粉末,来加入到WC层402所包括的Pd和氧化铝中。
Cu-Mn/Nb2O5-ZrO2的细粒子粉末可以随后加入到Pd和氧化铝基载体氧化物浆体的组合中。Pd和氧化铝浆体的制备可以通过分别研磨氧化铝基载体氧化物来制造含水浆体而开始。随后,硝酸Pd溶液然后可以与氧化铝的含水浆体混合,负载量是大约0.5g/ft3-大约10g/ft3。在这个实施方案中,Pd负载量是大约6g/ft3和WC材料的总负载量是120g/L。在Pd和氧化铝浆体混合后,Pd可以用适量的一种或多种碱溶液锁住,例如氢氧化钠(NaOH)溶液,碳酸钠(Na2CO3)溶液,氢氧化铵(NH4OH)溶液,四乙基氢氧化铵(TEAH)溶液等。不需要pH调节。在这个实施方案中,Pd可以使用四乙基氢氧化铵(TEAH)的碱溶液锁住。然后所形成的浆体(包括Cu-Mn/Nb2O5-ZrO2的细粒子粉末)可以老化大约12小时-大约24小时,用于随后作为WC层402涂覆。该老化的浆体可以涂覆到陶瓷基底404上,其使用了具有蜂窝结构的堇青石材料,这里陶瓷基底404可以具有多个具有合适的孔隙率的通道。Cu-Mn/Nb2O5-ZrO2和Pd/氧化铝的含水浆体可以使用真空加料和涂覆系统沉积到陶瓷基底404上来形成WC层402。在本发明中,多个容量的WC负载量可以涂覆到陶瓷基底404上。该多个WC负载量可以在大约60g/L-大约200g/L变化,在本发明中特别是大约120g/L。
WC层402的处理可以使用合适的干燥和加热方法。市售的气刀干燥系统可以用于干燥WC层402。热处理(煅烧)可以使用市售燃烧(炉子)系统来进行。
沉积在陶瓷基底404上的WC层402的化学组成(总负载量是大约120g/L)包括Cu-Mn尖晶石结构,其的铜负载量是大约10g/L-大约15g/L,锰负载量是大约20g/L-大约25g/L,和Pd负载量是大约6g/ft3
根据本发明的原理,所公开的SPGM催化剂体系的最佳NO/CO交换R值可以使用根据本发明的实施方案所制备的新和水热老化的催化剂样品,如图1,图2,图3和图4所述,通过进行等温稳态扫描测试来测定。等温稳态扫描测试可以在所选择的入口温度,使用从富含条件到贫含条件的11点R-值,以多个空速来开发。扫描测试的结果可以比较来显示对于在TWC条件下的最佳性能,所公开的SPGM催化剂体系的最佳组成和构造。
等温稳态扫描测试程序
该等温稳态扫描测试可以使用入口温度是大约450℃的使用流动反应器来进行,并且在从大约2.0(富含条件)到大约0.80(贫含条件)的11点R值测试气体流,来测量CO,NO和HC转化率。
等温稳态扫描测试中的空速(SV)可以在大约40000h-1调节。用于该测试的气体供料可以是标准TWC气体组合物,具有可变的O2浓度,来在测试过程中将R-值从富含条件调节到贫含条件。标准TWC气体组合物可以包括大约8000ppm的CO,大约400ppm的C3H6,大约100ppm的C3H8,大约1000ppm的NOx,大约2000ppm的H2,10%的CO2和10%的H2O。该气体混合物中O2的量可以改变来调节空气/燃料比(A/F)。
TWC标准起燃测试程序
TWC稳态起燃测试可以使用流动反应器来进行,在其中温度可以以大约40℃/min的速率从大约100℃增加到大约500℃,供给下面的气体组合物:8000ppm的CO,400ppm的C3H6,100ppm的C3H8,1000ppm的NOx,2000ppm的H2,10%的CO2,10%的H2O和0.7%的O2。在大约40000h-1的SV的平均R-值是1.05(化学计量比)。
TWC标准振荡起燃测试可以使用流动反应器来进行,在其中温度可以以大约40℃/min的速率从大约100℃增加到大约500℃,供给下面的气体组合物:8000ppm的CO,400ppm的C3H6,100ppm的C3H8,1000ppm的NOx,2000ppm的H2,10%的CO2,10%的H2O和O2量在0.3%-0.45%变化振荡。在大约90000h-1的SV的平均R-值是1.05(化学计量比)。振荡起燃测试可以在大约1Hz和±0.4A/F比跨度进行。
SPGM催化剂体系的TWC性能
图5显示了根据一种实施方案,在等温稳态扫描条件,在入口温度是大约450℃和空速(SV)是大约40000h-1,新SPGM催化剂体系样品类型1的TWC性能500。
如图5中可见,在新样品中,NO/CO交换是在0.950的特定R-值进行的。用于典型的PGM催化剂的NO/CO交换是在化学计量比R-值(大约1.00)进行的,但是SPGM催化剂体系类型1代表了低于化学计量比条件的R-值,其是在化学计量比贫含条件(R=0.950)下NO和CO的100%转化率的指示。在化学计量比贫含条件下NOx转化率是非常高的。在R-值=0.9时可见,NOX转化率是大约96%。
图6显示了根据一种实施方案,在等温稳态扫描条件,在入口温度是大约450℃和SV是大约40000h-1,新SPGM催化剂体系样品类型2的TWC性能600。
如图6中可见,在新样品中,NO/CO交换是在1.160的特定R-值进行的,这里新NO/CO转化率是99.6%。
图7显示了根据一种实施方案,在等温稳态扫描条件,在入口温度是大约450℃和SV是大约40000h-1,新SPGM催化剂体系样品类型3的TWC性能700。
如图7中可见,在新样品中,NO/CO交换是在1.099的特定R-值进行的,这里新NO/CO转化率是100%。可以观察到这个NO/CO交换是在倾向于稍微富含条件的化学计量比条件下进行的。典型的PGM催化剂的R-值是1.00。
图8显示了根据一种实施方案,在等温稳态扫描条件,在入口温度是大约450℃和SV是大约40000h-1,新SPGM催化剂体系样品类型4的TWC性能800。
如图8中可见,在新样品中,NO/CO交换是在1.044的特定R-值进行的,这里新NO/CO转化率是100%。可以观察到这个NO/CO交换非常接近于化学计量比条件和稍微倾向于在富含条件下。一种典型的PGM催化剂的R-值是1.00。在化学计量比贫含条件下的NOX转化率是大的。可以看到,在R-值=0.9,NOX转化率是大约82%。
在本发明中,所形成的用于稳态扫描条件下的SPGM催化剂体系各自的R-值显示了所公开的SPGM催化剂体系表现出最佳的性能,因为NO/CO交换R-值非常接近于化学计量比条件,并且在SPGM催化剂体系类型1的情况中,0.95的R-值是在贫含条件下100%的NO和CO转化率的指示。
SPGM和PGM催化剂体系的TWC性能比较
图9显示了根据一种实施方案,在等温稳态扫描条件,在入口温度是大约450℃和SV是大约40000h-1,SPGM催化剂体系类型1,类型2,类型3,类型4和市售的PGM催化剂的新样品的NO转化中的性能比较900。
该等温稳态扫描测试可以使用流动反应器来进行,入口温度是大约450℃,来模拟标准TWC气体组合物的废气,具有不同的O2来调节A/F比,其使用了从大约2.0(富含条件)到大约0.80(贫含条件)的11点R值,来测量NO转化率。
在这种实施方案中,市售的PGM催化剂的新样品可以是催化剂,其包括Pd负载量为大约6g/ft3和铑(Rh)负载量是大约6g/ft3的OC层,具有氧化铝基载体氧化物和大约30-大约40重量%的储氧材料。WC层仅仅包括氧化铝基载体氧化物和储氧材料。
在性能比较900中,NO转化率曲线902显示了SPGM催化剂体系类型1新样品的性能,NO转化率曲线904显示了SPGM催化剂体系类型2新样品的性能,NO转化率曲线906显示了SPGM催化剂体系类型3新样品的性能,NO转化率曲线908显示了SPGM催化剂体系类型4新样品的性能,和NO转化率曲线910显示了市售的PGM催化剂的新样品的性能,全部处于稳态扫描条件下。
如在性能比较900中可观察的,与PGM催化剂相比,SPGM催化剂体系类型1和SPGM催化剂体系类型4在化学计量比贫含条件下的NO转化中具有改进的性能。这种改进的性能是两种SPGM催化剂体系中各自组合物中PGM组分和Cu-Mn尖晶石组分之间的协同效应的结果,在其中Cu-Mn尖晶石组分的加入导致了与NO转化率曲线910中所示的PGM催化剂的NO转化率水平相比,在贫含条件下NO转化率改进的性能。SPGM催化剂体系类型1和类型4的表现优于PGM催化剂,这归因于它们在贫含条件下改进的NO转化率。例如在R=0.9,虽然SPGM催化剂体系类型1表现出NO转化率是96%,但是SPGM催化剂体系类型4表现出NO转化率是82%,PGM催化剂表现出NO转化率是38%。另外SPGM催化剂体系类型1和类型4都代表了在R-值小于1.00时的NO转化率,其是用于PGM催化剂的典型的R-值。
图10显示了根据一种实施方案,在等温稳态扫描条件,在入口温度是大约450℃和SV是大约40000h-1,SPGM催化剂体系类型1,类型2,类型3,类型4和市售的PGM催化剂的水热老化样品的NO转化中的性能比较1000。
在这种实施方案中,市售的PGM催化剂的新样品可以是催化剂,其包括Pd负载量为大约6g/ft3和铑(Rh)负载量是大约6g/ft3的OC层,具有氧化铝基载体氧化物和大约30-大约40重量%的储氧材料。WC层仅仅包括氧化铝基载体氧化物和储氧材料。
SPGM催化剂体系类型1,类型2,类型3,类型4和市售的PGM催化剂的样品可以使用大约10%蒸汽/空气或者燃料流,在大约800℃-大约1000℃的多个温度进行水热老化大约4小时。在这个实施方案中,全部样品可以优选在900℃老化大约4小时。
该等温稳态扫描测试可以使用流动反应器来进行,入口温度是大约450℃,来模拟标准TWC气体组合物的废气,具有不同的O2来调节A/F比,其使用了从大约2.0(富含条件)到大约0.80(贫含条件)的11点R值,来测量NO转化率。
在性能比较1000中,NO转化率曲线1002显示了SPGM催化剂体系类型1新样品的性能,NO转化率曲线1004显示了SPGM催化剂体系类型2新样品的性能,NO转化率曲线1006显示了SPGM催化剂体系类型3新样品的性能,NO转化率曲线1008显示了SPGM催化剂体系类型4新样品的性能,和NO转化率曲线1010显示了市售的PGM催化剂新样品的性能,全部在稳态扫描条件下。
如在性能比较1000中可观察的,与PGM催化剂相比,SPGM催化剂体系类型1在化学计量比贫含下老化后的NO转化中具有改进的性能。这种改进的性能是SPGM催化剂体系类型1中各自组合物中PGM组分和Cu-Mn尖晶石组分之间的协同效应的结果,在其中Cu-Mn尖晶石组分的加入导致了与NO转化率曲线1010中所示的PGM催化剂的NO转化率水平相比,NO转化率改进的性能。例如在R-值=0.9时,SPGM催化剂体系类型1表现出NO转化率是95%,同时PGM催化剂表现出NO转化率是35%。
另外,从性能比较900和性能比较1000可见,NO转化率的最佳的性能是用SPGM催化剂体系类型1的新和老化的样品来获得的,其表现出在贫含区域(R-值<1.00)下改进的NO转化率。SPGM催化剂体系类型1新和水热老化的样品的NO/CO交换R-值分别是0.950和0.965,这表明与PGM催化剂样品相比,在贫含条件下增强的性能。PGM催化剂新和水热老化的样品的NO/CO交换R-值分别是0.998和1.000。
SPGM催化剂体系类型1,类型2,类型3和类型4和PGM催化剂的新和水热老化的样品在等温稳态扫描条件下获得的NO/CO交换R-值可以证实当与本发明的其他SPGM催化剂体系和PGM催化剂相比时,SPGM催化剂体系类型1的最佳的性能,因为SPGM催化剂体系类型1新和水热老化的样品的NO/CO交换R-值低于PGM催化剂的新和水热老化的样品的NO/CO交换R-值,这表明SPGM催化剂体系类型1是一种改进,在其中根据本发明的原理所显示的协同效应是非常相关的。此外,SPGM催化剂体系类型1表现出与PGM催化剂相比在贫含条件中NO转化率的明显改进。
可以观察到,SPGM催化剂体系类型2,类型3和类型4表现出老化后增加的R-值。所获得的R-值表明它们可以在化学计量比条件或者在稍富含条件交换下进行。但是,SPGM催化剂体系类型1表现出朝着贫含条件的明显改进,其超过了PGM催化剂的性能,这归因于在贫含条件下实现的高的NO转化率,其也会导致较低的燃料消耗。
用于SPGM催化剂体系类型1的TWC标准起燃测试
图11显示了根据一种实施方案,在SV大约40000h-1和R值是大约1.05的等温稳态条件(图11A),和在频率信号是大约1Hz和±0.4A/F比跨度,SV是大约90000h-1和R值是大约1.05的振荡条件下(图11B),SPGM催化剂体系类型1新样品所进行的TWC标准起燃测试结果的活性比较1100。
在图11A中,NO转化率曲线已经用虚线标记为NO曲线1102,CO转化率曲线已经用点虚线标记为CO曲线1104,和HC转化率曲线已经用实线标记为HC曲线1106。在图11B中,NO转化率曲线已经用虚线标记为NO曲线1108,CO转化率曲线已经用点细线标记为CO曲线1110,和HC转化率曲线已经用实线标记为HC曲线1112。
可见在稳态起燃测试中,在NO曲线1102中,在大约211.9℃的T50发生了50%的NO转化率,在CO曲线1104中,在大约228.1℃的T50发生了50%的CO转化率,和在HC曲线1106中,在大约265.9℃的T50发生了50%的HC转化率。在振荡起燃测试下,在NO曲线1108中,在大约295.4℃的T50发生了50%的NO转化率,在CO曲线1110中,在大约257.3℃的T50发生了50%的CO转化率,和在HC曲线1112中,在大约286.9℃的T50发生了50%的HC转化率。
图11A和图11B的转化率结果的比较表明SPGM类型1催化剂体系表现出在低于300℃发生了全部污染物高的NO/CO/HC转化率和T50转化率,但是图11B中全部污染物较高的T50是归因于用于在振荡起燃条件下SPGM催化剂体系类型1测试的较高的SV。
根据本发明的原理,将氧化铝基载体上的Pd作为外涂层和将负载于Nb2O5-ZrO2上的Cu-Mn化学计量比的尖晶石结构Cu1.0Mn2.0O4作为活化涂层施用到陶瓷基底上,产生了较高的催化活性,效率和在TWC条件中更好的性能,特别是在与市售的PGM催化剂相同的条件下。所获得的新和老化的SPGM样品的较低水平的温度T50和在贫含条件下较高的NO转化率也可以显示SPGM催化剂体系改进的性能和热稳定性。SPGM催化剂体系类型1的催化剂体系构造,材料组成和制备可以选为用于许多TWC应用中的最佳的催化剂体系。
SPGM催化剂体系类型1的催化剂体系构造,材料组成和制备可以提供最佳的用于贫含性能的选择,其是Pd和Cu-Mn化学计量比的尖晶石结构之间的协同关系的结果,其是产生了更高催化活性的一种协作行为。
虽然已经公开了不同的方面和实施方案,但是可以预期其他方面和实施方案。此处所公开的不同的方面和实施方案是用于说明的目的,并非打算限制下面的权利要求所示的真实范围和主旨。

