CN105209178A - 三元陶瓷热喷涂粉末和涂覆方法 - Google Patents

三元陶瓷热喷涂粉末和涂覆方法 Download PDF

Info

Publication number
CN105209178A
CN105209178A CN201480028005.3A CN201480028005A CN105209178A CN 105209178 A CN105209178 A CN 105209178A CN 201480028005 A CN201480028005 A CN 201480028005A CN 105209178 A CN105209178 A CN 105209178A
Authority
CN
China
Prior art keywords
metal
hot
spraying
binary
weight ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480028005.3A
Other languages
English (en)
Other versions
CN105209178B (zh
Inventor
E·沃格利
A·J·舍曼
C·P·格拉斯哥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mesocoat Inc
Original Assignee
Mesocoat Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mesocoat Inc filed Critical Mesocoat Inc
Publication of CN105209178A publication Critical patent/CN105209178A/zh
Application granted granted Critical
Publication of CN105209178B publication Critical patent/CN105209178B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/105Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing inorganic lubricating or binding agents, e.g. metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/14Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/446Sulfides, tellurides or selenides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12181Composite powder [e.g., coated, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本发明描述了制备三元和二元陶瓷粉末的方法及其能够制备具有优异性能的热喷涂涂层的热喷涂方法。粉末包含至少30%重量比的三元陶瓷、至少20%重量比的二元硼化钼、至少一种Cr、Fe、Ni、W和Co的二元硼化物和最多10%重量比的纳米和亚微米级氮化硼。从这些粉末制备的热喷涂涂层的初生晶相为三元陶瓷,而次生相为二元陶瓷。所述涂层具有非常高的耐熔融金属腐蚀性、非常高的抗热震性和在低温和高温下优异的摩擦学性能。