Claims (22)

1.一种催化剂体系,其包含:
至少一种基底;
至少一种活化涂层,其包含至少一种储氧材料,进一步包含具有铌-氧化锆载体氧化物的Cu-Mn尖晶石;和
至少一种外涂层,其包含至少一种铂族金属催化剂和Al2O3
2.权利要求1的催化剂体系,其中该Cu-Mn尖晶石包含CuMn2O4
3.权利要求1的催化剂体系,其中该Cu-Mn尖晶石是化学计量比的。
4.权利要求1的催化剂体系,其中该铌-氧化锆载体氧化物包含Nb2O5-ZrO2
5.权利要求1的催化剂体系,其进一步包含至少一种浸渍层。
6.权利要求1的催化剂体系,其中该至少一种基底包含陶瓷。
7.权利要求1的催化剂体系,其中NO的转化是在贫含排气条件下基本完成的。
8.权利要求1的催化剂体系,其中CO的转化是在贫含排气条件下基本完成的。
9.权利要求1的催化剂体系,其中NO的转化率在贫含排气条件下接近95%。
10.权利要求1的催化剂体系,其中NO的转化率是在这样的催化剂体系上改进的,其包含至少一种铂族金属催化剂和基本上没有Cu-Mn尖晶石。
11.权利要求1的催化剂体系,其中该NO交换R-值是大约0.950。
12.权利要求1的催化剂体系,其中该CO交换R-值是大约0.965。
13.一种催化剂体系,其包含:
至少一种基底;
至少一种活化涂层,其包含至少一种铂族金属催化剂和Al2O3;和
至少一种外涂层,其包含至少一种储氧材料,进一步包含具有铌-氧化锆载体氧化物的Cu-Mn尖晶石。
14.权利要求13的催化剂体系,其中该Cu-Mn尖晶石包含CuMn2O4
15.权利要求13的催化剂体系,其中该Cu-Mn尖晶石是化学计量比的。
16.权利要求13的催化剂体系,其中该铌-氧化锆载体氧化物包含Nb2O5-ZrO2
17.权利要求13的催化剂体系,其进一步包含至少一种浸渍层。
18.权利要求13的催化剂体系,其中该至少一种基底包含陶瓷。
19.权利要求13的催化剂体系,其中NO的转化是在贫含排气条件下基本完成的。
20.权利要求13的催化剂体系,其中CO的转化是在贫含排气条件下基本完成的。
21.权利要求13的催化剂体系,其中NO的转化率是在这样的催化剂体系上改进的,其包含至少一种铂族金属催化剂和基本上没有Cu-Mn尖晶石。
22.一种催化剂体系,其包含:
至少一种包含陶瓷的基底;
至少一种包含Al2O3的活化涂层;
至少一种外涂层,其包含至少一种储氧材料,进一步包含具有铌-氧化锆载体氧化物的Cu-Mn尖晶石;和
至少一种包含至少一种铂族金属催化剂的浸渍层;
其中该至少一种铂族金属催化剂包含钯。
CN201480073866.3A 2013-11-26 2014-11-26 使用协同的pgm作为三效催化剂的系统和方法 Active CN106413881B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/090,861 2013-11-26
US14/090,861 US9511355B2 (en) 2013-11-26 2013-11-26 System and methods for using synergized PGM as a three-way catalyst
PCT/US2014/067541 WO2015081156A1 (en) 2013-11-26 2014-11-26 System and methods for using synergized pgm as a three-way catalyst