Description

三元陶瓷热喷涂粉末和涂覆方法
本申请要求2013年3月15日向美国专利局提交的第61/798,032号美国临时专利申请的优先权和权益,其通过引用并入本文。
关于联邦政府赞助的研究或开发的声明
本发明由根据美国能源部(DOE)授予的合同DE-SC0003454的政府支持进行。政府在本发明中享有某些权利。
发明背景
本发明主要涉及喷涂粉末,更具体地涉及使用喷涂粉末的热喷涂涂层。
相关技术描述
用于在高温应用和在熔融金属腐蚀环境中使用的热喷涂涂层很明显需要高耐腐蚀性、抗热震性(在温度的迅速变化过程中抗剥落)、在低温和高温下的高耐磨性、低摩擦系数和低孔隙率。关于制备和整体性能,目前的碳化钨-钴(WC-Co)超音速氧焰(HVOF)涂层具有在点载荷下的剥落问题、腐蚀局限性并且很昂贵。例如,目前WC-Co热喷涂涂层通常用作浸入熔融锌和铝浴中的钢辊上的耐磨涂层,但这种涂层在48小时内溶解。因此,需要提高辊寿命使其超过它目前的寿命。还要指出频繁更换这些辊的成本在镀锌金属的成本中占很大一部分。替代制造材料也具有缺点。例如,堆焊需要大量加工,并且仍只有有限的耐磨和耐腐蚀性能。类似问题存在于深拉模具和模压切割机中,它们磨损然后由于错误的清除导致粘模,并且类似问题也存在于模铸和挤出中。
应注意参考文献JP9-268361、JP9-227243、US2004/0194662、US6,238,807和US7,862,911公开了包含硼化钼、镍、铬和钨的热喷涂粉末或者热喷涂涂层。然而,得到的涂层在熔融金属环境下并未显示出优异的抗热震性、耐磨性和耐腐蚀性。
因此,亟需开发一种喷涂粉末以形成在高温下具有改进的耐熔融金属腐蚀环境、优异的抗热震性和高耐磨性的涂层。
发明概述
本发明的具体实施方案包括热喷涂粉末,所述热喷涂粉末包括:一种或多种约占20-70%重量比的金属-Mo-B、金属-Mo2-B2或金属2-Mo2-B2的三元硼化物陶瓷,其中所述金属为Co、Ni或Fe;一种或多种大体上占0-60%重量比的二元硼化钼;和一种或多种大体上占0-50%重量比的金属二元硼化物,其中所述一种或多种金属二元硼化物选自Cr、Fe、Ni、W和Co。
本发明的其他实施方案包括制备热喷涂粉末的方法,其步骤包括:提供一组合物,所述组合物包含:一种或多种约占20-70%重量比的金属-Mo-B、金属-Mo2-B2或金属2-Mo2-B2的三元硼化物陶瓷,其中所述金属为Co、Ni或Fe;一种或多种大体上占0-60%重量比的二元硼化钼;和一种或多种大体上占0-50%重量比的金属二元硼化物,其中所述一种或多种金属二元硼化物选自Cr、Fe、Ni、W和Co。
此外,本发明的其他实施方案包括由热喷涂粉末形成的热喷涂涂层,所述热喷涂粉末包括:一种或多种约占20-70%重量比的金属-Mo-B、金属-Mo2-B2或金属2-Mo2-B2的三元硼化物陶瓷,其中所述金属为Co、Ni或Fe;一种或多种大体上占0-60%重量比的二元硼化钼;和一种或多种大体上占0-50%重量比的金属二元硼化物,其中所述一种或多种金属二元硼化物选自Cr、Fe、Ni、W和Co。
本发明的其他实施方案包括在基板上形成热喷涂涂层的方法,所述步骤包括:提供热喷涂粉末,所述热喷涂粉末包含:一种或多种约占20-70%重量比的金属-Mo-B、金属-Mo2-B2或金属2-Mo2-B2的三元硼化物陶瓷,其中所述金属为Co、Ni或Fe;一种或多种大体上占0-60%重量比的二元硼化钼;和一种或多种大体上占0-50%重量比的金属二元硼化物,其中所述一种或多种金属二元硼化物选自Cr、Fe、Ni、W和Co;和,向基板上热喷涂所述热喷涂粉末。
本发明的前述和其他目的、特征和优点将通过下面对本发明具体实施方案的更详细描述变得显而易见,如在附图中例示的,其中相同参考标记代表本发明的相同部分。
附图简述
图1是x-射线衍射扫描图,示出了烧结的三元陶瓷粉末的具体发明实施方案的第一图谱和粉末的喷涂涂层的具体实施方案的第二图谱。
图2是热喷涂涂覆操作的示意图,其中根据本发明的具体实施方案,热喷涂源使用热喷涂粉末在基板上涂覆涂层。
具体实施方案的详细说明
陶瓷显示出了对腐蚀侵蚀的高抵抗性,例如抵抗熔融Zn的侵蚀。陶瓷兼具高耐磨性和高硬度与在高温下的高化学稳定性-即使在熔融金属介质中。例如,与锌锅辊一起使用陶瓷基涂层是有益的。然而,已经发现在具体情况下,为了提供足够的对侵蚀的抵抗性,陶瓷基涂层应足够致密以提供几乎零的孔隙率(小于1%孔隙率)从而防止腐蚀性材料通过孔隙渗透至基板。此外,在具体情况下为了提供对侵蚀的足够抵抗性,期望向基板提供具有调整的CTE的陶瓷基涂层以消除在高温下的开裂和剥落。
因此,本发明提供了由三元和二元陶瓷组成的改进的热喷涂粉末,该种热喷涂粉末能够制造出具有改进的抗熔融金属环境的性质、优异的抗热震性、在低温和高温条件下的高耐磨性和低摩擦性质的热喷涂涂层,其中所述粉末和热喷涂涂层的初生晶相为包含三元和二元陶瓷的多元陶瓷。
在各具体的实施方案中,本发明包括热喷涂粉末,并且在其他实施方案中,包括制得的热喷涂涂层,包括:
·一种或多种约占20-70%重量比(即,约20%至70%)的金属-Mo-B、金属-Mo2-B2或金属2-Mo2-B2(其包括其任意组合)的三元硼化物陶瓷,其中所述金属为Co、Ni或Fe;
·一种或多种大体上占0-60%(高达大体上60%)重量比的二元硼化钼;和
·一种或多种大体上占0-50%(高达大体上50%)重量比的金属二元硼化物,其中所述一种或多种金属二元硼化物选自Cr、Fe、Ni、W和Co。
在所述粉末和涂层的替代实施方案中,提供的一种或多种二元硼化钼大体上占20-60%(即,大体上占20%至60%)重量比和/或提供的一种或多种金属二元硼化物范围为大体上占10-50%(即,大体上占10%至50%)重量比。
在其他实施方案中,对于涉及热喷涂粉末的任何实施方案,所述热喷涂粉末还包含:
·一种或多种大体上占0-10%(即,大体上占0至10%)重量比的纳米和亚微米级增强固体润滑剂,所述一种或多种纳米和亚微米级增强固体润滑剂包含BN、WS2或MoS2
关于所述粉末和得到的涂层,由于硼化物的存在,金属-Mo-B、金属-Mo2-B2和/或金属2-Mo2-B2(其中金属为Co、Ni或Fe)的三元硼化物显示出优异的润滑性质、高硬度(500-900的维氏硬度值(HV300))、由于三元陶瓷结构具有的对高温和侵蚀的稳定性。总而言之,这些三元硼化物提供了对磨损和腐蚀提高的抵抗性。此外,二元硼化钼显示出对熔融金属的高温稳定性和耐腐蚀性。此外,包含Cr、Fe、Ni、W、Co的金属二元硼化物每种通常具有高温抗性,充当粘合剂并且由于固体润滑剂作用具有低摩擦力。包含BN、WS2或MoS2的纳米和亚微米级增强固体润滑剂降低摩擦力并充当脱模剂。如本文使用的,在本申请中指出的缩写化学元素按照行业认可的术语使用。例如,B=硼、C=碳、Co=钴、Cr=铬、Fe=铁、Mo=钼、N=氮、Ni=镍、S=硫、W=钨和Zn=锌。
本发明的具体方面包括制备热喷涂粉末的方法,所述步骤包括:提供组合物,其包含:一种或多种大体上约占20-70%重量比的金属-Mo-B、金属-Mo2-B2或金属2-Mo2-B2的三元硼化物陶瓷,其中金属为Co、Ni或Fe;一种或多种大体上占0-60%重量比的二元硼化钼;和一种或多种占0-50%重量比的金属二元硼化物,其中所述一种或多种金属二元硼化物选自Cr、Fe、Ni、W和Co。
在具体实施方案中,制备热喷涂复合粉末包括混合、研磨、团聚和烧结。在具体实施方案中,制备热喷涂复合粉末的方法包括研磨组合物混合物以形成研磨的组合物混合物的步骤、团聚所述研磨的组合物以形成团聚的组合物的步骤,以及之后烧结所述团聚的组合物以形成热喷涂复合粉末的步骤。应当理解,一种或多种已知机器或方法可用于混合、研磨、团聚和烧结。
研磨通常是指碾磨、粉碎、分解或另外减小组合物混合物使其成为包含更小尺寸的颗粒或成分的细组合物的步骤,并且这可以通过任何已知机器或方法完成从而实现该目的。例如,在具体实施方案中,使用球磨方法进行研磨步骤。
在具体实施方案中,所述研磨步骤包括研磨组合物混合物,所述组合物混合物包括下列:
一种或多种大体上占0-80%(高达大体上占80%)重量比的金属,其中所述一种或多种金属选自Mo、Cr、Fe、Ni、W和Co;和
一种或多种大体上占0-80%(高达大体上占80%)重量比的二元硼化物陶瓷,其中所述一种或多种金属二元硼化物选自Mo、Cr、Fe、Ni、W和Co。
在进一步的实施方案中,用于研磨的所述组合物混合物还包含一种或多种占0至10%重量比的固体润滑剂。应当理解可使用任何已知的润滑剂。例如,润滑剂可包括一种或多种含有BN、WS2或MoS2的纳米和亚微米级的增强固体润滑剂。
团聚通常是指将组合物的颗粒粘合或结合以形成包含团聚体的组合物的过程。应当理解,在具体实施方案中,团聚步骤包括向研磨好的组合物混合物中添加一种或多种成分以形成具有期望特性的改性研磨组合物混合物。例如,在具体实施方案中,所述改性研磨组合物混合物为湿组合物混合物,其中一部分湿组合物混合物为液体且其中所述湿混合物的期望特性包括期望的粘度。可添加至研磨的组合物混合物中的示例性成分包括一种或多种粘合剂、一种或多种表面活性剂,和/或水。
在向研磨的组合物混合物中添加一种或多种成分之后(如果施行的话),所述团聚步骤将研磨的组合物混合物或改性研磨组合物转变成团聚的组合物,例如团聚的干燥组合物,其包含颗粒状或粉状(粉末状)的组合物。这可通过任何已知方法实现。例如,上述转变可通过干燥方法(作为干燥改性研磨组合物的步骤)完成-比如当被转变的组合物混合物为湿组合物混合物时。示例性干燥方法包括喷雾干燥、冷冻干燥、滚筒干燥和脉动燃烧干燥。在具体实施方案中,选择和进行干燥方法以生成球形、自由流动的团聚粉末。
随后,团聚的组合物在烧结步骤中经历烧结过程,其中向团聚组合物施加热量结合或熔合至少一些团聚组合物的颗粒。此外,在具体实施方案中,在烧结步骤之前,团聚的组合物在脱脂(debinding)团聚的组合物的步骤中脱粘。此外,在烧结步骤之后,在这些方法的具体变型中进行团聚的附加步骤。
在具体实施方案中,将烧结过程在不低于850℃且不高于1300℃的温度下大体上进行1至5小时。在其他变型中,烧结过程在大体上900℃至1000℃下进行大体上2至4小时。在更具体的实施方案中,烧结过程在大体上900℃下进行大体上3小时。在具体实施方案中,用于生成所述粉末(其包含一种或多种三元硼化物陶瓷、二元硼化钼、金属二元硼化物和任何纳米和亚微米级增强固体润滑剂)的材料具有至少等于0.1μm且不大于10μm的平均粒度。所述粉末可具有这些粒度直至团聚和烧结操作(即,在整个混合和研磨过程中)的特征。应当理解,在其他实施方案中,粒度可小于0.1μm。为了准备用于热喷涂的粉末,进行所述粉末的团聚和烧结以获得足够用于待采用的具体喷涂操作的任何粒度。
在本发明的另一方面中,提供了使用上述粉末形成热喷涂涂层的方法。具体实施方案包括在基板上形成热喷涂涂层的方法,所述步骤包括:提供热喷涂粉末,其包括:一种或多种约占20-70%重量比的金属-Mo-B、金属-Mo2-B2或金属2-Mo2-B2的三元硼化物陶瓷,其中金属为Co、Ni或Fe;一种或多种大体上占0-60%重量比的二元硼化钼;和一种或多种大体上占0-50%重量比的金属二元硼化物,其中所述一种或多种金属二元硼化物选自Cr、Fe、Ni、W和Co;和向基板上热喷涂所述热喷涂粉末。应当理解,本文描述的任何粉末可用于这种方法的其他实施方案中。所述基板可包括由任何材料组成的任何期望对象。例如,在具体实施方案中,所述基板至少部分地由金属形成,所述金属包括但不限于钢。