Publications (2)

Publication Number Publication Date
CN106413881A true CN106413881A (zh) 2017-02-15
CN106413881B CN106413881B (zh) 2020-01-24

Family

ID=53183126

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201480073866.3A Active CN106413881B (zh) 2013-11-26 2014-11-26 使用协同的pgm作为三效催化剂的系统和方法
CN201580002403.2A Pending CN105682790A (zh) 2013-11-26 2015-04-10 用于柴油氧化催化剂用途的协同pgm催化剂体系

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201580002403.2A Pending CN105682790A (zh) 2013-11-26 2015-04-10 用于柴油氧化催化剂用途的协同pgm催化剂体系

Country Status (3)

Country Link
US (4) US9511355B2 (zh)
CN (2) CN106413881B (zh)
WO (2) WO2015081156A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111644182A (zh) * 2020-03-05 2020-09-11 王金波 一种用于高空速条件下快速催化氧化co的蜂窝陶瓷整体催化剂及其制备方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9259716B2 (en) 2013-03-15 2016-02-16 Clean Diesel Technologies, Inc. Oxidation catalyst systems compositions and methods thereof
US9511355B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) System and methods for using synergized PGM as a three-way catalyst
US20140274662A1 (en) 2013-03-15 2014-09-18 Cdti Systems and Methods for Variations of ZPGM Oxidation Catalysts Compositions
US9227177B2 (en) 2013-03-15 2016-01-05 Clean Diesel Technologies, Inc. Coating process of Zero-PGM catalysts and methods thereof
US9511350B2 (en) 2013-05-10 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) ZPGM Diesel Oxidation Catalysts and methods of making and using same
US9216383B2 (en) 2013-03-15 2015-12-22 Clean Diesel Technologies, Inc. System and method for two and three way ZPGM catalyst
US20140336038A1 (en) * 2013-05-10 2014-11-13 Cdti ZPGM Catalytic Converters (TWC application)
US9771534B2 (en) 2013-06-06 2017-09-26 Clean Diesel Technologies, Inc. (Cdti) Diesel exhaust treatment systems and methods
US9545626B2 (en) 2013-07-12 2017-01-17 Clean Diesel Technologies, Inc. Optimization of Zero-PGM washcoat and overcoat loadings on metallic substrate
US8853121B1 (en) 2013-10-16 2014-10-07 Clean Diesel Technology Inc. Thermally stable compositions of OSM free of rare earth metals
US9511358B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. Spinel compositions and applications thereof
US9475005B2 (en) 2014-06-06 2016-10-25 Clean Diesel Technologies, Inc. Three-way catalyst systems including Fe-activated Rh and Ba-Pd material compositions
US9731279B2 (en) 2014-10-30 2017-08-15 Clean Diesel Technologies, Inc. Thermal stability of copper-manganese spinel as Zero PGM catalyst for TWC application
US9427730B2 (en) * 2014-11-17 2016-08-30 Clean Diesel Technologies, Inc. Bimetallic synergized PGM catalyst systems for TWC application
DE102016102121A1 (de) * 2015-02-13 2016-08-18 Johnson Matthey Public Limited Company Abgassystem für einen Kompressionszündungsmotor, das einen Einfangbereich für verflüchtigtes Platin aufweist
US9700841B2 (en) 2015-03-13 2017-07-11 Byd Company Limited Synergized PGM close-coupled catalysts for TWC applications
GB201504658D0 (en) * 2015-03-19 2015-05-06 Johnson Matthey Plc Exhaust system for a compression ignition engine having a capture face for volatilised platinum
US9951706B2 (en) 2015-04-21 2018-04-24 Clean Diesel Technologies, Inc. Calibration strategies to improve spinel mixed metal oxides catalytic converters
CA2997040A1 (en) * 2015-09-04 2017-03-09 Basf Se Integrated scr and ammonia oxidation catalyst systems
US10533472B2 (en) 2016-05-12 2020-01-14 Cdti Advanced Materials, Inc. Application of synergized-PGM with ultra-low PGM loadings as close-coupled three-way catalysts for internal combustion engines
GB201613849D0 (en) * 2016-08-12 2016-09-28 Johnson Matthey Plc Exhaust system for a compression ignition engine having a capture region for volatilised platinum
US9861964B1 (en) 2016-12-13 2018-01-09 Clean Diesel Technologies, Inc. Enhanced catalytic activity at the stoichiometric condition of zero-PGM catalysts for TWC applications
US10265684B2 (en) 2017-05-04 2019-04-23 Cdti Advanced Materials, Inc. Highly active and thermally stable coated gasoline particulate filters
US10738256B1 (en) 2017-12-22 2020-08-11 TerSol, LLC Fuel additive systems, compositions, and methods
CN113769757B (zh) * 2021-09-09 2023-06-16 武汉理工大学 原位光致热制备尖晶石结构Cu1.5Mn1.5O4催化剂的方法及其应用
CN113944937B (zh) * 2021-11-15 2022-08-09 浙江传化合成材料有限公司 顺丁橡胶废气高效处理及综合利用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101056692A (zh) * 2004-10-14 2007-10-17 催化溶液公司 降低柴油机微粒过滤器上颗粒物起燃温度的不含铂族金属的催化剂
JP4144174B2 (ja) * 2000-10-25 2008-09-03 トヨタ自動車株式会社 排ガス浄化装置
US20090324468A1 (en) * 2008-06-27 2009-12-31 Golden Stephen J Zero platinum group metal catalysts
WO2010029431A2 (en) * 2008-09-10 2010-03-18 Advent Technologies Internal reforming alcohol high temperature pem fuel cell
US20130115144A1 (en) * 2011-08-10 2013-05-09 Clean Diesel Technologies, Inc. Catalyst with Lanthanide-Doped Zirconia and Methods of Making