这种形成热喷涂涂层的方法包括喷涂范围在5至125μm(微米)(在具体实施方案中在10至45μm之间)之间的上述提及的热喷涂粉末(处于团聚后状态和烧结后状态)。此外,热喷涂使用用于实现该目的的任何已知机器(其在本文可替换地称为“喷涂源”)完成。在具体实施方案中,等离子体热喷涂、火焰喷涂、爆炸喷涂、冷气喷涂、电弧喷涂或超音速氧焰喷涂(均被称为“喷涂源”)用于热喷涂粉末。参考图2中的示例性实施方案,示出了使用本文公开的热喷涂粉末向基板20上喷涂涂层10的喷涂源30。
在具体实施方案中,热喷涂涂层由三元和二元陶瓷的晶相与少量无定形相的混合物组成。特别地,初生相为金属-Mo-B、金属-Mo2-B2和/或金属2-Mo2-B2体系的三元陶瓷,其中金属为Co、Fe或Ni,而次生相为二元硼化物和氮化硼。所述涂层包含不小于大体上30%重量比且不大于大体上70%重量比的初生相。
此外,在具体实施方案中,热喷涂涂层包含一种或多种固体润滑剂,包括但不限于例如,0至10%重量比的氮化硼。如果固体润滑剂含量太高,例如20%重量比或更多,则涂层的抗热震性和粘附力将显著降低。
在一些应用中,涂层具有大体上50至300μm的厚度,且在具体实施方案中,大体上100至200μm的厚度。如果涂层较薄,则涂层不具有令人满意的防腐蚀性。如果涂层较厚,抗热震性显著降低。
这些涂层将应用于低温和高温应用中,其中除了对熔融金属的优异耐腐蚀性之外,还有期望的低摩擦力和高耐磨性。此外,这些涂层适用于所有耐磨和耐腐蚀应用。
测试和评价了上述三元硼化物陶瓷。特别地,发现这些粉末和涂层展示出高热稳定性,因为在粉末和热喷涂涂层之间只观察到较少变形。例如,参考图1,示出烧结的三元陶瓷粉末的x-射线衍射(XRD)扫描图连同粉末的喷涂涂层的XRD扫描图。XRD图谱中检测到的主相包括三元硼化物陶瓷以及少量的二元陶瓷。具体来说,粉末的扫描图由Mo2FeB2、FeMoB、MoB、FeB、Fe2B和Fe3B硬质相组成。经检验,涂层显示了宽衍射峰,其表示无定形相。这可通过在HVOF喷涂后约106ks-1的喷涂颗粒的高冷却速率进行解释。综上所述,陶瓷相非常硬并且显示高热稳定性,因为在粉末和热喷涂涂层之间只观察到较少变形(参见图1)。
还在结束超过3000小时的浸锌测试之后对涂层进行评价,其中将涂覆有本发明的三元硼化物陶瓷粉末的金属基板浸入熔融锌浴。观察到涂层保持坚硬(895±61HV0.3的维氏硬度),并且观察到具有小于1%的孔隙率的致密、超细结构且均匀的形态特征,其中仅检测到亚微米级的非常小尺寸的孔。
此外,三元硼化物陶瓷涂层通过超过3000小时测试而未溶解、剥落或退化,该时间比商购WC-Co涂层长8倍并且比未涂覆的不锈钢长超过860倍。
在第一实施例中,在制备热喷涂复合粉末中,研磨步骤包括在球磨机中球磨含有大体上70重量百分比(Wt%)的FeB(二元硼化物陶瓷)的微米级Mo粉末(金属成分)大体上4小时,以形成包含复合粉末的研磨组合物混合物。在进行团聚步骤时,在进行研磨步骤后,与水一起将醇类粘合剂和一种或多种常规表面活性剂添加至研磨组合物混合物中,以获得主要包含具有大体上在200至300厘泊(厘泊等于动态粘度的厘米-克-秒单位,其等于百分之一泊)之间的粘度的浆料的改性研磨组合物混合物。随后,通过使用喷雾器喷雾干燥研磨的组合物形成团聚粉末,以生成球形、自由流动的团聚粉末,其中约三分之二的颗粒具有35微米的直径。将这些粉末在大体上等于100℃、200℃或在100℃至200℃之间的温度下脱脂大体上两小时,并在大体上900℃下烧结大体上3小时以生产出三元陶瓷。然后,可将这些三元陶瓷粉末过筛以大体上获得-230、+500目切割(meshcut)从而提供三元陶瓷粉末切割。
在评价该三元陶瓷粉末切割中,使用安装在机器人上并通过粉末进料器进料的SulzerMetcoDiamondJet2600HVOF装置将它喷涂在喷砂316L不锈钢基板上。生成的涂层具有约800的维氏硬度值(HV300)、大于约8,000磅每平方英寸计(依据ASTM622粘合销粘附试验)的粘合强度。涂层具有小于约0.5英寸的180度弯曲半径和约8.7克每立方厘米的密度。在测定弯曲半径中,将试片围绕1/2英寸直径心轴弯曲成“U”形而不剥落或破坏涂层。类似结果通过将这种涂层应用于其他已知高强度钢得到。
该涂层至少适于在包含Zn、Zn-合金的熔融金属浴或钢水中应用。
在第二实施例中,热喷涂复合粉末通过混合Mo、FeB和BN粉末制备,而混合有时在三元陶瓷的烧结之前或之后进行。
在进行研磨步骤时,通过在球磨机中球磨含有大体上70重量百分比(Wt%)的FeB和1至10wt.%的BN的微米级Mo粉末大体上4小时制备复合粉末。然后,连同水添加醇类粘合剂和一种或多种常规表面活性剂,以获得具有大体上等于200厘泊、300厘泊或在200至300厘泊之间的粘度的改性研磨组合物混合物。通过使用喷雾器喷雾干燥产生的浆料形成包含粉末的团聚组合物,以生成球形、自由流动的团聚粉末,其中约三分之二的颗粒具有35微米的直径。将这些粉末在大体上等于100℃、200℃或在100℃至200℃之间的温度下脱脂大体上两小时并例如在大体上900℃下烧结大体上3小时以生产出三元陶瓷。将这些三元陶瓷粉末过筛以大体上获得-230、+500目切割。
在具体实施方案中,在三元陶瓷烧结后,将这些粉末与大体上1至10wt%BN混合。通过与醇类粘合剂、常规表面活性剂和水混合形成团聚粉末。在具体实施方案中,在喷雾干燥粉末后,将其烧结。然后,将粉末过筛以大体上获得-230、+500目切割。
为了评价该三元陶瓷粉末切割,使用安装在机器人上并通过粉末进料器进料的SulzerMetcoDiamondJet2600HVOF装置将它喷涂在喷砂316L不锈钢基板上。生成的涂层具有500-700的维氏硬度值(HV300)、大于约6,000磅每平方英寸计(依据ASTM622粘合销粘附试验)的粘合强度。涂层具有小于约0.5英寸的180度弯曲半径和小于8克每立方厘米的密度。
尽管本发明通过参考其具体实施方案进行描述,但应当理解这种描述被视为示例性而非限制性。因此,本发明的范围和内容通过附加权利要求的条款限定。

Claims (43)

1.一种热喷涂粉末,其包括:
一种或多种约占20-70%重量比的金属-Mo-B、金属-Mo2-B2或金属2-Mo2-B2的三元硼化物陶瓷,其中金属为Co、Ni或Fe;
一种或多种大体上占0-60%重量比的二元硼化钼;和
一种或多种大体上占0-50%重量比的金属二元硼化物,其中所述一种或多种金属二元硼化物选自Cr、Fe、Ni、W和Co。
2.如权利要求1所述的热喷涂粉末,其中所述一种或多种二元硼化钼为大体上20-60%重量比。
3.如权利要求1至2中任一项所述的热喷涂粉末,其中所述一种或多种金属二元硼化物大体上为10-50%重量比。
4.如权利要求1所述的热喷涂粉末,其中所述一种或多种三元硼化物陶瓷、所述一种或多种二元硼化钼和所述一种或多种金属二元硼化物的粒度至少等于0.1μm且不大于10μm。
5.如权利要求4所述的热喷涂粉末,其中处于团聚后和烧结后状态的所述粉末的粒度范围大体上在5至125μm(微米)之间。
6.如权利要求4所述的热喷涂粉末,其中处于团聚后和烧结后状态的所述粉末的粒度范围大体上在10至45μm(微米)之间。
7.如权利要求1所述的热喷涂粉末,其还包括:
一种或多种大体上高达10%重量比的纳米和亚微米级增强固体润滑剂,所述一种或多种纳米和亚微米级增强固体润滑剂包括BN、WS2或MoS2
8.如权利要求7所述的热喷涂粉末,其中所述一种或多种三元硼化物陶瓷、所述一种或多种二元硼化钼、所述一种或多种金属二元硼化物和所述一种或多种纳米和亚微米级增强固体润滑剂的粒度至少等于0.1μm且不大于10μm。
9.如权利要求8所述的热喷涂粉末,其中处于团聚后和烧结后状态的所述粉末的粒度范围大体上在5至125μm(微米)之间。
10.如权利要求8所述的热喷涂粉末,其中处于团聚后和烧结后状态的所述粉末的粒度范围大体上在10至45μm(微米)之间。
11.一种制备热喷涂粉末的方法,其步骤包括:
研磨组合物混合物以形成研磨的组合物混合物,所述组合物混合物包括:
一种或多种大体上占0-80%(高达大体上80%)重量比的金属,其中所述一种或多种金属选自Mo、Cr、Fe、Ni、W和Co;
一种或多种大体上占0-80%(高达大体上80%)重量比的二元硼化物陶瓷,其中所述一种或多种金属二元硼化物选自Mo、Cr、Fe、Ni、W和Co;和
一种或多种占0至10%重量比的固体润滑剂;
团聚所述研磨的组合物以形成团聚组合物;
烧结所述团聚组合物以形成热喷涂复合粉末,其包括:
一种或多种约占20-70%重量比的金属-Mo-B、金属-Mo2-B2或金属2-Mo2-B2的三元硼化物陶瓷,其中金属为Co、Ni或Fe;
一种或多种大体上占0-60%重量比的二元硼化钼;和
一种或多种大体上占0-50%重量比的金属二元硼化物,
其中所述一种或多种金属二元硼化物选自Cr、Fe、Ni、W和Co。
12.如权利要求11所述的制备热喷涂粉末的方法,其中提供具有至少等于0.1μm且不大于10μm的粒度的所述一种或多种三元硼化物陶瓷、所述一种或多种二元硼化钼和所述一种或多种金属二元硼化物。
13.如权利要求12所述的制备热喷涂粉末的方法,其还包括:
团聚和烧结使得形成所述热喷涂复合粉末的颗粒具有至少等于5μm且不大于125μm的粒度。
14.如权利要求12所述的制备热喷涂粉末的方法,其还包括:
团聚和烧结使得形成所述热喷涂复合粉末的颗粒具有至少等于10μm且不大于45μm的粒度。
15.如权利要求13至14中任一项所述的制备热喷涂粉末的方法,其中将烧结在不低于大体上850℃且不高于大体上1300℃的温度下进行大体上1至5小时。
16.如权利要求11所述的制备热喷涂粉末的方法,其中所述热喷涂复合粉末还包括:
一种或多种0-10%重量比的纳米和亚微米级增强固体润滑剂、一种或多种包含BN、WS2或MoS2的纳米和亚微米级增强固体润滑剂。
17.如权利要求11所述的制备热喷涂粉末的方法,其中提供具有至少等于0.1μm且不大于10μm的粒度的所述一种或多种三元硼化物陶瓷、所述一种或多种二元硼化钼、所述一种或多种金属二元硼化物和所述一种或多种纳米和亚微米级增强固体润滑剂。
18.如权利要求17所述的制备热喷涂粉末的方法,其还包括:
团聚和烧结使得形成所述热喷涂复合粉末的颗粒具有至少等于5μm且不大于125μm的粒度。
19.如权利要求17所述的制备热喷涂粉末的方法,其还包括:
团聚和烧结使得形成所述热喷涂复合粉末的颗粒具有至少等于10μm且不大于45μm的粒度。
20.如权利要求18至19中任一项所述的制备热喷涂粉末的方法,其中将烧结在不低于大体上850℃且不高于大体上1300℃的温度下进行大体上1至5小时。
21.如权利要求11-20中任一项所述的制备热喷涂粉末的方法,其中所述一种或多种二元硼化钼为大体上20-60%重量比。
22.如权利要求11-21中任一项所述的制备热喷涂粉末的方法,其中所述一种或多种金属二元硼化物为大体上10-50%重量比。
23.一种由热喷涂粉末形成的热喷涂涂层,其包括:
一种或多种约占20-70%重量比的金属-Mo-B、金属-Mo2-B2或金属2-Mo2-B2的三元硼化物陶瓷,其中金属为Co、Ni或Fe;
一种或多种大体上占0-60%重量比的二元硼化钼;和
一种或多种大体上占0-50%重量比的金属二元硼化物,其中所述一种或多种金属二元硼化物选自Cr、Fe、Ni、W和Co。
24.如权利要求23所述的热喷涂涂层,其还包括:
一种或多种大体上占0-10%重量比的包含BN、WS2或MoS2的纳米和亚微米级增强固体润滑剂。
25.如权利要求23至24中任一项所述的热喷涂涂层,其中所述一种或多种二元硼化钼为大体上20-60%重量比。
26.如权利要求23至25中任一项所述的热喷涂涂层,其中所述一种或多种金属二元硼化物为大体上10-50%重量比。
27.如权利要求23至26中任一项所述的热喷涂涂层,其中所述涂层具有大体上50至300μm的厚度。
28.一种在基板上形成热喷涂涂层的方法,其步骤包括:
提供热喷涂粉末,其包括:
一种或多种约占20-70%重量比的金属-Mo-B、金属-Mo2-B2或金属2-Mo2-B2的三元硼化物陶瓷,其中金属为Co、Ni或Fe;
一种或多种大体上占0-60%重量比的二元硼化钼;和
一种或多种大体上占0-50%重量比的金属二元硼化物,其中所述一种或多种金属二元硼化物选自Cr、Fe、Ni、W和Co;和
向所述基板上热喷涂所述热喷涂粉末。
29.如权利要求28所述的形成热喷涂涂层的方法,其中在所述喷涂步骤中使用的热喷涂粉末包括范围大体上在5至125μm(微米)之间的粒度。
30.如权利要求28所述的形成热喷涂涂层的方法,其中在所述喷涂步骤中使用的热喷涂粉末包括范围大体上在10至45μm(微米)之间的粒度。
31.如权利要求28至30中任一项所述的形成热喷涂涂层的方法,其中通过等离子体热喷涂、火焰喷涂、爆炸喷涂、冷气喷涂、电弧喷涂或超音速氧焰喷涂进行所述热喷涂步骤。
32.如权利要求28至31中任一项所述的形成热喷涂涂层的方法,其中所述热喷涂粉末还包括:
一种或多种0-10%重量比的纳米和亚微米级增强固体润滑剂、一种或多种包含BN、WS2或MoS2的纳米和亚微米级增强固体润滑剂。
33.如权利要求28至32中任一项所述的形成热喷涂涂层的方法,其中所述喷涂步骤在所述基板上由所述热喷涂粉末形成具有大体上50至300μm的厚度的涂层。
34.如权利要求28至33中任一项所述的形成热喷涂涂层的方法,其中所述基板为金属。
35.如权利要求34所述的形成热喷涂涂层的方法,其中所述金属为钢。
36.如权利要求28至35中任一项所述的形成热喷涂涂层的方法,其中所述涂层的特征为具有对熔融金属的耐腐蚀涂层。
37.如权利要求36所述的形成热喷涂涂层的方法,其中所述熔融金属为锌。
38.如权利要求28至37中任一项所述的形成热喷涂涂层的方法,其中所述涂层的特征为具有优异的抗热震性。
39.如权利要求28至38中任一项所述的形成热喷涂涂层的方法,其中所述涂层的特征为具有小于1%的孔隙率的致密、超细结构且均匀的形态。
40.如权利要求28至39中任一项所述的形成热喷涂涂层的方法,其中所述涂层的特征为具有895±61HV0.3的维氏硬度。
41.如权利要求28至40中任一项所述的形成热喷涂涂层的方法,其中所述涂层的特征为具有高耐磨性和低摩擦力。
42.如权利要求28至41中任一项所述的形成热喷涂涂层的方法,其中所述一种或多种二元硼化钼为大体上20-60%重量比。
43.如权利要求28至42中任一项所述的形成热喷涂涂层的方法,其中所述一种或多种金属二元硼化物为大体上10-50%重量比。
CN201480028005.3A 2013-03-15 2014-03-17 三元陶瓷热喷涂粉末和涂覆方法 Expired - Fee Related CN105209178B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361798032P 2013-03-15 2013-03-15
US61/798,032 2013-03-15
PCT/US2014/030611 WO2014145787A1 (en) 2013-03-15 2014-03-17 Ternary ceramic thermal spraying powder and coating method