Family Cites Families (298)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3284370A (en) 1962-12-31 1966-11-08 Monsanto Co Alumina supported copper oxide-rare earth oxide catalyst compositions
US3473987A (en) 1965-07-13 1969-10-21 Du Pont Method of making thin-walled refractory structures
US3493325A (en) 1967-09-12 1970-02-03 Monsanto Co Process for catalytically treating exhaust gases
US4029738A (en) 1971-12-02 1977-06-14 Societe Francaise Des Produits Pour Catalyse Decomposing nitrogen oxides with nickel-iron-chromium catalysts
US3896616A (en) 1972-04-21 1975-07-29 Engelhard Min & Chem Process and apparatus
US3904553A (en) 1973-08-20 1975-09-09 Corning Glass Works Thermally stable composite base metal oxide catalysts
US4062810A (en) 1974-03-14 1977-12-13 Hoechst Aktiengesellschaft Carrier-supported catalyst
IL50024A (en) 1976-07-12 1979-05-31 Israel State Secondary cells
DE2745188C3 (de) 1977-10-07 1980-05-08 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt Geformter Katalysator, Verfahren zu seiner Herstellung und Verwendung
US4199328A (en) 1978-12-28 1980-04-22 Texaco Inc. Process for producing methane from naphtha
JPS5610334A (en) 1979-07-06 1981-02-02 Toyota Motor Corp Catalyst for cleaning up exhaust gas and manufacture of said catalyst
JPS5610333A (en) 1979-07-06 1981-02-02 Toyota Motor Corp Catalyst for cleaning up exhaust gas and manufacture of said catalyst
US4297150A (en) 1979-07-07 1981-10-27 The British Petroleum Company Limited Protective metal oxide films on metal or alloy substrate surfaces susceptible to coking, corrosion or catalytic activity
US4297328A (en) 1979-09-28 1981-10-27 Union Carbide Corporation Three-way catalytic process for gaseous streams
US4414023A (en) 1982-04-12 1983-11-08 Allegheny Ludlum Steel Corporation Iron-chromium-aluminum alloy and article and method therefor
JPS606061U (ja) 1983-06-25 1985-01-17 村井 邦彦 空気ハウスビニ−ル・ユニット膜
US4891050A (en) 1985-11-08 1990-01-02 Fuel Tech, Inc. Gasoline additives and gasoline containing soluble platinum group metal compounds and use in internal combustion engines
US5749928A (en) 1984-12-04 1998-05-12 Platinum Plus, Inc. Method for reducing emissions from or increasing the utilizable energy of fuel for powering internal combustion engines
US4892562A (en) 1984-12-04 1990-01-09 Fuel Tech, Inc. Diesel fuel additives and diesel fuels containing soluble platinum group metal compounds and use in diesel engines
JPS61146348A (ja) 1984-12-17 1986-07-04 Toyota Central Res & Dev Lab Inc 酸化触媒
US4686155A (en) 1985-06-04 1987-08-11 Armco Inc. Oxidation resistant ferrous base foil and method therefor
US4629472A (en) 1985-06-19 1986-12-16 Fuel Tech, Inc. Method and apparatus for improving combustion, thermal efficiency and reducing emissions by treating fuel
US4673556A (en) 1985-11-08 1987-06-16 General Motors Corporation Method of simultaneous oxidation of carbon monoxide and unburned fuel in methanol vehicle exhaust
US4790982A (en) 1986-04-07 1988-12-13 Katalistiks International, Inc. Metal-containing spinel composition and process of using same
DE8717392U1 (de) 1987-03-16 1989-05-18 Emitec Gesellschaft für Emissionstechnologie mbH, 5204 Lohmar Katalysator-Trägerkörper
US4906443A (en) 1987-10-26 1990-03-06 Ford Motor Company Construction, method of making and method of using alumina-supported, precious metal oxidation catalysts
US5584894A (en) 1992-07-22 1996-12-17 Platinum Plus, Inc. Reduction of nitrogen oxides emissions from vehicular diesel engines
US5501714A (en) 1988-12-28 1996-03-26 Platinum Plus, Inc. Operation of diesel engines with reduced particulate emission by utilization of platinum group metal fuel additive and pass-through catalytic oxidizer
US5693106A (en) 1992-07-22 1997-12-02 Platinum Plus, Inc. Platinum metal fuel additive for water-containing fuels
US5034020A (en) 1988-12-28 1991-07-23 Platinum Plus, Inc. Method for catalyzing fuel for powering internal combustion engines
CA1340871C (en) 1988-12-28 2000-01-04 Robert W. Epperly Method for reducing emissions from or increasing the utilizable energy of fuel for powering internal combustion engines
US6051040A (en) 1988-12-28 2000-04-18 Clean Diesel Technologies, Inc. Method for reducing emissions of NOx and particulates from a diesel engine
US5266083A (en) 1988-12-28 1993-11-30 Platinum Plus, Inc. Method for reducing pollution emissions from a diesel engine
DE3940758A1 (de) 1989-12-09 1991-06-13 Degussa Verfahren zur reinigung der abgase von dieselmotoren
US5238898A (en) 1989-12-29 1993-08-24 Mobil Oil Corp. Catalyst and process for upgrading methane to higher hydrocarbons
JP3091246B2 (ja) 1990-04-03 2000-09-25 日本碍子株式会社 耐熱性金属質モノリス及びその製造方法
ES2119761T3 (es) 1990-04-03 1998-10-16 Ngk Insulators Ltd Monolito metalico termorresistente y procedimiento para su fabricacion.
US5063193A (en) 1990-06-06 1991-11-05 General Motors Corporation Base metal automotive exhaust catalysts with improved activity and stability and method of making the catalysts
US5168836A (en) 1990-08-08 1992-12-08 Catalytic Solutions, Inc. Emission control system
CN1060793A (zh) 1990-10-22 1992-05-06 华东化工学院 非贵金属三效催化剂
US5203166A (en) 1991-02-22 1993-04-20 Miller John W Method and apparatus for treating diesel exhaust gas to remove fine particulate matter
US5162284A (en) 1991-08-05 1992-11-10 Exxon Research And Engineering Co. Copper promoted cobalt-manganese spinel catalyst and method for making the catalyst for Fischer-Tropsch synthesis
US5185305A (en) 1991-11-08 1993-02-09 Ford Motor Company Catalyst system for treating the exhaust from a lean-burn gasoline-fueled engine
US5175132A (en) 1991-11-19 1992-12-29 Ketcham Thomas D Sinterable ceramic compositions
DE4213018C1 (de) 1992-04-21 1993-12-09 Degussa Katalysator zur oxidativen Reinigung der Abgase von Dieselmotoren
US5747410A (en) 1992-07-03 1998-05-05 Kabushiki Kaisha Riken Exhaust gas cleaner and method of cleaning exhaust gas
US5743922A (en) 1992-07-22 1998-04-28 Nalco Fuel Tech Enhanced lubricity diesel fuel emulsions for reduction of nitrogen oxides
US5580553A (en) 1992-08-21 1996-12-03 Nippon Starch Chemical Co., Ltd. Cosmetic composition containing alkenylsuccinic acid ester of saccharide
ATE196496T1 (de) 1992-11-10 2000-10-15 Clean Diesel Tech Inc Methode zur herabsetzung des schadstoffausstosses aus einem mit einer partikelfalle versehenem dieselmotor
EP0605251A1 (en) 1992-12-28 1994-07-06 Kabushiki Kaisha Riken Exhaust gas cleaner
GB9227152D0 (en) 1992-12-31 1993-02-24 Dow Corning Process for loading ceramic monolith with catalyst
US6003303A (en) 1993-01-11 1999-12-21 Clean Diesel Technologies, Inc. Methods for reducing harmful emissions from a diesel engine
US5364517A (en) 1993-02-19 1994-11-15 Chevron Research And Technology Company Perovskite-spinel FCC NOx reduction additive
JPH09500164A (ja) 1993-07-12 1997-01-07 プラチナム プラス インコーポレーテッド ディーゼルエンジンからのNOx及び微粒子の排出を減少させる方法
US5404841A (en) 1993-08-30 1995-04-11 Valentine; James M. Reduction of nitrogen oxides emissions from diesel engines
US5968462A (en) 1994-02-04 1999-10-19 Toyota Jidosha Kabushiki Kaisha Process for purifying exhaust gases
US5708233A (en) 1994-02-22 1998-01-13 Kabushiki Kaisha Ohara Thermoelectric semiconductor material
US6232253B1 (en) 1994-09-23 2001-05-15 Ford Global Technologies, Inc. Sol-gel alumina membrane for lean NOx catalysts and method of making same
US5732548A (en) 1994-10-07 1998-03-31 Platinum Plus, Inc. Method for reducing harmful emissions from two-stroke engines
KR0136893B1 (ko) 1994-11-03 1998-04-25 강박광 선택적 촉매환원에 의한 배기가스중의 질소산화물의 제거방법
DE19546484A1 (de) 1995-12-13 1997-07-10 Daimler Benz Ag Verfahren zum Betreiben einer Reinigungsanlage für Gase sowie eine Reinigungsanlage für Gase
US5721188A (en) 1995-01-17 1998-02-24 Engelhard Corporation Thermal spray method for adhering a catalytic material to a metallic substrate
US6129834A (en) 1995-05-05 2000-10-10 W. R. Grace & Co. -Conn. NOx reduction compositions for use in FCC processes
CA2227141A1 (en) 1995-07-18 1997-02-06 Clean Diesel Technologies, Inc. Methods for reducing harmful emissions from a diesel engine
WO1997009523A1 (en) 1995-09-01 1997-03-13 Clean Diesel Technologies, Inc. Methods for improving the operation of a catalyzed engine
US5898015A (en) 1995-09-19 1999-04-27 Ngk Spark Plug Co., Ltd. Material for absorbing nitrogen oxides comprising hollandite-type complex oxide
DE29517373U1 (de) 1995-11-02 1996-03-07 Trw Repa Gmbh Gassack-Seitenaufprall-Schutzeinrichtung für Fahrzeuginsassen
DE19546481C2 (de) 1995-12-13 1998-08-13 Daimler Benz Ag Katalysator und Verfahren zu dessen Herstellung und Verwendung desselben
AU2253597A (en) 1996-01-31 1997-08-22 Clean Diesel Technologies, Inc. Method and apparatus for reducing harmful emissions from a diesel engine by post combustion catalyst injection
US6696389B1 (en) 1996-02-23 2004-02-24 Daimlerchrysler Ag Process and apparatus for cleaning a gas flow
WO1997036676A1 (en) 1996-04-02 1997-10-09 Clean Diesel Technologies, Inc. Method and apparatus for reducing harmful emissions from a diesel engine by urea injection scr
JPH09271665A (ja) 1996-04-04 1997-10-21 Nippon Soken Inc 排気ガス浄化触媒
US5977017A (en) 1996-04-10 1999-11-02 Catalytic Solutions, Inc. Perovskite-type metal oxide compounds
US7014825B2 (en) 1996-04-10 2006-03-21 Catalytic Solutions, Inc. Perovskite-type metal oxide compounds and methods of making and using thereof
US5939354A (en) 1996-04-10 1999-08-17 Catalytic Solutions, Inc. Perovskite-type metal oxide compounds and method for preparing the compounds
JP3454334B2 (ja) 1996-06-18 2003-10-06 トヨタ自動車株式会社 排気浄化方法及びその装置
US5809774A (en) 1996-11-19 1998-09-22 Clean Diesel Technologies, Inc. System for fueling and feeding chemicals to internal combustion engines for NOx reduction
AU5445598A (en) 1996-11-20 1998-06-10 Clean Diesel Technologies, Inc. Selective catalytic no reduction utilizing urea without catalyst fouling
US6921738B2 (en) 1996-12-06 2005-07-26 Engelhard Corporation Catalytic metal plate
WO1998028070A1 (en) 1996-12-20 1998-07-02 Clean Diesel Technologies, Inc. Method and apparatus for reducing harmful emissions from a lean-burn engine by urea injection scr
ES2232936T3 (es) 1997-01-31 2005-06-01 Clean Diesel Technologies Inc. Metodo para reducir emisiones de un motor de gasolina equipado con un convertidor catalitico de tres vias.
US5921080A (en) 1997-03-07 1999-07-13 The Lubrizol Corporation Oxidation catalytic converter system for small spark ignited engines
US6361754B1 (en) 1997-03-27 2002-03-26 Clean Diesel Technologies, Inc. Reducing no emissions from an engine by on-demand generation of ammonia for selective catalytic reduction
US5976475A (en) 1997-04-02 1999-11-02 Clean Diesel Technologies, Inc. Reducing NOx emissions from an engine by temperature-controlled urea injection for selective catalytic reduction
US6063350A (en) 1997-04-02 2000-05-16 Clean Diesel Technologies, Inc. Reducing nox emissions from an engine by temperature-controlled urea injection for selective catalytic reduction
US5809775A (en) 1997-04-02 1998-09-22 Clean Diesel Technologies, Inc. Reducing NOx emissions from an engine by selective catalytic reduction utilizing solid reagents
US5924280A (en) 1997-04-04 1999-07-20 Clean Diesel Technologies, Inc. Reducing NOx emissions from an engine while maximizing fuel economy
TW509719B (en) 1997-04-17 2002-11-11 Clean Diesel Tech Inc Method for reducing emissions from a diesel engine
US5968464A (en) 1997-05-12 1999-10-19 Clean Diesel Technologies, Inc. Urea pyrolysis chamber and process for reducing lean-burn engine NOx emissions by selective catalytic reduction
DE19724545A1 (de) 1997-06-11 1998-12-24 Basf Ag Speicherkatalysator
US6124130A (en) 1998-08-10 2000-09-26 Clean Diesel Technologies, Inc. Microbial catalyst for desulfurization of fossil fuels
US6279603B1 (en) 1998-10-01 2001-08-28 Ambac International Fluid-cooled injector
JP2002530175A (ja) 1998-11-20 2002-09-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コードレス走査ヘッドの充電器を備える超音波診断イメージングシステム
CA2349846A1 (en) 1998-11-24 2000-06-02 Clean Diesel Technologies, Inc. Catalyzed particulate oxidizer for reducing particulate emissions from a diesel engine and method
EP1180063A2 (en) 1999-04-19 2002-02-20 Engelhard Corporation Catylyst composition comprising ceria and a platinum group metal
AU4465000A (en) 1999-04-26 2000-11-10 Ferro Corporation Continuous calcination of mixed metal oxides
WO2000075643A1 (en) 1999-06-09 2000-12-14 Clean Diesel Technologies, Inc. METHODS AND COMPOSITIONS FOR ASSURING REDUCTION OF NOx EMISSIONS FROM AN ENGINE BY SELECTIVE CATALYTIC REDUCTION
US6293096B1 (en) 1999-06-23 2001-09-25 Southwest Research Institute Multiple stage aftertreatment system
US6573213B1 (en) 1999-07-16 2003-06-03 Degussa Ag Metal catalysts
US6632557B1 (en) 1999-10-26 2003-10-14 The Gillette Company Cathodes for metal air electrochemical cells
WO2001037988A1 (fr) 1999-11-25 2001-05-31 Kawasaki Jukogyo Kabushiki Kaisha Catalyseur pour la reaction exothermique ou endothermique, catalyseur pour la reaction de conversion et catalyseur pour l'oxydation selective de monoxyde de carbone et reformeur du type a echange de chaleur a ailette en plaques
EP1246691A4 (en) 1999-12-20 2004-11-10 Eltron Research Inc CATALYSTS AND METHOD FOR DESTROYING VOC IN AIR AT LOW TEMPERATURE AND SELECTIVE REMOVAL OF CO
JP3489048B2 (ja) 2000-02-01 2004-01-19 日産自動車株式会社 排気ガス浄化用触媒
US6606856B1 (en) 2000-03-03 2003-08-19 The Lubrizol Corporation Process for reducing pollutants from the exhaust of a diesel engine
AU2001259623A1 (en) 2000-05-08 2001-11-20 Clean Diesel Technologies, Inc. Low-emissions diesel fuel
US7063729B2 (en) 2000-05-09 2006-06-20 Clean Diesel Technologies, Inc. Low-emissions diesel fuel
DE10023439A1 (de) 2000-05-12 2001-11-22 Dmc2 Degussa Metals Catalysts Verfahren zur Entfernung von Stickoxiden und Rußpartikeln aus dem mageren Abgas eines Verbrennungsmotors und Abgasreinigungssystem hierfür
US20050188605A1 (en) 2000-08-01 2005-09-01 Valentine James M. Reduced-emissions combustion utilizing multiple-component metallic combustion catalyst
US20050160663A1 (en) 2000-08-01 2005-07-28 Valentine James M. Cleaner burning diesel fuel
AU2001280939A1 (en) 2000-08-01 2002-02-13 Clean Diesel Technologies, Inc. Low-emissions diesel fuel blend
CA2423859A1 (en) 2000-09-28 2002-04-04 Clean Diesel Technologies, Inc. Low-emissions diesel fuel emulsions
US6468941B1 (en) * 2000-10-17 2002-10-22 Delphi Technologies, Inc. Niobium containing zirconium-cerium based soild solutions
US7641875B1 (en) 2000-11-15 2010-01-05 Catalytic Solutions, Inc. Mixed-phase ceramic oxide three-way catalyst formulations and methods for preparing the catalysts
US6624113B2 (en) 2001-03-13 2003-09-23 Delphi Technologies, Inc. Alkali metal/alkaline earth lean NOx catalyst
US6576587B2 (en) 2001-03-13 2003-06-10 Delphi Technologies, Inc. High surface area lean NOx catalyst
US6696386B2 (en) 2001-05-10 2004-02-24 Matsushita Electric Industrial Co., Ltd. Exhaust gas purification catalyst and exhaust gas purification material
KR100392943B1 (ko) 2001-05-16 2003-07-28 (주)케이에이치 케미컬 디젤엔진 배기가스의 정화용 촉매
JP5189236B2 (ja) 2001-07-25 2013-04-24 日本碍子株式会社 排ガス浄化用ハニカム構造体及び排ガス浄化用ハニカム触媒体
EP1287886A1 (de) 2001-08-09 2003-03-05 OMG AG & Co. KG Katalysator für die Reinigung der Abgase eines Verbrennungsmotors
ATE391546T1 (de) 2001-11-09 2008-04-15 Clean Diesel Tech Inc Stufenlos einstellbare steuerung von umweltverschmutzung verringernden chemikalien für verbrennungsquellen
EP1316354A1 (de) 2001-11-30 2003-06-04 OMG AG &amp; Co. KG Katalysator zur Verminderung der Stickoxide im Abgas von Magermotoren
US20050160724A1 (en) 2002-02-04 2005-07-28 Valentine James M. Reduced-emissions combustion utilizing multiple-component metallic combustion catalyst and lightly catalyzed diesel oxidation catalyst
US20050164139A1 (en) 2002-02-04 2005-07-28 Valentine James M. Reduced-emissions combustion utilizing multiple-component metallic combustion catalyst and lightly catalyzed diesel particulate filter
US6948926B2 (en) 2002-02-04 2005-09-27 Clean Diesel Technologies, Inc. Reduced-emissions combustion utilizing multiple-component metallic combustion catalyst
AU2003216202A1 (en) 2002-02-12 2003-09-04 Clean Diesel Technologies, Inc. Multi-stage exhaust gas purifier
AU2003211985A1 (en) 2002-02-15 2003-09-04 Ict Co., Ltd. Catalyst for clarifying exhaust emission from internal combustion engine, method for preparation thereof, and method for clarifying exhaust emission from internal combustion engine
US6915629B2 (en) 2002-03-07 2005-07-12 General Motors Corporation After-treatment system and method for reducing emissions in diesel engine exhaust
US20040172876A1 (en) 2002-03-22 2004-09-09 Sprague Barry N. Catalytic metal additive concentrate and method of making and using
JP2003293729A (ja) 2002-04-02 2003-10-15 Purearth Inc 炭素粒子の減少装置
EP1356864A1 (en) 2002-04-18 2003-10-29 Ford Global Technologies, Inc., A subsidiary of Ford Motor Company Platinum-group-metal free catalytic washcoats for particulate exhaust gas filter applications
US7332135B2 (en) 2002-10-22 2008-02-19 Ford Global Technologies, Llc Catalyst system for the reduction of NOx and NH3 emissions
US7071141B2 (en) 2002-10-24 2006-07-04 Ford Global Technologies, Llc Perovskite catalyst system for lean burn engines
US6946013B2 (en) 2002-10-28 2005-09-20 Geo2 Technologies, Inc. Ceramic exhaust filter
DE10252103A1 (de) 2002-11-08 2004-05-27 Süd-Chemie AG Ce/Cu/Mn-Katalysatoren
US20050265920A1 (en) 2002-11-11 2005-12-01 Conocophillips Company Supports and catalysts comprising rare earth aluminates, and their use in partial oxidation
US6774080B2 (en) 2002-11-25 2004-08-10 Delphi Technologies, Inc. Gas treatment device comprising SMSI material and methods for making and using the same
AU2003299644A1 (en) 2002-12-17 2004-07-22 Clean Diesel Technologies, Inc. Nox control for ic engines
US7160832B2 (en) 2003-06-16 2007-01-09 Umicore Ag & Co. Kg Catalyst system for generating carbon monoxide for use with automotive catalysts
WO2005060519A2 (en) 2003-12-05 2005-07-07 Intercat, Inc. Mixed metal oxide sorbents
US7875250B2 (en) 2003-12-11 2011-01-25 Umicore Ag & Co. Kg Exhaust treatment device, and methods of making the same
US20090004083A1 (en) 2003-12-17 2009-01-01 Valentine James M NOx control for IC engines
JP2005180262A (ja) 2003-12-18 2005-07-07 Tetsuo Toyoda 粒子状物質の減少装置
US7291576B2 (en) 2003-12-30 2007-11-06 Ford Global Technologies, Llc SOx trap for diesel and lean-burn gasoline automotive applications
US20050197244A1 (en) 2004-03-05 2005-09-08 L'vovich Moroz B. Exhaust treatment system and catalyst system
US7216681B2 (en) 2004-03-05 2007-05-15 Clean Diesel Technologies, Inc. Gravity feed ball-in-seat valve with extension unit for dosing fuel additives
JP4199691B2 (ja) 2004-03-25 2008-12-17 田中貴金属工業株式会社 触媒
US7374729B2 (en) 2004-03-30 2008-05-20 Basf Catalysts Llc Exhaust gas treatment catalyst
US20060166816A1 (en) 2004-06-23 2006-07-27 Catalytic Solutions, Inc. Catalysts and processes for selective hydrogenation of acetylene and dienes in light olefin feedstreams
GB2430979B (en) 2004-07-01 2008-06-11 Clean Diesel Tech Inc Fuel additive concentrate dosing system
GB0420245D0 (en) 2004-09-13 2004-10-13 Johnson Matthey Plc Improvements in catalyst coatings
US7129194B2 (en) 2004-09-23 2006-10-31 Corning Incorporated Catalyst system with improved corrosion resistance