Publications (2)

Publication Number Publication Date
CN105209178A true CN105209178A (zh) 2015-12-30
CN105209178B CN105209178B (zh) 2018-09-07

Family

ID=51528247

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480028005.3A Expired - Fee Related CN105209178B (zh) 2013-03-15 2014-03-17 三元陶瓷热喷涂粉末和涂覆方法

Country Status (10)

Country Link
US (2) US9885100B2 (zh)
EP (1) EP2969246A4 (zh)
JP (1) JP2016520711A (zh)
KR (1) KR20150127719A (zh)
CN (1) CN105209178B (zh)
BR (1) BR112015023290A2 (zh)
CA (1) CA2906892C (zh)
EA (1) EA201591818A1 (zh)
MX (1) MX2015013236A (zh)
WO (1) WO2014145787A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107604287A (zh) * 2017-07-29 2018-01-19 江苏华海冶金机械设备有限公司 耐腐蚀沉没辊
CN108754416A (zh) * 2018-05-28 2018-11-06 苏州市启献智能科技有限公司 一种气动执行器应用的低磨损导向杆及其表面工艺

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2015013236A (es) * 2013-03-15 2016-04-04 Mesocoat Inc Polvos de aspersion termica de materiales ceramicos ternarios y metodo de recubrimiento.
CN106244974A (zh) * 2016-08-23 2016-12-21 华南理工大学 一种固体自润滑抗磨损热障涂层的制备方法
CN106367706B (zh) * 2016-09-12 2018-09-21 山东科技大学 一种等离子熔射梯度耐磨板及其制备方法和用途
CN106435580B (zh) * 2016-11-25 2019-04-23 福州大学 激光熔覆用镍基二硫化钼粉末、及其制备方法和使用方法
US10714671B2 (en) * 2018-05-18 2020-07-14 Richard C Thuss Apparatus, and process for cold spray deposition of thermoelectric semiconductor and other polycrystalline materials and method for making polycrystalline materials for cold spray deposition
CN109807324B (zh) * 2019-01-29 2020-11-06 齐鲁工业大学 一种镍包覆六方氮化硼纳米片复合粉体的制备方法
CN110590376B (zh) * 2019-10-30 2021-10-08 中国有色桂林矿产地质研究院有限公司 一种pcbn刀具材料及其制备方法
CN111455376B (zh) * 2020-04-23 2022-09-30 上海海事大学 一种增强45#钢耐腐蚀性的Cr7C3-Mo2NiB2复相陶瓷涂层的制备方法
US11473200B2 (en) 2020-08-13 2022-10-18 Richard C Thuss Fine and micro feature cold spray deposition of semiconductors, magnetic and other brittle functional materials
KR20220021777A (ko) 2020-08-14 2022-02-22 대우조선해양 주식회사 물리적 접합구를 지닌 복합 접합체를 이용한 용사 방법
CN112553561B (zh) * 2020-12-11 2023-01-24 沈阳大学 一种热喷涂制备氮化物增强耐磨涂层的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140689A (ja) * 1991-01-11 1993-06-08 Toyo Kohan Co Ltd 高耐食耐摩耗性硼化物系タングステン基合金
CN1540028A (zh) * 2003-03-31 2004-10-27 ������������ʽ���� 热喷涂粉和用这种热喷涂粉制备热喷涂层的方法
US20090304943A1 (en) * 2006-03-20 2009-12-10 Sulzer Metco Venture Llc Method for Forming Ceramic Containing Composite Structure
CN101736211A (zh) * 2009-12-16 2010-06-16 南京航空航天大学 SiC晶须增强增韧的Mo2FeB2基金属陶瓷及其制备方法