EP1656993A1 (en) 2004-11-03 2006-05-17 Albemarle Netherlands B.V. Alkylation catalyst, its preparation and use
WO2006064684A1 (ja) 2004-12-14 2006-06-22 Nissan Motor Co., Ltd. 触媒、排ガス浄化触媒、及び触媒の製造方法
CA2592259A1 (en) 2004-12-23 2006-07-06 Clean Diesel Technologies, Inc. Engine-on pulsed fuel additive concentrate dosing system and controller
WO2006093802A2 (en) 2005-02-28 2006-09-08 Catalytic Solutions, Inc. Catalyst and method for reducing nitrogen oxides in exhaust streams with hydrocarbons or alcohols
DE102005019000A1 (de) 2005-04-22 2006-10-26 Degussa Ag Katalytisch beschichteter Träger, Verfahren zu dessen Herstellung und damit ausgestatteter Reaktor sowie dessen Verwendung
US20060260185A1 (en) 2005-04-28 2006-11-23 Clean Diesel Technologies, Inc. Fuel Additive and Catalyst Treatment Process
FR2886636B1 (fr) 2005-06-02 2007-08-03 Inst Francais Du Petrole Materiau inorganique presentant des nanoparticules metalliques piegees dans une matrice mesostructuree
US7803338B2 (en) 2005-06-21 2010-09-28 Exonmobil Research And Engineering Company Method and apparatus for combination catalyst for reduction of NOx in combustion products
WO2007000825A1 (ja) 2005-06-27 2007-01-04 Ibiden Co., Ltd. ハニカム構造体
US20070015656A1 (en) 2005-07-18 2007-01-18 Valentine James M Fuel Additive and Fuel Treatment Process
US8242045B2 (en) 2006-01-12 2012-08-14 Siemens Energy, Inc. Ceramic wash-coat for catalyst support
FR2898887B1 (fr) 2006-03-21 2008-05-02 Rhodia Recherches & Tech Composition a base d'oxyde de zirconium et d'oxyde de cerium a reductibilite elevee et a surface specifique stable procede de preparation et utilisation dans le traitement des gaz d'echappement
US7943104B2 (en) 2006-04-13 2011-05-17 Umicore Ag & Co. Kg CE-ZR based solid solutions and methods for making and using the same
JP5165677B2 (ja) 2006-05-18 2013-03-21 クリーン ディーゼル テクノロジーズ インコーポレーテッド ディーゼルパティキュレート制御における改良
US7576031B2 (en) 2006-06-09 2009-08-18 Basf Catalysts Llc Pt-Pd diesel oxidation catalyst with CO/HC light-off and HC storage function
CN101528344A (zh) 2006-06-12 2009-09-09 纳诺西公司 用于将钙钛矿基催化剂的催化活性最佳化的方法
JP4784647B2 (ja) 2006-06-15 2011-10-05 株式会社村田製作所 熱電材料
US7749472B2 (en) 2006-08-14 2010-07-06 Basf Corporation Phosgard, a new way to improve poison resistance in three-way catalyst applications
US8389432B2 (en) 2006-09-25 2013-03-05 Umicore Ag & Co. Kg Structured automotive catalyst with improved thermal ageing stability
WO2008064152A2 (en) 2006-11-20 2008-05-29 Nanostellar, Inc. Method for producing heterogeneous catalysts containing metal nanoparticles
US7534738B2 (en) 2006-11-27 2009-05-19 Nanostellar, Inc. Engine exhaust catalysts containing palladium-gold
US20080190099A1 (en) 2006-12-20 2008-08-14 Aleksey Yezerets System and method for inhibiting uncontrolled regeneration of a particulate filter for an internal combustion engine
US7767175B2 (en) 2007-01-09 2010-08-03 Catalytic Solutions, Inc. Ammonia SCR catalyst and method of using the catalyst
US8802582B2 (en) 2007-01-09 2014-08-12 Catalytic Solutions, Inc. High temperature ammonia SCR catalyst and method of using the catalyst
US7527776B2 (en) 2007-01-09 2009-05-05 Catalytic Solutions, Inc. Ammonia SCR catalyst and method of using the catalyst
JP2008221200A (ja) 2007-02-16 2008-09-25 Japan Science & Technology Agency 酸素含有炭化水素の改質触媒、それを用いた水素又は合成ガスの製造方法及び燃料電池システム
DE102007042618A1 (de) 2007-09-07 2009-03-12 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zur Erzeugung einer Oxidschicht auf einer metallischen Folie, Folie mit Oxidschicht und daraus hergestellter Wabenkörper
US20090220697A1 (en) 2008-02-29 2009-09-03 William Peter Addiego Washcoat composition and methods of making and using
FR2928364B1 (fr) 2008-03-05 2011-10-14 Rhodia Operations Composition a base d'un oxyde de zirconium,d'un oxyde de titane ou d'un oxyde mixte de zirconium et de titane sur un support en alumine,procedes de preparation et utilisation comme catalyseur
US7998444B2 (en) 2008-04-30 2011-08-16 Johnson Matthey Inc. Method of reducing nitrogen oxides in a gas stream with vaporized ammonia
US8716165B2 (en) 2008-04-30 2014-05-06 Corning Incorporated Catalysts on substrates and methods for providing the same
US8220274B2 (en) 2008-05-15 2012-07-17 Johnson Matthey Inc. Emission reduction method for use with a heat recovery steam generation system
US8496896B2 (en) 2008-06-27 2013-07-30 Catalytic Solutions, Inc. Zero platinum group metal catalysts
KR100962082B1 (ko) 2008-07-31 2010-06-09 희성촉매 주식회사 수소를 이용한 질소산화물의 환원제거용 촉매 및 이를이용한 질소산화물의 환원제거 방법
US20100081563A1 (en) 2008-09-26 2010-04-01 Andrew Edgar-Beltran Adhesion and coating integrity of washcoats and overcoats
US8524185B2 (en) 2008-11-03 2013-09-03 Basf Corporation Integrated SCR and AMOx catalyst systems
KR100999635B1 (ko) 2008-11-21 2010-12-08 기아자동차주식회사 디젤 산화 촉매 및 이를 구비한 배기 장치
US20100152032A1 (en) 2008-12-16 2010-06-17 Basf Catalysts Llc Aircraft Air Treatment Catalysts, Systems and Methods
US20100168449A1 (en) 2008-12-29 2010-07-01 Grey Roger A Spray dried zeolite catalyst
US8211392B2 (en) 2009-01-16 2012-07-03 Basf Corporation Diesel oxidation catalyst composite with layer structure for carbon monoxide and hydrocarbon conversion
JP5483539B2 (ja) 2009-02-04 2014-05-07 日本碍子株式会社 接合方法
US8148295B2 (en) 2009-02-16 2012-04-03 Millennium Inorganic Chemicals, Inc. Catalyst promoters in vanadium-free mobile catalyst
US8513155B2 (en) 2009-03-16 2013-08-20 GM Global Technology Operations LLC Perovskite-type compounds for use in lean NOx traps
US8409518B2 (en) 2009-03-16 2013-04-02 GM Global Technology Operations LLC Sulfur tolerant perovskite supported catalysts
US10792647B2 (en) 2009-04-21 2020-10-06 Johnson Matthey Public Limited Company Base metal catalysts for the oxidation of carbon monoxide and volatile organic compounds
US8906330B2 (en) 2009-05-04 2014-12-09 Basf Corporation Lean HC conversion of TWC for lean burn gasoline engines
US8246923B2 (en) 2009-05-18 2012-08-21 Umicore Ag & Co. Kg High Pd content diesel oxidation catalysts with improved hydrothermal durability
KR101803107B1 (ko) 2009-05-20 2017-11-29 다나카 기킨조쿠 고교 가부시키가이샤 린번 엔진용 촉매
US8522536B2 (en) 2009-05-21 2013-09-03 Southwest Research Institute Exhaust aftertreatment systems for gasoline and alternative-fueled engines, with reduction of HC, CO, NOx, and PM
JP5436060B2 (ja) 2009-06-10 2014-03-05 本田技研工業株式会社 排ガス浄化用酸化触媒装置
DE102009056145B3 (de) 2009-11-27 2011-07-28 Süd-Chemie AG, 80333 Beschichtungssuspension zur Beschichtung von Katalysatorsubstraten
KR101654944B1 (ko) 2009-12-02 2016-09-06 다나까 홀딩스 가부시끼가이샤 혼합 상 세라믹 산화물 3원 촉매 제제 및 상기 촉매의 제조 방법
US20120015801A1 (en) 2010-07-15 2012-01-19 Airflow Catalyst Systems Process for preparation of a zeolite-based catalyst
US7951976B1 (en) 2010-08-15 2011-05-31 King Abdulaziz City for Science and Technology (KACST) Synthesizing and utilizing novel nano crystalline zinc chromate supported nano palladium catalyst
BR112013006304A2 (pt) 2010-09-15 2016-06-07 Basf Se catalisador, e, processo para produzir um catalisador
US8323599B2 (en) 2010-11-22 2012-12-04 Umicore Ag & Co. Kg Three-way catalyst having an upstream multi-layer catalyst
CN103370131B (zh) 2011-01-05 2016-05-11 本田技研工业株式会社 废气净化用催化剂和废气净化用催化剂结构体
CN102172527B (zh) 2011-01-28 2013-04-10 华南理工大学 超声-氢气还原制备挥发性有机化合物氧化催化剂的方法
ES2773259T3 (es) 2011-06-03 2020-07-10 North Western Univ Composición de catalizador metálico
JP5644739B2 (ja) 2011-06-24 2014-12-24 株式会社デンソー 排ガス浄化触媒
US20140163283A1 (en) 2011-07-07 2014-06-12 Universite Catholique De Louvain Method of carrying out cc-coupling reactions using oxide supported pd-catalysts
WO2013022958A1 (en) 2011-08-10 2013-02-14 Clean Diesel Technologies, Inc. Palladium solid solution castalyst and methods of making
US8679433B2 (en) 2011-08-19 2014-03-25 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
CN104024592B (zh) 2011-09-23 2017-05-10 舒宾公司 混合相氧化物催化剂
EP2776156A1 (en) 2011-11-07 2014-09-17 Solvay SA A catalyst for direct synthesis of hydrogen peroxide comprising zirconium oxide
TWI440605B (zh) 2011-11-23 2014-06-11 Nat Univ Tsing Hua 應用於化學迴圈燃燒程序中之載氧體
FI123812B (fi) 2012-02-17 2013-11-15 Ecocat Oy Pinnoite typen oksidien pelkistämiseksi
EP2650042B2 (en) 2012-04-13 2020-09-02 Umicore AG & Co. KG Pollutant abatement system for gasoline vehicles
US8668890B2 (en) 2012-04-26 2014-03-11 Basf Corporation Base metal catalyst composition and methods of treating exhaust from a motorcycle
US9511355B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) System and methods for using synergized PGM as a three-way catalyst
US9259716B2 (en) 2013-03-15 2016-02-16 Clean Diesel Technologies, Inc. Oxidation catalyst systems compositions and methods thereof
US9511350B2 (en) 2013-05-10 2016-12-06 Clean Diesel Technologies, Inc. (Cdti) ZPGM Diesel Oxidation Catalysts and methods of making and using same
US9517449B2 (en) 2013-06-26 2016-12-13 Clean Diesel Technologies, Inc. Optimization of washcoat adhesion of zero-PGM catalyst on metallic substrates
US9216408B2 (en) 2013-04-04 2015-12-22 Clean Diesel Technologies, Inc. System and method for two and three way mixed metal oxide ZPGM catalyst
US20140274674A1 (en) 2013-03-15 2014-09-18 Cdti Influence of Support Oxide Materials on Coating Processes of ZPGM Catalyst Materials for TWC Applications
US9216383B2 (en) 2013-03-15 2015-12-22 Clean Diesel Technologies, Inc. System and method for two and three way ZPGM catalyst
US20140271388A1 (en) 2013-03-15 2014-09-18 Cdti Formation and Stability of Cu-Mn Spinel Phase for ZPGM Catalyst Systems
US8858903B2 (en) 2013-03-15 2014-10-14 Clean Diesel Technology Inc Methods for oxidation and two-way and three-way ZPGM catalyst systems and apparatus comprising same