Family Cites Families (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3394450A (en) 1965-01-25 1968-07-30 Gen Cable Corp Method for cating the inside of continuously welded pipe
US4015100A (en) 1974-01-07 1977-03-29 Avco Everett Research Laboratory, Inc. Surface modification
SE7607204L (sv) 1975-07-04 1977-01-05 Daiwa Kogyo Co Sett och apparat for att forse metallror med invendigt skyddsoverdrag
US4515832A (en) 1977-06-24 1985-05-07 Rexnord, Inc. Method for coating the inside of pipe
US4212900A (en) 1978-08-14 1980-07-15 Serlin Richard A Surface alloying method and apparatus using high energy beam
JPS589151B2 (ja) 1980-02-13 1983-02-19 ペルメレック電極株式会社 金属基体に耐食性被覆を形成する方法
US4533389A (en) 1980-12-29 1985-08-06 Allied Corporation Boron containing rapid solidification alloy and method of making the same
JPS58164785A (ja) * 1982-03-25 1983-09-29 Showa Denko Kk 耐摩耗用複合溶射粉末
DE3247134A1 (de) 1982-12-20 1984-06-20 Berna AG Olten, 4600 Olten Verfahren und vorrichtung zum beschichten der innenflaeche von rotationssymmetrischen hohlkoerpern mit einer verschleissfesten beschichtung
US4490411A (en) 1983-03-14 1984-12-25 Darryl Feder Apparatus for and method of metalizing internal surfaces of metal bodies such as tubes and pipes
JPS602676A (ja) 1983-06-21 1985-01-08 Toshiba Corp 耐摩耗性被覆の形成方法
JPS6064785A (ja) 1983-09-20 1985-04-13 Kuroki Kogyosho:Kk 耐食,耐摩耗性内壁層を有するパイプ及びその製造方法
JPS60238489A (ja) 1984-05-12 1985-11-27 Daiki Gomme Kogyo Kk 表面被覆金属層の作製する方法
US4865116A (en) 1984-07-02 1989-09-12 General Electric Company Continuous metal tube casting method and apparatus
US5981081A (en) * 1984-09-18 1999-11-09 Union Carbide Coatings Service Corporation Transition metal boride coatings
CA1239437A (en) 1984-12-24 1988-07-19 Vortek Industries Ltd. High intensity radiation method and apparatus having improved liquid vortex flow
US4620660A (en) 1985-01-24 1986-11-04 Turner William C Method of manufacturing an internally clad tubular product
JPS62177183A (ja) 1986-01-29 1987-08-04 Dai Ichi High Frequency Co Ltd 金属管等の内面に金属ライニングを施す方法
JPS62183967A (ja) 1986-02-10 1987-08-12 Daido Steel Co Ltd パイプ内面肉盛装置
US4881679A (en) 1986-10-20 1989-11-21 Turner William C Subassembly for use in manufacturing a tubular product
US4745245A (en) 1986-10-31 1988-05-17 Fuji Electric Co., Ltd. Method and apparatus for the manufacture of a clad tube through use of induction heating
US4961781A (en) 1987-09-30 1990-10-09 Kabushiki Kaisha Kobe Seiko Sho High corrosion-and wear resistant-powder sintered alloy and composite products
JP2668955B2 (ja) * 1988-07-08 1997-10-27 旭硝子株式会社 複硼化物基焼結体及びその製造方法
US6413589B1 (en) 1988-11-29 2002-07-02 Chou H. Li Ceramic coating method
JPH0466655A (ja) * 1990-07-05 1992-03-03 Asahi Glass Co Ltd 複硼化物サーメットの肉盛り方法
US5123476A (en) 1990-08-17 1992-06-23 Showa Electric Wire And Cable Co., Ltd. Continuous metal tube casting method and apparatus using inner solenoid coil
JP2660455B2 (ja) 1991-02-08 1997-10-08 東洋鋼鈑株式会社 耐熱硬質焼結合金
US5360675A (en) 1992-05-14 1994-11-01 Praxair S.T. Technology, Inc. Molten zinc resistant alloy and its manufacturing method
JP2593426B2 (ja) * 1992-08-26 1997-03-26 プラクスエア工学株式会社 耐溶融亜鉛侵食性合金およびその製法と用途
SG47422A1 (en) * 1992-12-30 1998-04-17 Praxair Technology Inc A coated article and a method of coating said article
JPH07155909A (ja) * 1993-12-01 1995-06-20 Daiichi Meteko Kk 耐溶損性に優れた連続鋳造用水冷鋳型
US5584428A (en) 1994-02-08 1996-12-17 Sumitomo Metal Industries, Ltd. Process for manufacturing clad pipe
US5561735A (en) 1994-08-30 1996-10-01 Vortek Industries Ltd. Rapid thermal processing apparatus and method
GB9506010D0 (en) 1995-03-23 1995-08-23 Anderson John E Electromagnetic energy directing method and apparatus
JP3023500B2 (ja) * 1996-02-23 2000-03-21 中部助川興業株式会社 ホウ化モリブデン系複合溶射材料及び溶射皮膜
JP3134767B2 (ja) * 1996-04-03 2001-02-13 住友金属鉱山株式会社 硼化物系サーメット溶射用粉末
US6238807B1 (en) * 1997-07-25 2001-05-29 Chubu Sukegawa Enterprise Co., Ltd. Thermal spraying composite material containing molybdenum boride and a coat formed by thermal spraying
US5993915A (en) 1997-08-14 1999-11-30 Adaptive Coating Technologies, Llc Fusing thermal spray coating and heat treating base material using infrared heating
GB9818757D0 (en) 1998-08-27 1998-10-21 Forth Tool And Valve Limited Process for manufacturing pipes
EP0988898A3 (en) 1998-09-23 2001-05-02 Camco International Inc. Thermal spray application of polymeric material
US6649682B1 (en) 1998-12-22 2003-11-18 Conforma Clad, Inc Process for making wear-resistant coatings
US6174388B1 (en) 1999-03-15 2001-01-16 Lockheed Martin Energy Research Corp. Rapid infrared heating of a surface
US6641918B1 (en) 1999-06-03 2003-11-04 Powdermet, Inc. Method of producing fine coated tungsten carbide particles
KR100547263B1 (ko) 1999-11-09 2006-02-01 제이에프이 스틸 가부시키가이샤 내빌드업성에 우수한 용사피복용 서멧분말과 용사피복롤
CA2327634A1 (en) 1999-12-07 2001-06-07 Powdermet, Inc. Abrasive particles with metallurgically bonded metal coatings
US6280800B1 (en) 2000-01-18 2001-08-28 E. I. Du Pont De Nemours And Company Process for coating metallic substrate surfaces
US6621199B1 (en) 2000-01-21 2003-09-16 Vortek Industries Ltd. High intensity electromagnetic radiation apparatus and method
ATE320318T1 (de) 2000-06-30 2006-04-15 Ngimat Co Verfahren zur abscheidung von materialien
US6594446B2 (en) 2000-12-04 2003-07-15 Vortek Industries Ltd. Heat-treating methods and systems
US7560067B2 (en) 2001-07-16 2009-07-14 Sherman Andrew J Powder friction forming
US7041250B2 (en) 2001-08-23 2006-05-09 Powdermet, Inc. Combined liquid phase and activated sintering of refractory metals
US6691397B2 (en) 2001-10-16 2004-02-17 Chakravarti Management, Llc Method of manufacturing same for production of clad piping and tubing
US6835914B2 (en) 2002-11-05 2004-12-28 Mattson Technology, Inc. Apparatus and method for reducing stray light in substrate processing chambers
AU2003902440A0 (en) 2003-05-20 2003-06-05 Cladtek International Pty Ltd Production of clad pipes
US20050116336A1 (en) 2003-09-16 2005-06-02 Koila, Inc. Nano-composite materials for thermal management applications
JP3853322B2 (ja) * 2004-01-30 2006-12-06 トーカロ株式会社 溶射用粉末複合材料、溶射皮膜被覆部材およびその部材の製造方法
US7635515B1 (en) 2004-04-08 2009-12-22 Powdermet, Inc Heterogeneous composite bodies with isolated lenticular shaped cermet regions
US7220936B2 (en) 2004-07-30 2007-05-22 Ut-Battelle, Llc Pulse thermal processing of functional materials using directed plasma arc
US20060121292A1 (en) * 2004-12-08 2006-06-08 Caterpillar Inc. Fusing of thermal-spray coatings
US7345255B2 (en) 2005-01-26 2008-03-18 Caterpillar Inc. Composite overlay compound
US7184657B1 (en) 2005-09-17 2007-02-27 Mattson Technology, Inc. Enhanced rapid thermal processing apparatus and method
US8187720B2 (en) 2005-11-14 2012-05-29 Lawrence Livermore National Security, Llc Corrosion resistant neutron absorbing coatings
JP2007211293A (ja) 2006-02-09 2007-08-23 Fujimi Inc 溶射皮膜及び溶射用粉末
US20080145649A1 (en) 2006-12-14 2008-06-19 General Electric Protective coatings which provide wear resistance and low friction characteristics, and related articles and methods
WO2009126459A2 (en) 2008-04-07 2009-10-15 Edison Welding Institute, Inc. Method of creating a clad structure utilizing a moving resistance energy source
CN102356175A (zh) 2009-02-03 2012-02-15 麦索科特公司 涉及不剥落低密度硬面涂层的涂层、组合物和方法
CN102459701A (zh) 2009-05-22 2012-05-16 美索科特公司 与纳米复合材料覆盖层有关的制品和制造方法
JP2011017049A (ja) * 2009-07-08 2011-01-27 Sumitomo Metal Mining Co Ltd 硼化物系サーメット溶射用粉末
BR112012027269A2 (pt) 2010-04-27 2017-03-14 Subsea Services Int Inc máquina e método de aplicação de revestimento protetor em uma junta de tubulação
JP2012102362A (ja) 2010-11-09 2012-05-31 Sumitomo Metal Mining Co Ltd 硼化物サーメット系溶射用粉末
CN102703850B (zh) * 2012-06-13 2014-12-03 辽宁工程技术大学 一种含有氧化铈的三元硼化物陶瓷涂层及其制备方法
MX2015013236A (es) * 2013-03-15 2016-04-04 Mesocoat Inc Polvos de aspersion termica de materiales ceramicos ternarios y metodo de recubrimiento.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140689A (ja) * 1991-01-11 1993-06-08 Toyo Kohan Co Ltd 高耐食耐摩耗性硼化物系タングステン基合金
CN1540028A (zh) * 2003-03-31 2004-10-27 ������������ʽ���� 热喷涂粉和用这种热喷涂粉制备热喷涂层的方法
US20090304943A1 (en) * 2006-03-20 2009-12-10 Sulzer Metco Venture Llc Method for Forming Ceramic Containing Composite Structure
CN101736211A (zh) * 2009-12-16 2010-06-16 南京航空航天大学 SiC晶须增强增韧的Mo2FeB2基金属陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吕和平: "新型三元硼化物基陶瓷涂层的制备及其性能研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107604287A (zh) * 2017-07-29 2018-01-19 江苏华海冶金机械设备有限公司 耐腐蚀沉没辊
CN108754416A (zh) * 2018-05-28 2018-11-06 苏州市启献智能科技有限公司 一种气动执行器应用的低磨损导向杆及其表面工艺
CN108754416B (zh) * 2018-05-28 2020-12-18 苏州瑞领克信息科技有限公司 一种气动执行器应用的低磨损导向杆及其表面工艺