US20140271384A1 (en) 2013-03-15 2014-09-18 Cdti System and Methods for using Copper- Manganese- Iron Spinel as Zero PGM Catalyst for TWC Applications
US9227177B2 (en) 2013-03-15 2016-01-05 Clean Diesel Technologies, Inc. Coating process of Zero-PGM catalysts and methods thereof
US20140274677A1 (en) 2013-03-15 2014-09-18 Cdti System and Method for Optimized Oxygen Storage Capacity and Stability of OSM Without Rare Metals
US20140271391A1 (en) 2013-03-15 2014-09-18 Cdti ZPGM TWC Systems Compositions and Methods Thereof
US20140274662A1 (en) 2013-03-15 2014-09-18 Cdti Systems and Methods for Variations of ZPGM Oxidation Catalysts Compositions
US20140271390A1 (en) 2013-03-15 2014-09-18 Cdti ZPGM Catalyst Systems and Methods of Making Same
US20140271387A1 (en) 2013-03-15 2014-09-18 Cdti Optimal Composition of Copper-Manganese Spinel in ZPGM Catalyst for TWC Applications
US9216382B2 (en) 2013-03-15 2015-12-22 Clean Diesel Technologies, Inc. Methods for variation of support oxide materials for ZPGM oxidation catalysts and systems using same
US20150105242A1 (en) 2013-03-22 2015-04-16 Clean Diesel Technologies, Inc. Influence of Base Metal Loadings on TWC Performance of ZPGM Catalysts
US9610570B2 (en) 2013-03-22 2017-04-04 Clean Diesel Technologies, Inc. Methods and processes of coating zero-PGM catalysts including with Cu, Mn, Fe for TWC applications
US9216409B2 (en) 2013-03-22 2015-12-22 Clean Diesel Technologies, Inc. Systems and methods for zero-PGM binary catalyst having Cu, Mn, and Fe for TWC applications
US9073011B2 (en) 2013-04-04 2015-07-07 Randal Hatfield Systems and methods for diesel oxidation catalyst with decreased SO3 emissions
US20140298714A1 (en) 2013-04-04 2014-10-09 Cdti Fuel Borne Catalysts for Sulfur Rich Fuels
US20140302983A1 (en) 2013-04-04 2014-10-09 Cdti System and Method for Two and Three Way NB-ZR Catalyst
US20140301906A1 (en) 2013-04-04 2014-10-09 Cdti Three Way Catalyst Double Impregnation Composition and Method Thereof
US20140301909A1 (en) 2013-04-04 2014-10-09 Cdti System and Method for ZPGM Catalytic Converters
US20140335625A1 (en) 2013-05-10 2014-11-13 Cdti Temperature Control Method in a Laboratory Scale Reactor
US20140334978A1 (en) 2013-05-10 2014-11-13 Cdti System and Apparatus for a Laboratory Scale Reactor
US20140336038A1 (en) 2013-05-10 2014-11-13 Cdti ZPGM Catalytic Converters (TWC application)
US20140334990A1 (en) 2013-05-10 2014-11-13 Cdti ZPGM Diesel Oxidation Catalyst Systems and Methods Thereof
US20140335626A1 (en) 2013-05-10 2014-11-13 Cdti Test Bench Gas Flow Control System and Method
US20140336044A1 (en) 2013-05-10 2014-11-13 Cdti Copper-Manganese Spinel Catalysts and Methods of Making Same
US20140336045A1 (en) 2013-05-10 2014-11-13 Cdti Perovskite and Mullite-like Structure Catalysts for Diesel Oxidation and Method of Making Same
US20140357475A1 (en) 2013-05-29 2014-12-04 Cdti Systems and Methods Using Cu-Mn Spinel Catalyst on Varying Carrier Material Oxides for TWC Applications
WO2014194101A1 (en) 2013-05-29 2014-12-04 Clean Diesel Technologies, Inc. Zpgm diesel oxidation catalyst systems
US9498767B2 (en) 2013-05-29 2016-11-22 Clean Diesel Technologies, Inc. (Cdti) Systems and methods for providing ZPGM perovskite catalyst for diesel oxidation applications
US20140357479A1 (en) 2013-05-29 2014-12-04 Cdti Variations for Synthesizing Zero Platinum Group Metal Catalyst Systems
PL235905B1 (pl) 2013-06-05 2020-11-16 Univ Jagiellonski Monolityczny katalizator do równoczesnego usuwania NOx i cząstek węglowych w szczególności z gazów odlotowych elektrowni węglowych oraz sposób wytwarzania monolitycznego katalizatora do równoczesnego usuwania NOx i cząstek węglowych w szczególności z gazów odlotowych elektrowni węglowych
US9216410B2 (en) 2013-06-06 2015-12-22 Clean Diesel Technologies, Inc. Systems and methods for using Pd1+ in a TWC
US20160023188A1 (en) 2013-06-06 2016-01-28 Clean Diesel Technologies, Inc. Pseudo-brookite Compositions as Active Zero-PGM Catalysts for Diesel Oxidation Applications
US20150182954A1 (en) 2013-06-06 2015-07-02 Clean Diesel Technologies, Inc. Phase Stability of Lanthanum-Manganese Perovskite in the Mixture of Metal Oxides
US9771534B2 (en) 2013-06-06 2017-09-26 Clean Diesel Technologies, Inc. (Cdti) Diesel exhaust treatment systems and methods
US20150005157A1 (en) 2013-06-26 2015-01-01 Cdti Optimization of Zero-PGM Catalyst Systems on Metallic Substrates
US20150004709A1 (en) 2013-06-26 2015-01-01 Cdti Methods for Identification of Materials Causing Corrosion on Metallic Substrates within ZPGM Catalyst Systems
US20150005159A1 (en) 2013-06-26 2015-01-01 Cdti Optimization of Zero-PGM Metal Loading on Metallic Substrates
US20150018205A1 (en) 2013-07-12 2015-01-15 Zahra Nazarpoor Optimum Loading of Copper-Manganese Spinel on TWC Performance and Stability of ZPGM Catalyst Systems
US20150018204A1 (en) 2013-07-12 2015-01-15 Cdti Minimizing Washcoat Adhesion Loss of Zero-PGM Catalyst Coated on Metallic Substrate
US9545626B2 (en) 2013-07-12 2017-01-17 Clean Diesel Technologies, Inc. Optimization of Zero-PGM washcoat and overcoat loadings on metallic substrate
US8969228B2 (en) 2013-07-12 2015-03-03 Clean Diesel Technologies, Inc. Process for elimination of hexavalent chromium compounds on metallic substrates within zero-PGM catalyst systems
US20150018202A1 (en) 2013-07-12 2015-01-15 Cdti Variations of Loading of Zero-PGM Oxidation Catalyst on Metallic Substrate
US20150031268A1 (en) 2013-07-25 2015-01-29 Nigel Waites Toy vehicle with telemetrics and track system and method
US20150050742A1 (en) 2013-08-16 2015-02-19 Cdti Analysis of Occurrence of Corrosion Products with ZPGM and PGM Catalysts Coated on Metallic Substrates
US20150051067A1 (en) 2013-08-19 2015-02-19 Cdti Oxygen storage material without rare earth metals
US8853121B1 (en) 2013-10-16 2014-10-07 Clean Diesel Technology Inc. Thermally stable compositions of OSM free of rare earth metals
US20150105245A1 (en) 2013-10-16 2015-04-16 Cdti Zero-PGM Catalyst with Oxygen Storage Capacity for TWC Systems
US20150258496A1 (en) 2013-11-26 2015-09-17 Clean Diesel Technologies, Inc. Hybrid PGM-ZPGM TWC Exhaust Treatment Systems
US20150147239A1 (en) 2013-11-26 2015-05-28 Clean Diesel Technologies Inc. (CDTI) ZPGM Underfloor Catalyst for Hybrid Exhaust Treatment Systems
US9511358B2 (en) 2013-11-26 2016-12-06 Clean Diesel Technologies, Inc. Spinel compositions and applications thereof
US20150148225A1 (en) 2013-11-26 2015-05-28 Clean Diesel Technologies Inc. (CDTI) Systems and Methods for Managing a Synergistic Relationship Between PGM and Copper-Manganese in a Three Way Catalyst Systems
US8845987B1 (en) 2013-11-26 2014-09-30 Clean Diesel Technologies Inc. (CDTI) Method for improving lean performance of PGM catalyst systems: synergized PGM
US20150148222A1 (en) 2013-11-26 2015-05-28 Clean Diesel Technologies Inc. (CDTI) Effect of Support Oxides on Optimal Performance and Stability of ZPGM Catalyst Systems
US20150148224A1 (en) 2013-11-26 2015-05-28 Clean Diesel Technologies Inc. (CDTI) Oxygen Storage Capacity and Thermal Stability of Synergized PGM Catalyst Systems
US9433930B2 (en) 2013-11-26 2016-09-06 Clean Diesel Technologies, Inc. (Cdti) Methods for selecting and applying a layer of Cu—Mn spinel phase to ZPGM catalyst systems for TWC application
US20150182951A1 (en) 2013-12-05 2015-07-02 Clean Diesel Technologies, Inc. Phase Stability of Copper-Manganese Spinel Oxide within a Mixture of Metal Oxides
US20150352529A1 (en) 2014-06-05 2015-12-10 Zahra Nazarpoor Influence of Type of Support Oxide on Stability of Copper-Manganese Zero-PGM Catalyst
US9475005B2 (en) 2014-06-06 2016-10-25 Clean Diesel Technologies, Inc. Three-way catalyst systems including Fe-activated Rh and Ba-Pd material compositions
WO2015199688A1 (en) 2014-06-26 2015-12-30 Clean Diesel Technologies, Inc. Optimization of washcoat adhesion of zero-pgm catalyst on metallic substrates
KR20170040357A (ko) 2014-08-14 2017-04-12 존슨 맛쎄이 퍼블릭 리미티드 컴파니 배기 시스템 구성요소에 대한 진단 시스템
WO2016039747A1 (en) 2014-09-11 2016-03-17 Clean Diesel Technologies, Inc. Methods for oxidation and two-way and three-way zpgm catalyst systems and apparatus comprising same
US20160121304A1 (en) 2014-10-29 2016-05-05 Cdti Sulfur Resistance of Zero-PGM for Diesel Oxidation Application
US9731279B2 (en) 2014-10-30 2017-08-15 Clean Diesel Technologies, Inc. Thermal stability of copper-manganese spinel as Zero PGM catalyst for TWC application
US20160121309A1 (en) 2014-10-30 2016-05-05 Clean Diesel Technologies, Inc. Thermally Stable Zero PGM Catalysts System for TWC Application
US9468912B2 (en) 2014-11-17 2016-10-18 Clean Diesel Technologies, Inc. Zero PGM catalyst including Cu—Co—Mn ternary spinel for TWC applications
US9427730B2 (en) 2014-11-17 2016-08-30 Clean Diesel Technologies, Inc. Bimetallic synergized PGM catalyst systems for TWC application
US20160136619A1 (en) 2014-11-17 2016-05-19 Clean Diesel Technologies, Inc. Cobalt Containing Bimetallic Zero PGM Catalyst for TWC Applications
US20160136617A1 (en) 2014-11-17 2016-05-19 Clean Diesel Technologies, Inc. Synergized PGM Catalyst with Low PGM Loading and High Sulfur Resistance for Diesel Oxidation Application
US20160136618A1 (en) 2014-11-19 2016-05-19 Clean Diesel Technologies, Inc. Sulfur-Resistant Synergized PGM Catalysts for Diesel Oxidation Application
US20160167023A1 (en) 2014-12-11 2016-06-16 Clean Diesel Technologies, Inc. ZPGM Catalyst Including Co-Mn-Fe and Cu-Mn-Fe Materials for TWC Applications
US20160167024A1 (en) 2014-12-16 2016-06-16 Clean Diesel Technologies, Inc. Synergized PGM Catalyst Systems Including Rhodium for TWC Application