Also Published As

Publication number Publication date
EP2969246A1 (en) 2016-01-20
MX2015013236A (es) 2016-04-04
WO2014145787A1 (en) 2014-09-18
US10458011B2 (en) 2019-10-29
EA201591818A1 (ru) 2016-07-29
CA2906892C (en) 2021-01-05
US9885100B2 (en) 2018-02-06
JP2016520711A (ja) 2016-07-14
US20180119265A1 (en) 2018-05-03
US20140272171A1 (en) 2014-09-18
BR112015023290A2 (pt) 2017-07-18
CN105209178B (zh) 2018-09-07
EP2969246A4 (en) 2016-11-16
KR20150127719A (ko) 2015-11-17
CA2906892A1 (en) 2014-09-18

Similar Documents

Publication Publication Date Title
CN105209178A (zh) 三元陶瓷热喷涂粉末和涂覆方法
US9919358B2 (en) Sintered molybdenum carbide-based spray powder
Hou et al. Effect of alumina dispersion on oxidation behavior as well as friction and wear behavior of HVOF-sprayed CoCrAlYTaCSi coating at elevated temperature up to 1000° C
Wirojanupatump et al. The influence of HVOF powder feedstock characteristics on the abrasive wear behaviour of CrxCy–NiCr coatings
TWI661882B (zh) 製造含氮化鉻經燒結噴灑粉末之方法,含鉻經燒結噴灑粉末及其用途,與經塗佈組件及其製造方法
CN105088108B (zh) 一种铁基非晶合金、其粉末材料以及耐磨防腐涂层
CN104894554A (zh) 一种高致密度冷喷涂金属/金属基沉积体的制备方法和应用
CN101298654A (zh) 一种含陶瓷相的铁基非晶纳米晶复合涂层及其制备方法
JP2016520711A5 (zh)
CN104918733A (zh) 用于受强应力的滑动系统的热喷涂粉末
CN102296289A (zh) 一种以金属间化合物为粘结相的金属陶瓷涂层的制备方法
CN108504886B (zh) 一种TiC-C镍基合金自润滑复合材料的制备方法
JP2018524466A (ja) コールドガススプレーコーティング法及び組成物
EP3049544B1 (en) Self-peening feedstock materials for cold spray deposition
US20080113105A1 (en) Coating Formed By Thermal Spraying And Methods For The Formation Thereof
Ulianitsky et al. Detonation Spraying of Cr3C2-NiCr Coatings and Their Properties
JP6855891B2 (ja) 溶射用粉末およびこれを用いた溶射皮膜の成膜方法
CN104797731A (zh) 喷镀层形成用粉末、金属陶瓷喷镀层、金属陶瓷覆盖材以及金属陶瓷覆盖材的制造方法
Debasish et al. Improvement of microstructural and mechanical properties of plasma sprayed Mo coatings deposited on Al-Si substrates by pre-mixing of Mo with TiN powder
LI et al. Microstructural and Performance Analysis of a Ceramic and Amorphous Reinforced Laser Clad Composite Coating.
US20130260172A1 (en) Coated titanium alloy surfaces
JPWO2013161523A1 (ja) サーメット被覆材、サーメット被覆材を製造するための合金粉末、およびサーメット被覆材の製造方法
Qu et al. Characterization of VC–VB particles reinforced fe-based composite coatings produced by laser cladding
US20050136279A1 (en) Chrome composite materials
Xinsheng et al. Effect of Ni/MoS2 Addition on Microstructure and Properties of Supersonic Plasma-Sprayed Ni-Based Composite Coatings

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180907

CF01 Termination of patent right due to non-payment of annual fee