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4144174B2 (ja) * 2000-10-25 2008-09-03 トヨタ自動車株式会社 排ガス浄化装置
CN101056692A (zh) * 2004-10-14 2007-10-17 催化溶液公司 降低柴油机微粒过滤器上颗粒物起燃温度的不含铂族金属的催化剂
US20090324468A1 (en) * 2008-06-27 2009-12-31 Golden Stephen J Zero platinum group metal catalysts
WO2010029431A2 (en) * 2008-09-10 2010-03-18 Advent Technologies Internal reforming alcohol high temperature pem fuel cell
US20130115144A1 (en) * 2011-08-10 2013-05-09 Clean Diesel Technologies, Inc. Catalyst with Lanthanide-Doped Zirconia and Methods of Making

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111644182A (zh) * 2020-03-05 2020-09-11 王金波 一种用于高空速条件下快速催化氧化co的蜂窝陶瓷整体催化剂及其制备方法

Also Published As

Publication number Publication date
US9555400B2 (en) 2017-01-31
US20150290630A1 (en) 2015-10-15
WO2015157614A1 (en) 2015-10-15
US20150148223A1 (en) 2015-05-28
CN106413881B (zh) 2020-01-24
CN105682790A (zh) 2016-06-15
US20150238941A1 (en) 2015-08-27
WO2015081156A1 (en) 2015-06-04
US9511355B2 (en) 2016-12-06
US20150238940A1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
CN106413881A (zh) 使用协同的pgm作为三效催化剂的系统和方法
CN106413879A (zh) 协同的pgm催化剂体系的储氧能力和热稳定性
JP6125552B2 (ja) 選択的アンモニア酸化用の二機能性触媒
KR102483435B1 (ko) 배기 시스템용 아산화질소 제거 촉매
US9227177B2 (en) Coating process of Zero-PGM catalysts and methods thereof
JP6991270B2 (ja) 白金族金属および非白金族金属を含有する触媒物品ならびに該触媒物品の製造方法およびその使用
US9216382B2 (en) Methods for variation of support oxide materials for ZPGM oxidation catalysts and systems using same
US9427730B2 (en) Bimetallic synergized PGM catalyst systems for TWC application
CN107921416A (zh) 用于排气系统的一氧化二氮去除催化剂
JP2015166083A5 (ja) 選択的アンモニア酸化用の二機能性触媒
US20140301909A1 (en) System and Method for ZPGM Catalytic Converters
CN106179339A (zh) 作为用于柴油氧化应用的高抗硫催化剂的铁板钛矿氧化物和低载荷pgm组合
US20160167024A1 (en) Synergized PGM Catalyst Systems Including Rhodium for TWC Application
KR20230122010A (ko) Twc 적용을 위한 백금족 금속 촉매 조성물
JP2021507804A (ja) 排気ガス浄化触媒
CN106457220A (zh) 废气处理系统
JP4316586B2 (ja) 排ガス浄化用触媒
CN106560242A (zh) 载体氧化物的类型对作为柴油氧化催化剂的增效pgm的抗硫性的影响
JP5827286B2 (ja) 自動車用排ガス浄化触媒
CN106076360A (zh) 废气净化催化剂
US20230330638A1 (en) Layered catalytic article and process for preparing the catalytic article
US20170326533A1 (en) Oxygen storage capacity of non-copper spinel oxide materials for twc applications
WO2022222962A1 (en) Layered catalytic article
CN109365007A (zh) 一种摩托车催化剂及其制备方法和制备催化器方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: American California

Applicant after: CDTI advanced materials company

Address before: American California

Applicant before: Clean Diesel Tech Inc.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant