CN105185821B - 在边缘区域具有场电介质的半导体器件 - Google Patents

在边缘区域具有场电介质的半导体器件 Download PDF

Info

Publication number
CN105185821B
CN105185821B CN201510244477.9A CN201510244477A CN105185821B CN 105185821 B CN105185821 B CN 105185821B CN 201510244477 A CN201510244477 A CN 201510244477A CN 105185821 B CN105185821 B CN 105185821B
Authority
CN
China
Prior art keywords
extension area
area
region
section
semiconductor devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510244477.9A
Other languages
English (en)
Other versions
CN105185821A (zh
Inventor
S.加梅里特
F.希尔勒
W.彦切尔
W.M.斯耶德
J.韦耶斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies Austria AG
Original Assignee
Infineon Technologies Austria AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Austria AG filed Critical Infineon Technologies Austria AG
Priority to CN201910221604.1A priority Critical patent/CN110085659A/zh
Publication of CN105185821A publication Critical patent/CN105185821A/zh
Application granted granted Critical
Publication of CN105185821B publication Critical patent/CN105185821B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7809Vertical DMOS transistors, i.e. VDMOS transistors having both source and drain contacts on the same surface, i.e. Up-Drain VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Abstract

本发明涉及在边缘区域具有场电介质的半导体器件。一种半导体器件包括具有布置在有源区域中且不在有源区域与侧表面之间的边缘区域中的晶体管单元的半导体本体。场电介质邻接半导体本体的第一表面并且在边缘区域中将连接到晶体管单元的栅极电极的导电结构与半导体本体相分离。场电介质包括从第一垂直延伸部到第二更大的垂直延伸部的过渡部。该过渡部在半导体本体中的非可耗尽延伸区的垂直突出部中,其中非可耗尽延伸区具有晶体管单元的本体/阳极区的导电类型,并且电连接到本体/阳极区中的至少一个。

Description

在边缘区域具有场电介质的半导体器件
背景技术
像是半桥电路的应用在半导体开关器件的半导体本体的本体与漂移区之间使用本体二极管作为在开关器件的反向模式下的续流二极管。在本体二极管的正向偏置模式下,注射到漂移区中的空穴和电子形成导致本体二极管的低正向电压降的高密度电荷载流子等离子体。电荷载流子的显著部分涌进将包括晶体管单元的有源区域与半导体本体的侧表面相分离的边缘区域。当开关器件从反向偏置变成正向偏置时,本体二极管从正向偏置变成反向偏置并且移动电荷载流子被从漂移区移除。
期望的是提供更可靠的半导体器件。
发明内容
根据一个实施例,半导体器件包括具有布置在有源区域中且不在有源区域与半导体本体的侧表面之间的边缘区域中的晶体管单元的半导体本体。场电介质邻接半导体本体的第一表面并且在边缘区域中将连接到晶体管单元的栅极电极的导电结构与半导体本体相分离。场电介质包括从第一垂直延伸部到第二更大的垂直延伸部的过渡部。该过渡部在半导体本体中的非可耗尽延伸区的垂直突出部中,其中非可耗尽延伸区具有晶体管单元的本体/阳极区的导电类型,并且电连接到本体/阳极区中的至少一个。
根据另一个实施例,半导体器件包括具有布置在有源区域中且不在有源区域与半导体本体的侧表面之间的边缘区域中的晶体管单元的半导体本体。中间层电介质结构邻接半导体本体的第一表面。在边缘区域中,中间层电介质结构将栅极构造与半导体本体相分离。在半导体本体中的该栅极构造的至少一部分的垂直突出部中的是具有晶体管单元的本体/阳极区的导电类型的非可耗尽延伸区。该非可耗尽延伸区电连接到本体/阳极区中的至少一个。
根据另一实施例,半桥电路包括具有布置在有源区域中且不在有源区域与半导体本体的侧表面之间的边缘区域中的晶体管单元的半导体本体。场电介质邻接半导体本体的第一表面并且在边缘区域中将导电结构与半导体本体相分离。场电介质包括从第一垂直延伸部到第二更大的垂直延伸部的过渡部。该过渡部在半导体本体中的非可耗尽延伸区的垂直突出部中,其中非可耗尽延伸区具有晶体管单元的本体/阳极区的导电类型,并且电连接到本体/阳极区中的至少一个。
在阅读以下详细描述时且在查看附图时,本领域技术人员将认识到附加的特征和优点。
附图说明
附图被包括来提供对本发明的进一步理解并且被并入本说明书中并构成本说明书的一部分。这些图图示了本发明的实施例并连同描述一起用来解释本发明的原理。本发明的其他实施例和意图的优点将被容易地意识到,因为通过参考以下详细描述它们变得更好理解。
图1A是根据与平面栅极电极和在半导体本体与导电结构之间的场电介质的无台阶过渡部有关的实施例的半导体器件的一部分的示意性横截面视图。
图1B是根据与平面栅极电极和在半导体本体与导电结构之间的场电介质的有台阶过渡部有关的实施例的半导体器件的一部分的示意性横截面视图。
图1C是根据与平面栅极电极和在半导体本体与导电结构之间的场电介质的无台阶过渡部有关的实施例的超结IGFET的一部分的示意性横截面视图。
图1D是根据与埋入式可耗尽延伸区和在导电结构与半导体本体之间的场电介质的无台阶过渡部有关的实施例的超结IGFET的一部分的示意性横截面视图。
图1E是根据与埋入式栅极电极有关的实施例的超结IGFET的一部分的示意性横截面视图。
图1F是根据另一个实施例的MCD(MOS控制的二极管)的一部分的示意性横截面视图。
图2A是根据具有以恒定掺杂剂浓度沿着圆周线围绕有源区域的非可耗尽延伸区的实施例的半导体器件的示意性横向横截面视图。
图2B是根据提供围绕有源区域且包括增强掺杂剂浓度的区段的非可耗尽延伸区的实施例的半导体器件的示意性横向横截面视图。
图2C是根据具有在栅极构造的垂直突出部中形成的非可耗尽延伸区的扩大部分的实施例的半导体器件的示意性横向横截面视图。
图2D是根据具有在栅极构造的垂直突出部中排他地形成的非可耗尽延伸区的实施例的半导体器件的示意性横向横截面视图。
图2E是根据具有包括在栅极构造的垂直突出部中的增强掺杂剂浓度的区段的非可耗尽延伸区的实施例的半导体器件的示意性横向横截面视图。
图2F是根据提供分段式非可耗尽延伸区的实施例的半导体器件的示意性横向横截面视图。
图2G是根据具有在栅极构造的一部分的垂直突出部中形成的非可耗尽延伸区的一部分的实施例的半导体器件的示意性横向横截面视图。
图3是根据具有在栅极构造的一部分的垂直突出部中的非可耗尽延伸区的另一个实施例的半导体器件的一部分的示意性横截面视图。
图4是比较关断损耗以用于说明实施例的效果的示意图。
图5A是根据具有两个n型IGFET的实施例的半桥电路的示意性电路图。
图5B是根据具有p型和n型IGFET的实施例的半桥电路的示意性电路图。
图5C是根据具有IGBT的实施例的半桥电路的示意性电路图。
图5D是根据另一实施例的全桥电路的示意性电路图。
具体实施方式
在以下详细描述中,对附图进行参考,附图形成其一部分并且在附图中以举例说明的方式示出其中可以实践本发明的特定实施例。应理解的是,可以利用其他实施例并且可以在不偏离本发明的范围的情况下进行结构或逻辑改变。例如,针对一个实施例图示或描述的特征可以用于其他实施例上或者结合其他实施例使用以产出又另一实施例。所意图的是,本发明包括这样的修改和变化。使用特定语言描述示例,其不应当被解释为限制所附权利要求的范围。这些图未按比例并且仅用于说明性目的。为了清楚起见,如果未另有说明,已经通过在不同的附图中的对应标记指定了相同的元件。
术语“具有”、“包含”、“包括”、“包括有”等等是开放的,并且这些术语指示所陈述的结构、元件或特征的存在但不排除附加的元件或特征。冠词“一个”、“一”和“该”意图包括复数以及单数,除非上下文清楚地另有指示。
术语“电连接”描述电连接的元件之间的永久性低欧姆连接,例如所关注的元件之间的直接接触或者经由金属和/或高掺杂半导体的低欧姆连接。术语“电耦合”包括可以在电耦合的元件之间提供被适配用于信号传输的一个或多个中间元件,例如可控用来临时地提供第一状态下的低欧姆连接和第二状态下的高欧姆电解耦的元件。
这些图通过紧挨着掺杂类型“n”或“p”指示“-”或“+”来图示了相对掺杂浓度。例如,“n-”意指低于“n”掺杂区的掺杂浓度的掺杂浓度,而“n+”掺杂区具有比“n”掺杂区更高的掺杂浓度。相同的相对掺杂浓度的掺杂区不一定具有相同的绝对掺杂浓度。例如,两个不同的“n”掺杂区可以具有相同或不同的绝对掺杂浓度。
图1A到1E提及包括有源晶体管单元和/或可控减饱和或注射单元的可控半导体器件500,例如可控半导体二极管,以示例的方式,诸如MCD、包括通常意义上包括具有金属栅极的FET以及具有非金属栅极的FET 的MOSFET(金属氧化物半导体FET)的IGFET(绝缘栅极场效应晶体管)、JFET(结型场效应晶体管)、IGBT(绝缘栅极双极型晶体管)和半导体闸流管。
半导体器件500中的每一个基于来自诸如硅(Si)、碳化硅(SiC)、锗(Ge)、硅锗晶体(SiGe)、氮化镓(GaN)、砷化镓(GaAs)或任何其他AIIIBV半导体之类的单晶态半导体材料的半导体本体100。
半导体本体100具有第一表面101,该第一表面101可以是近似平面的或者其可以由共平面表面区段以及平行于第一表面101的主要是平面的第二表面102所跨越的平面给出。第一和第二表面101、102之间的最小距离被选择成实现半导体器件500的指定的电压阻断能力。侧表面103连接第一和第二表面101、102。
在垂直于横截面平面的平面中,半导体本体100可以具有矩形形状,其中边缘长度在几毫米的范围内或者可以是具有几厘米的直径的圆盘形的。第一表面101的法线定义垂直方向,并且与垂直方向正交的方向是横向方向。
半导体本体100包括第一导电类型的漂移区120以及在漂移区120与第二表面102之间的基座层130。
漂移区120中的掺杂剂浓度可以至少在其垂直延伸的部分中随着到第一表面101的增加的距离而逐渐或逐步增加或减小。根据其他实施例,漂移区120中的掺杂剂浓度可以是近似一致的。漂移区120中的平均掺杂剂浓度可以在5E12cm-3和1E6cm-3之间,例如在从5E13cm-3到5E15cm-3的范围内。漂移区120可以包括另外的掺杂剂区,例如超结结构。
基座层130在半导体器件500是半导体二极管、IGFET或JFET的情况下可以具有第一导电类型,在半导体器件500是IGBT或半导体闸流管的情况下,可以具有与第一导电类型互补的第二导电类型,或者在半导体器件500是MCD或RC-IGBT(反向传导IGBT)的情况下,可以包含在漂移区120与第二表面102之间延伸的两种导电类型的区。基座层130中的掺杂剂浓度足够高以形成与直接邻接第二表面102的金属的欧姆接触。在半导体本体100基于硅Si的情况下,p型基座层130或基座层130的p型区的平均掺杂剂浓度可以是至少1E16cm-3,例如至少5E17cm-3
半导体器件500在有源区域610中还包括有源的功能晶体管单元TC,而侧表面103与有源区域610之间的边缘区域690没有在有源区域610中存在的类型的任何功能晶体管单元。每个有源晶体管单元TC包括与漂移区120形成第一pn结pn1的具有第二导电类型的本体/阳极区115以及与该本体/阳极区115形成第二pn结的源极区110。源极区110可以是从第一表面101延伸到半导体本体100中,例如到本体/阳极区115中的阱。
栅极结构150包括可以包括重掺杂多晶态硅层或金属包含层或者由其组成的导电栅极电极155以及将栅极电极155与半导体本体100相分离的栅极电介质151。栅极电介质151将栅极电极155电容性地耦合到本体/阳极区115的沟道部分。
在所图示的实施例中并且对于以下描述,第一导电类型是n型并且第二导电类型是p型。如下面概述的类似考虑适用于第一导电类型是p型并且第二导电类型是n型的实施例。
当施加到栅极电极150的电压超过预设阈值电压时,电子在直接邻接栅极电介质151的本体/阳极区115的沟道部分中积聚并且形成使第一pn结pn1短路的反型沟道。
栅极结构150包括空闲部分150a,该空闲部分150a在边缘区域690中包括空闲栅极电极155a。空闲栅极电极155a和栅极电极155相互电连接且在结构上连接并且可以是同一分层结构的部分。栅极构造330可以经由空闲栅极电极155a连接到栅极电极155。
栅极构造330可以包括分别电连接到栅极电极155的栅极焊盘、栅极指状物、栅极流道(runner)中的至少一个。栅极焊盘可以是适合作为用于接合导线或像是焊接夹的另一个芯片到引线框或芯片到芯片的连接的着陆焊盘的金属焊盘。栅极焊盘可以被布置在第一负载电极310与侧表面103之间或者在半导体本体100的中心部分中。栅极流道可以是围绕有源区域610的金属线。栅极指状物可以是将有源区域610分离成分离的单元域的金属线。中间层电介质210将栅极构造330与半导体本体100相分离并且可以使栅极电极155与第一负载电极310相绝缘。
导电结构157在结构上连接并且电连接具有栅极构造330或具有从栅极构造330延伸到中间层电介质210中的栅极接触结构315g的空闲栅极电极155a。导电结构157可以是集成栅极电阻器或多晶态硅二极管的一部分或者可以在栅极构造330下方被省略。中间层电介质210在导电结构157与半导体本体100之间的一部分形成场电介质211。场电介质211在直接邻接空闲栅极电极155a的部分中的靠近栅极电介质厚度的第一垂直延伸部与在直接邻接栅极构造330或栅极接触结构315g的区段中的大于第一垂直延伸部的第二垂直延伸部之间具有过渡部Tr。过渡部Tr可以是连续的或者可以包括一个或多个台阶。
栅极电极155、空闲栅极电极155a和导电结构157可以是同质结构或者可以具有包括一个或多个金属包含层的分层结构。根据一个实施例,栅极电极155、空闲栅极电极155a和导电结构157可以包括重掺杂的多晶态硅层或者由其组成。
栅极电介质151可以包括例如热生长的或沉积的氧化硅的半导体氧化物、例如沉积的或热生长的氮化硅的半导体氮化物或例如氮氧化硅的半导体氮氧化物或者由其组成。
第一负载电极310可以是例如MCD的阳极电极、IGFET的源极电极或IGBT的发射极电极。接触结构315将第一负载电极310与本体/阳极区115和源极区110电连接。第一负载电极310可以是或者可以电耦合或连接到第一负载端子L1,例如MCD的阳极端子、IGBT的发射极端子或IGFET的源极端子。
直接邻接第二表面102和基座层130的第二负载电极320可以形成或者可以电连接到第二负载端子L2,该第二负载端子L2可以是MCD的阴极端子、IGBT的集电极端子或IGFET的漏极端子。
第一和第二负载电极310、320中的每一个可以由铝(Al)、铜(Cu)或例如AlSi、AlCu或AlSiCu的铝或铜的合金作为一个或多个主要成分组成或者包含铝(Al)、铜(Cu)或例如AlSi、AlCu或AlSiCu的铝或铜的合金作为一个或多个主要成分。根据其他实施例,第一和第二负载电极310、320中的至少一个可以包含镍(Ni)、钛(Ti)、钨(W)、钽(Ta)、钒(V)、银(Ag)、金(Au)、铂(Pt)和/或钯(Pd)作为一个或多个主要成分。例如,第一和第二负载电极310、320中的至少一个可以包括两个或更多子层,其中每个子层包含Ni、Ti、V、Ag、Au、Pt、W和Pd中的一个或多个作为一个或多个主要成分,例如,硅化物、氮化物和/或合金。
以示例的方式,中间层电介质210可以包括来自氧化硅、氮化硅、氮氧化硅、掺杂的或未掺杂的硅玻璃(例如BSG(硼硅玻璃)、PSG(磷硅玻璃)或BPSG(硼磷硅玻璃))的一个或多个电介质层。
在场电介质211中的过渡部Tr的垂直突出部中,半导体本体100包括第二导电类型的非可耗尽延伸区170。非可耗尽延伸区170电连接到本体/阳极区115中的至少一个并且以示例的方式,可以直接邻接本体/阳极区115的最外面或者与本体/阳极区115的最外面重叠。非可耗尽延伸区170中的净掺杂剂浓度足够高,使得当相应的半导体器件500在其最大阻断等级内操作时非可耗尽延伸区170并不完全被耗尽。
根据一个实施例,非可耗尽延伸区170的净掺杂剂浓度是这样的,使得当在第一和第二负载电极310、320之间施加最大电压时,假设所施加的栅极电压在半导体器件500用于该栅极电压的最大等级内,非可耗尽延伸区170并不被耗尽,无论施加到栅极构造330的栅极电压如何。
当具有在本体/阳极区115与漂移区120之间的正向偏置的第一pn结pn1的半导体器件500操作时,本体/阳极区115注射空穴并且基座层130注射电子到漂移区120中。所注射的电荷载流子在有源区域610和边缘区域690两者中形成电荷载流子等离子体。当半导体器件500在反向偏置第一pn结pn1之后变换电流方向(commutate)时,第二负载电极320排出电子并且第一电极310排出空穴。从边缘区域690流到第一负载电极310的空穴行进到最外面的接触结构315,该最外面的接触结构315将第一负载电极310与有源区域610的最外面的源极和本体/阳极区110、115电连接。空穴电流流动导致在导电结构157的垂直突出部中的边缘区域690的一部分中的高空穴浓度和高空穴电流密度。
另一方面,在过渡部Tr下面的半导体本体100的区域中,电表面场强为高,从而导致增加的电荷载流子倍增。作为表面场强和空穴电流流动的结果,动态击穿电压被局部地减小并且场电介质211可能被不可逆地损坏。
非可耗尽延伸区170实现仅形成超过补偿非可耗尽延伸区170中的静止p型掺杂剂的电荷的最小空穴电流密度的表面电场。增大p型掺杂剂浓度使表面电场强度减小,使得可以局部地增大动态击穿电压。场电介质211更可靠,并且在半桥电路中半导体器件500可以维持半桥电路的变换电流方向开关的更陡峭和更快速的栅极信号。
在硅半导体本体100的情况下,p型掺杂剂在非可耗尽延伸区中的有效剂量大于2.5E12cm-2,例如至少1E13cm-2。根据一个实施例,非可耗尽延伸区170中的p型掺杂剂剂量大于2E13cm-2。非可耗尽延伸区170直接邻接有源区域610的参考边缘区域690的最外面的晶体管单元TC的p型本体/阳极区115或者与之重叠或电连接。
在非可耗尽延伸区170内,杂质浓度是恒定的或者在过渡部Tr的起点与到该起点至少1μm的距离处的参考点之间减小不超过50%,在所述起点处过渡部Tr的垂直延伸部开始从第一垂直延伸部增长。根据一个实施例,杂质浓度是恒定的或者在沿着过渡部Tr增加的方向上到起点至少3μm(例如8μm)的距离的范围内偏差不超过50%。
非可耗尽延伸区170的垂直于第一表面101的垂直延伸部可以超过晶体管单元TC的本体/阳极区115的垂直延伸部。
图1B的半导体器件500不同于图1A的半导体器件500,在于专用的接触结构315a将第一负载电极310直接与边缘区域690中的非可耗尽延伸区170电连接。专用接触结构315a与任何源极区110空间分离。场电介质211的过渡部Tr包括这样的台阶,其对应于导电结构157中的垂直台阶。
图1C的半导体器件500是基于图1A的半导体器件500的超结IGFET。第一负载电极310是有效的,作为电连接到源极端子S的源极电极。第二负载端子320是有效的,作为漏极电极D。在直接邻接侧表面103的边缘区域690的一部分中形成的边缘终止构造195可以包括在半导体本体100的与第二负载电极320相对的前侧上的漏极电极构造325。
漂移区120可以包括超结结构180,该超结结构180包括第一导电类型的第一区181和第二导电类型的第二区182。至少第二区182或至少第一区181可以是通过例如在连续的外延和注入步骤中的注入形成的柱状结构。根据其他实施例,第二区182是通过将包含p型掺杂剂的材料沉积到在第一区181之间暂时形成的沟槽中或者通过引入掺杂剂穿过暂时从第一表面101延伸到漂移区120中的沟槽的侧壁而形成的。
第二区182的横向横截面区域可以是圆形、卵形、椭圆形或有或没有修圆角的矩形,并且第一区181可以形成栅格,其中第二区182被布置在网格中。根据另一个实施例,第一区181的横向横截面区域是圆形、椭圆形、卵形或有或没有修圆角的矩形,并且第二区182形成栅格,其中第一区181被布置在网格中。根据另一实施例,第一和第二区181、182形成规则条纹图案,其中这些条纹可以延伸穿过有源区域610的显著部分或者可以横跨有源区域610。
可以将第一和第二区181、182中的掺杂剂浓度调整到彼此,使得漂移区120的包括超结结构180的部分在半导体器件500的反向阻断模式下可以被完全耗尽。
根据一个实施例,可以在有源区域610内排他地形成第一和第二区181、182,而边缘区域690或诸如栅极焊盘、栅极指状物和/或栅极流道之类的栅极构造的垂直突出部中的栅极区域没有任何超结结构,例如没有任何第一和第二区181、182。例如,半导体器件500可以包括超结结构,其中第一和第二区181、182在有源区域610中并且仅第一导电类型的本征或弱掺杂区具有比在边缘区域610中的且在栅极区域的垂直突出部中的第一区181更低的净杂质浓度。替换地,第一区181和第二区182可以在边缘区域610中和/或在栅极区域的垂直突出部中重叠以在所关注的区域中形成低净掺杂剂浓度的区。
根据所图示的实施例,在有源区域610和边缘区域690两者中形成具有第一和第二区181、182的超结结构。可耗尽延伸区175可以直接邻接于非可耗尽延伸区170和沿着所图示的横截面线的边缘区域690中的第二区182中的一个、一些或全部或者与之重叠。
可耗尽延伸区175中的p型掺杂剂剂量足够低,使得可耗尽延伸区175在半导体器件500的阻断模式下被完全耗尽。例如,在可耗尽延伸区175中注入的p型掺杂剂剂量可以由在考虑偏析效应时导致在硅中至多2E12cm-2的残留有效p型掺杂剂剂量的至多3.5E12cm-2的注入剂量产生。
非可耗尽延伸区170的垂直于第一表面101的垂直延伸部可以超过晶体管单元TC的本体/阳极区115的垂直延伸部。例如,在反向偏置模式下,半导体本体100的被取向到第一表面101的耗尽区的边缘可以具有比在包括本体/阳极区115和第二区182的p型结构中更大的到非可耗尽延伸区170中的第一表面101的距离。
当半导体器件500变换电流方向时,第一和第二区181、182被耗尽,其中在第二区182中,空穴沿着垂直方向行进并且到达第一表面101。在边缘区域690中,在下一个接触结构315的方向上在第一表面101处所得到的空穴电流增加了由在本体pn结pn1的正向偏置模式下注射到漂移区120中的空穴产生的空穴电流。作为结果,在超结器件中,上面讨论的效果更为显著,因为空穴中的更大的部分被首先引导到第一表面101并且然后沿着第一表面被引导到第一接触315的方向上。效果可以甚至更为明显,因为在有源区域610中,第二区182使空穴排放加速,并且当有源区域610中的空穴电流最终夹断时,边缘区域690仍然排放空穴,并且由于泄露的原因,感应载流子进一步增大了空穴电流密度。
可耗尽延伸区175减小对于从边缘区域690的第二区182中的至少一个或一些流到将第一负载电极310与延伸区170、175电连接的接触结构315的总空穴电流流动有效的电阻,并且可以减小开关损耗。
另外,相当高的空穴电流密度显著地减小场电介质211的动态击穿电压。替代地,非可耗尽延伸区170局部地降低表面电场强度而不显著不利地影响横向电压阻断能力,尽管空穴电流密度被增大大约一个数量级。
图1D的半导体器件500不同于图1C的超结IGFET,在于可耗尽延伸区175连接到非可耗尽延伸区170与侧表面103之间的边缘区域690中的所有第二区182,并且在于第一导电类型的间隔区173将可耗尽延伸区175与第一表面101相分离。间隔区173减小空穴在场电介质211上变换电流方向期间流到有源区域610的方向上的效应。表面电场更加同质,沿着空穴电流流动的集成电离电荷被减小并且动态击穿电压被进一步增大。
图1E的半导体器件500是基于图1A的半导体器件500的IGFET。具有是在漂移区120中的至少两倍高的掺杂剂浓度的场停止层128将漂移区120与基座层130相分离。在另一个实施例中,在基座层130与第二区182之间形成具有比在第一区181中低的掺杂剂浓度的缓冲层。
晶体管单元TC是具有包括从第一表面101延伸到半导体本体100中的埋入式栅极电极155的栅极结构150的垂直晶体管单元TC。电介质结构205可以将第一负载电极310与埋入式栅极电极155相分离。
其他实施例可以提及基于图1C到1E的带有具有p型或包括p型区的基座层130的IGFET。对于IGBT而言,第一负载电极310是有效的,作为形成发射极端子或者电连接或耦合到发射极端子的发射极电极。第二负载电极320是有效的,作为集电极电极并且形成集电极端子或者电连接到集电极端子。
图1F的半导体器件500是可以包括在本体/阳极区115与漂移区120之间的阻挡层121的MCD。基座层130可以分别包括第一导电类型的第一区131和在漂移区120与第二表面102之间延伸的第二导电类型的第二区132。晶体管单元TC在MCD的正常正向偏置状态下被关断。在变换电流方向之前,施加到栅极电极155的电势生成穿过本体/阳极区115的从源极区110到漂移区120的反型层。反型层使本体/阳极区115与漂移区120之间的第一pn结pn1短路,并且减小或抑制从本体/阳极区115到漂移区120中的空穴注射。漂移区120中的载流子等离子体被减少并且可以减少恢复电荷。阻挡层121减小沿着第一pn结pn1的横向电压降以避免在到反型层一定距离的栅极结构150之间的注射。
根据提及包括MGD(带MOS栅极的二极管)单元的IGFET的实施例,半导体器件500可以包括IGFET单元和具有电连接到第一负载电极310的栅极电极的MGD单元。在半导体器件500的反向传导模式下,第一和第二负载电极310、320之间的电流流动导致本体/阳极区115相对于第一负载电极310和MGD的栅极电极被负偏置,并且可以在本体/阳极区115中形成反型层。如果在反向模式下穿过半导体器件500的总电流大于平均电流流动密度阈值,则其通常由与跨越第一pn结pn1的总电流流动的情况相比减小了电损耗的单极电流流动支配。
图2A到2G提及半导体器件500的横向横截面以用于图示出图1A到1E的半导体器件500中的任一个的非可耗尽延伸区170的横向延伸部的实施例。
没有功能晶体管单元的边缘区域690将包括功能晶体管单元的有源区域610与半导体本体100的侧表面103相分离。边缘区域690包括栅极构造330的垂直突出部中的栅极区域695。在所图示的实施例中,栅极区域695被分派给包括单个栅极焊盘的栅极构造330。根据其他实施例,栅极构造330可以包括多于一个的栅极焊盘、一个栅极流道和/或一个或多个栅极指状物,并且栅极区域695可以包括栅极指状物和/或栅极流道中的形成在栅极电极与金属化平面中的栅极焊盘之间的电连接区段的另外的部分。栅极焊盘和栅极区域695可以被布置在拐角中或者沿着半导体本体100的横向侧中的一个布置。栅极流道可以围绕有源区域610。栅极指状物可以将有源区域610分离成分离的单元域。
图2A示出了沿着留出栅极区域695的圆周线CL完全围绕有源区域610的非可耗尽延伸区170。沿着圆周线CL,非可耗尽延伸区170的净掺杂剂浓度是恒定的。可耗尽延伸区175可以在被取向到侧表面103的侧处直接邻接边缘区域690中的非可耗尽延伸区170或者与之重叠。
图2B提及具有非可耗尽延伸区的第一区段170a中的沿着圆周线CL近似恒定的第一净掺杂剂浓度P1+和第二区段170b中的更高的(例如是第一净掺杂剂浓度P1+的至少两倍高)的增强的第二净掺杂剂浓度P2+的实施例。第二区段170b可以是靠近半导体本体100的拐角的横向弯曲的区段和/或在有源区域610与栅极区域695之间的区段。第一区段170a可以是连接第二区段170b的笔直区段。
第二区段170b可以通过以局部增大的注入剂量注入所关注的掺杂剂,或者通过执行沿着圆周线CL具有均匀注入剂量的第一注入和在第二区段中选择性有效的第二注入来形成。
第二区段170b中的较高掺杂剂浓度可以补偿靠近拐角且靠近栅极区域695并且由没有源极和本体接触的半导体本体100的较宽部分中(例如在栅极区域695中并且靠近拐角)的增大的空穴电流密度产生的增大的空穴电流,在该较宽部分中沿着圆周线CL的延伸区170、175的每长度单位分配了更多的空穴。
非可耗尽延伸区170的沿着圆周线CL的掺杂剂浓度轮廓可以包括具有介于第一和第二掺杂剂浓度之间的掺杂剂浓度的另外的区段。非可耗尽延伸区的第一区段170a可以包含至少2.5E12cm-2的掺杂剂剂量,例如至少1E13cm-2或大于2E13cm-2。第二区段170b可以包含是第一掺杂剂剂量的至少两倍高的掺杂剂剂量,例如第一掺杂剂剂量的至少四倍高。
在图2C中的半导体器件500中,非可耗尽延伸区170包括在栅极区域695中的栅极焊盘的垂直突出部中形成的扩大部分170x。扩大部分170x可以在完整的栅极区域695的范围内延伸并且可以与栅极构造的包括至少栅极焊盘的完整垂直突出部重叠。非可耗尽延伸区170的另一部分如参考图2A描述的那样围绕有源区域610。
在图2D中,非可耗尽延伸区170在栅极区域695中的栅极焊盘的垂直突出部中排他地形成。非可耗尽延伸区170可以包括在被分派给栅极指状物和/或栅极流道的栅极区域的另外的区段中的另外的区段。
图2E的半导体器件500不同于图2B中的那个,在于非可耗尽延伸区170包括在栅极区域695的完整或至少主要部分的范围内延伸并且与栅极焊盘的垂直突出部的至少主要部分重叠的增强掺杂剂浓度170b的区段。非可耗尽延伸区170可以包括在被分派给栅极指状物和/或栅极流道的栅极区域695的另外的区段中的另外的区段。
图2F提及具有包括沿着圆周线CL布置的隔离分段的非可耗尽延伸区170的实施例。这些分段可以是半导体本体100的拐角中的弯曲区段和/或有源区域610与栅极区域695之间的区段。
图2G提及具有沿着横向侧中的一个且相对于半导体本体100的横向中心轴对称布置的栅极区域695的布局。可耗尽和非可耗尽延伸区175、170的区段可以完全跨越栅极区域695。在另一实施例中,栅极焊盘可以位于有源区域610的中间。
图3提及具有至少在栅极构造330的垂直突出部的一部分中形成的非可耗尽延伸区170的半导体器件500。非可耗尽延伸区170可以在栅极构造330的垂直突出部的至少40%的范围内(例如在至少80%的范围内)延伸。根据一个实施例,非可耗尽延伸区170在栅极构造330的整个垂直突出部的范围内延伸。栅极构造330、将栅极构造330与空闲栅极电极155a电连接的导电结构157以及如图3中所示的非可耗尽延伸区170的配置可以与参考图1A到1F描述的半导体器件500中的任一个相组合。中间层电介质结构200邻接半导体本体100的第一表面101。在边缘区域690中,中间层电介质结构200将栅极构造330与半导体本体100相分离。中间层电介质结构200可以包括导电结构157,其中场电介质211将导电结构157与半导体本体100相分离,并且盖电介质212将导电结构157与栅极构造330相分离。
在半导体本体100中的栅极构造330的至少一部分的垂直突出部中的是具有晶体管单元TC的本体/阳极区115的导电类型的非可耗尽延伸区170。栅极构造330可以是适合作为用于接合导线或者像是焊接夹的另一个芯片到引线框或芯片到芯片连接的着陆焊盘的栅极焊盘。栅极焊盘可以与导电结构157直接连接。导电结构157可以是集成栅极电阻器或多晶态硅二极管的一部分或者可以在栅极焊盘下面被省略。为了进一步的细节,对图1A到2G的描述进行参考。
在变换电流方向期间,非可耗尽延伸区170减小对于边缘区域690与被取向到边缘区域690的第一负载电极310的最外面的接触之间的空穴电流流动有效的电阻。与在空穴电流流动的情况下被完全耗尽并且因此具有相对高的欧姆电阻的可耗尽延伸区相比,非可耗尽延伸区170并不被完全耗尽并且因此改进空穴的耗尽过程并减小动态开关损耗。在没有非可耗尽延伸区170时,栅极构造330的电容在第二区182的耗尽之后增加了栅极到漏极电容Cgd,非可耗尽延伸区170屏蔽栅极构造330,使得栅极到漏极电容Cgd不增大或者增大至导致减小的开关损耗的较低程度。
图4的图示意性地示出了作为负载电流Isat的函数的开关损耗Eoff。没有非可耗尽延伸区的比较示例791示出与包括非可耗尽延伸区的器件792相比更高的开关损耗。非可耗尽延伸区减小变换电流方向损耗。由于在谐振应用中电容性地存储在半导体器件500中的能量被恢复,所以由栅极构造330产生的损耗可以贡献总的变换电流方向损耗的三分之一(a third)。
图5A到5D提及包括基于具有在Vdd与Gnd之间串行连接的负载电流路径的两个半导体开关器件711、712的一个或多个半桥电路710的电子电路700。半导体开关器件711、712可以是IGFET或IGBT。半导体开关器件711、712中的至少一个可以是或者可以包括先前的图中的半导体器件500中的一个。可以将半桥电路710或完整的电子电路700集成在电源模块中。
电子电路700可以包括生成和驱动第一驱动器端子Gout1处的第一栅极信号和第二驱动器端子Gout2处的第二栅极信号的栅极驱动器电路720。第一和第二驱动器端子Gout1、Gout2电耦合或连接到半导体开关器件711、712的栅极端子G。栅极驱动器电路720控制栅极信号,使得在规则开关周期期间,第一和第二开关器件711、712交替地处于导通状态。在减饱和周期期间,栅极驱动器电路720可以在将开关器件711、712中的一个切换成导通状态之前施加减饱和脉冲。
在图5A中开关器件711、712是n-IGFET,其中第一开关器件711的源极端子S和第二开关器件712的漏极端子D电连接到开关端子Sw。
在图5B中第一开关器件711、712是p-IGFET并且第二开关器件712是n-IGFET。
在图5C中开关器件711、712是n沟道IGBT,其中第一开关器件711的发射极端子E和第二开关器件712的集电极端子C电连接到开关端子Sw。
图5D示出了具有两个半桥710的电子电路700,所述两个半桥710的负载路径并行连接并且在全桥配置下操作。例如电感负载的负载900可以连接到两个半桥710的开关端子Sw。以示例的方式,负载900可以是电机绕组、电感热炼(cooking)板或开关模式电源中的变压器绕组。根据另一个实施例,电子电路700可以包括用于驱动具有三个绕组的电机的三个半桥710,其中每个绕组被连接在电机绕组的一个星形节点与半桥710的开关端子Sw中的一个之间。
尽管本文中已经图示和描述了特定实施例,但是本领域普通技术人员将意识到的是,各种替换方案和/或等同实现方式可以在不偏离本发明的范围的情况下替代所示和描述的特定实施例。本申请意图覆盖本文中讨论的特定实施例的任何调适或变化。因此,所意图的是本发明仅由权利要求及其等同物限制。

Claims (18)

1.一种半导体器件,包括:
半导体本体,其包括布置在有源区域中且不在有源区域与所述半导体本体的侧表面之间的边缘区域中的晶体管单元;
场电介质,其邻接所述半导体本体的第一表面并且在所述边缘区域中将连接到所述晶体管单元的栅极电极的导电结构与所述半导体本体相分离,所述场电介质包括从第一垂直延伸部到第二更大的垂直延伸部的过渡部;以及
所述晶体管单元的本体/阳极区的导电类型的且电连接到所述本体/阳极区中的至少一个的非可耗尽延伸区,其中,所述过渡部在所述非可耗尽延伸区的垂直突出部中,
其中所述非可耗尽延伸区围绕所述有源区域并且包括具有恒定第一净掺杂剂浓度的笔直的第一区段和第二区段,其中第二区段是靠近半导体本体的拐角的横向弯曲的区段和/或在有源区域与栅极区域之间的区段,其中第一区段连接第二区段并且第二区段的第二净掺杂剂浓度是第一净掺杂剂浓度的至少两倍高。
2.权利要求1所述的半导体器件,其中
所述非可耗尽延伸区电连接到金属负载电极。
3.权利要求1所述的半导体器件,其中
所述非可耗尽延伸区包含大于2.5E12cm-2的有效掺杂剂剂量。
4.权利要求1所述的半导体器件,还包括:
所述本体/阳极区的导电类型的可耗尽延伸区,其直接邻接所述非可耗尽延伸区,并且布置在所述非可耗尽延伸区与所述侧表面之间。
5.权利要求4所述的半导体器件,其中
所述可耗尽延伸区包含至多2.0E12cm-2的有效掺杂剂剂量。
6.权利要求4所述的半导体器件,还包括:
在所述第一表面和所述可耗尽延伸区之间的且与所述可耗尽延伸区形成pn结的间隔区。
7.权利要求1所述的半导体器件,其中
所述导电结构是在栅极构造与所述晶体管单元的栅极电极之间的电连接的区段。
8.权利要求1所述的半导体器件,其中
所述非可耗尽延伸区直接邻接所述晶体管单元中的至少一个的本体/阳极区。
9.权利要求1所述的半导体器件,其中
所述非可耗尽延伸区的垂直于所述第一表面的垂直延伸部超过所述晶体管单元的所述本体/阳极区的垂直延伸部。
10.权利要求1所述的半导体器件,还包括:
与由所述本体/阳极区的所述导电类型所给出的第二导电类型相反的第一导电类型的第一区;以及
所述第二导电类型的第二区,所述第一和第二区交替地布置在所述有源区域和所述边缘区域中的半导体本体中,其中在所述有源区域中所述第二区直接邻接于所述本体/阳极区,并且所述第一区与所述本体/阳极区形成pn结。
11.权利要求1所述的半导体器件,其中
所述非可耗尽延伸区中的杂质浓度在所述过渡部的起点与在到所述起点至少1μm的距离处的参考点之间不降低超过50%,在所述起点处所述过渡部的垂直延伸部开始从所述第一垂直延伸部增长。
12.一种半导体器件,包括:
半导体本体,其包括布置在有源区域中且不在所述有源区域与所述半导体本体的侧表面之间的边缘区域中的晶体管单元,其中所述边缘区域包括栅极区域,所述栅极区域处于半导体本体的拐角中或者沿着半导体本体的横向侧的至少一个金属栅极焊盘的垂直突出部中;
中间层电介质结构,其邻接所述半导体本体的第一表面,并且在栅极区域中将栅极构造与所述半导体本体相分离,其中所述栅极构造包括所述金属焊盘并且所述栅极构造电连接到导电结构,所述导电结构由电连接到晶体管单元的栅极电极的多晶态硅组成;以及
在所述半导体本体中的所述栅极构造的垂直突出部的至少40%中的晶体管单元的本体/阳极区的导电类型且电连接到所述本体/阳极区中的一个的非可耗尽延伸区,其中所述非可耗尽连接延伸区包括处于有源区域和侧表面之间的第一区段和处于有源区域和栅极区域之间的第二区段,并且其中第二区段中的第二净掺杂剂浓度是第一区段中的第一净掺杂剂浓度的至少两倍高。
13.权利要求12所述的半导体器件,其中
所述非可耗尽延伸区在所述栅极构造的完整垂直突出部范围内延伸。
14.权利要求12所述的半导体器件,其中
所述非可耗尽延伸区电连接到负载电极。
15.权利要求12所述的半导体器件,其中
所述非可耗尽延伸区包含大于2.5E12cm-2的有效掺杂剂剂量。
16.权利要求12所述的半导体器件,还包括:
所述本体/阳极区的导电类型的可耗尽延伸区,其直接邻接所述非可耗尽延伸区且布置在所述非可耗尽延伸区与所述侧表面之间。
17.权利要求16所述的半导体器件,其中
所述可耗尽延伸区包含至多2.0E12cm-2的有效掺杂剂剂量。
18.一种半桥电路,包括:
半导体本体,其包括布置在有源区域中且不在所述有源区域与所述半导体本体的侧表面之间的边缘区域中的晶体管单元;
场电介质,其邻接所述半导体本体的第一表面并且在所述边缘区域中将连接到所述晶体管单元的栅极电极的导电结构与所述半导体本体相分离,所述场电介质包括从第一垂直延伸部到第二更大的垂直延伸部的过渡部;以及
所述晶体管单元的本体/阳极区的导电类型的且电连接到所述本体/阳极区中的至少一个的非可耗尽延伸区,其中,所述过渡部在所述非可耗尽延伸区的垂直突出部中,
其中所述非可耗尽延伸区围绕所述有源区域并且包括具有恒定第一净掺杂剂浓度的笔直的第一区段和第二区段,其中第二区段是靠近半导体本体的拐角的横向弯曲的区段和/或在有源区域与栅极区域之间的区段,其中第一区段连接第二区段并且第二区段的第二净掺杂剂浓度是第一净掺杂剂浓度的至少两倍高。
CN201510244477.9A 2014-05-14 2015-05-14 在边缘区域具有场电介质的半导体器件 Active CN105185821B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910221604.1A CN110085659A (zh) 2014-05-14 2015-05-14 在边缘区域具有场电介质的半导体器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/277,169 US9773863B2 (en) 2014-05-14 2014-05-14 VDMOS having a non-depletable extension zone formed between an active area and side surface of semiconductor body
US14/277169 2014-05-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201910221604.1A Division CN110085659A (zh) 2014-05-14 2015-05-14 在边缘区域具有场电介质的半导体器件

Publications (2)

Publication Number Publication Date
CN105185821A CN105185821A (zh) 2015-12-23
CN105185821B true CN105185821B (zh) 2019-04-23

Family

ID=54361825

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510244477.9A Active CN105185821B (zh) 2014-05-14 2015-05-14 在边缘区域具有场电介质的半导体器件
CN201910221604.1A Pending CN110085659A (zh) 2014-05-14 2015-05-14 在边缘区域具有场电介质的半导体器件

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201910221604.1A Pending CN110085659A (zh) 2014-05-14 2015-05-14 在边缘区域具有场电介质的半导体器件

Country Status (4)

Country Link
US (2) US9773863B2 (zh)
KR (1) KR101721313B1 (zh)
CN (2) CN105185821B (zh)
DE (1) DE102015107456B4 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10468479B2 (en) * 2014-05-14 2019-11-05 Infineon Technologies Austria Ag VDMOS having a drift zone with a compensation structure
US9318587B2 (en) * 2014-05-30 2016-04-19 Alpha And Omega Semiconductor Incorporated Injection control in semiconductor power devices
US10361266B2 (en) * 2014-06-09 2019-07-23 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device
US9871126B2 (en) * 2014-06-16 2018-01-16 Infineon Technologies Ag Discrete semiconductor transistor
CN105529262A (zh) * 2014-09-29 2016-04-27 无锡华润华晶微电子有限公司 一种垂直双扩散金属氧化物半导体场效应管及其制作方法
DE102014116773A1 (de) * 2014-11-17 2016-05-19 Infineon Technologies Ag Halbleitervorrichtung und Bipolartransistor mit isoliertem Gate mit Transistorzellen und Sensorzelle
US10026805B2 (en) * 2015-03-27 2018-07-17 Farichild Semiconductor Corporation Avalanche-rugged silicon carbide (SiC) power device
DE102015110484B4 (de) 2015-06-30 2023-09-28 Infineon Technologies Austria Ag Halbleiterbauelemente und Verfahren zum Bilden eines Halbleiterbauelements
WO2017104516A1 (ja) 2015-12-18 2017-06-22 ローム株式会社 半導体装置
DE102016100519B4 (de) * 2016-01-13 2023-05-17 Infineon Technologies Austria Ag Halbleitervorrichtungen, die eine Randkonstruktion mit geraden Abschnitten und Eckabschnitten umfassen
JP6855700B2 (ja) * 2016-08-05 2021-04-07 富士電機株式会社 半導体装置およびその製造方法
JP6832094B2 (ja) * 2016-08-05 2021-02-24 ローム株式会社 パワーモジュール及びモータ駆動回路
DE102016118499B4 (de) 2016-09-29 2023-03-30 Infineon Technologies Dresden Gmbh Halbleiterbauelemente und Verfahren zum Bilden eines Halbleiterbauelements
DE102016120772B4 (de) * 2016-10-31 2020-06-10 Infineon Technologies Dresden Gmbh Halbleitervorrichtung mit Gatepad, Gateelektrode und Integrationsschicht
US10312710B1 (en) * 2017-01-31 2019-06-04 The United States Of America, As Represented By The Secretary Of The Navy Energy recovery pulse forming network
DE102017105548A1 (de) * 2017-03-15 2018-09-20 Infineon Technologies Dresden Gmbh Halbleitervorrichtung, die eine gatekontaktstruktur enthält
CN107591451A (zh) * 2017-08-31 2018-01-16 上海华虹宏力半导体制造有限公司 超结器件
RU184252U1 (ru) * 2018-01-09 2018-10-19 Открытое акционерное общество "ОКБ-Планета" ОАО "ОКБ-Планета" Конструкция интегральных резисторов в микросхемах на эпитаксиальных структурах арсенида галлия
EP3716340A1 (en) 2019-03-25 2020-09-30 Infineon Technologies Austria AG Transistor device
CN111883585B (zh) * 2020-08-21 2024-02-06 上海华虹宏力半导体制造有限公司 超结器件
JP2023137644A (ja) * 2022-03-18 2023-09-29 株式会社東芝 半導体装置
IT202200006485A1 (it) * 2022-04-01 2023-10-01 St Microelectronics Srl Dispositivo elettronico con oscillazioni di commutazione ridotte

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304180A (zh) * 1999-12-09 2001-07-18 株式会社日立制作所 功率半导体器件

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973368A (en) 1996-06-05 1999-10-26 Pearce; Lawrence G. Monolithic class D amplifier
DE19840032C1 (de) * 1998-09-02 1999-11-18 Siemens Ag Halbleiterbauelement und Herstellungsverfahren dazu
US7098506B2 (en) * 2000-06-28 2006-08-29 Renesas Technology Corp. Semiconductor device and method for fabricating the same
US6274905B1 (en) * 1999-06-30 2001-08-14 Fairchild Semiconductor Corporation Trench structure substantially filled with high-conductivity material
DE19947020B4 (de) 1999-09-30 2006-02-23 Infineon Technologies Ag Kompensationsbauelement mit variabler Ladungsbilanz und dessen Herstellungsverfahren
JP4765012B2 (ja) 2000-02-09 2011-09-07 富士電機株式会社 半導体装置及びその製造方法
DE10066053B4 (de) 2000-12-08 2006-03-30 Infineon Technologies Ag Halbleiterbauelement mit erhöhter Durchbruchspannung
US6612214B2 (en) * 2001-10-05 2003-09-02 Robud Die cutter blanket-anvil locking arrangement
JP4945055B2 (ja) * 2003-08-04 2012-06-06 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP2006005275A (ja) 2004-06-21 2006-01-05 Toshiba Corp 電力用半導体素子
JP4825424B2 (ja) * 2005-01-18 2011-11-30 株式会社東芝 電力用半導体装置
DE102005023026B4 (de) 2005-05-13 2016-06-16 Infineon Technologies Ag Leistungshalbleiterbauelement mit Plattenkondensator-Struktur
DE102005038260B3 (de) 2005-08-12 2007-03-22 Infineon Technologies Ag Halbleiterbauteil sowie Verfahren zu dessen Herstellung
US7737469B2 (en) * 2006-05-16 2010-06-15 Kabushiki Kaisha Toshiba Semiconductor device having superjunction structure formed of p-type and n-type pillar regions
JP5147203B2 (ja) * 2006-06-30 2013-02-20 オンセミコンダクター・トレーディング・リミテッド 絶縁ゲート型半導体装置
DE102006047489B9 (de) * 2006-10-05 2013-01-17 Infineon Technologies Austria Ag Halbleiterbauelement
JP5196766B2 (ja) 2006-11-20 2013-05-15 株式会社東芝 半導体装置
JP2008251923A (ja) * 2007-03-30 2008-10-16 Sanyo Electric Co Ltd 半導体装置
JP4621708B2 (ja) 2007-05-24 2011-01-26 株式会社東芝 半導体装置及びその製造方法
DE102007030755B3 (de) 2007-07-02 2009-02-19 Infineon Technologies Austria Ag Halbleiterbauelement mit einem einen Graben aufweisenden Randabschluss und Verfahren zur Herstellung eines Randabschlusses
CN101345254A (zh) * 2007-07-12 2009-01-14 富士电机电子技术株式会社 半导体器件
JP2009087998A (ja) * 2007-09-27 2009-04-23 Sanyo Electric Co Ltd 半導体装置
CN100565879C (zh) * 2008-01-08 2009-12-02 苏州硅能半导体科技股份有限公司 一种深沟槽大功率mos器件及其制造方法
CN101853854B (zh) * 2010-03-12 2012-11-21 无锡新洁能功率半导体有限公司 一种改进型终端结构的沟槽功率mos器件
CN101814528B (zh) * 2010-05-04 2011-06-22 无锡新洁能功率半导体有限公司 一种具有改进型终端的半导体器件及其制造方法
JP5633992B2 (ja) * 2010-06-11 2014-12-03 トヨタ自動車株式会社 半導体装置および半導体装置の製造方法
WO2012056536A1 (ja) * 2010-10-27 2012-05-03 富士電機株式会社 半導体装置および半導体装置の製造方法
TWI407568B (zh) * 2010-11-22 2013-09-01 Sinopower Semiconductor Inc 半導體元件
US8847278B2 (en) * 2011-01-17 2014-09-30 Fuji Electric Co., Ltd. Semiconductor device comprising a breakdown withstanding section
US8941188B2 (en) 2012-03-26 2015-01-27 Infineon Technologies Austria Ag Semiconductor arrangement with a superjunction transistor and a further device integrated in a common semiconductor body
CN104838500B (zh) * 2012-12-04 2017-08-15 株式会社电装 半导体装置及其制造方法
US20140231928A1 (en) 2013-02-18 2014-08-21 Infineon Technologies Austria Ag Super Junction Semiconductor Device with an Edge Area Having a Reverse Blocking Capability
CN104282732B (zh) * 2013-07-01 2017-06-27 株式会社东芝 半导体装置
US8958189B1 (en) 2013-08-09 2015-02-17 Infineon Technologies Austria Ag High-voltage semiconductor switch and method for switching high voltages
US10468479B2 (en) * 2014-05-14 2019-11-05 Infineon Technologies Austria Ag VDMOS having a drift zone with a compensation structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304180A (zh) * 1999-12-09 2001-07-18 株式会社日立制作所 功率半导体器件

Also Published As

Publication number Publication date
CN105185821A (zh) 2015-12-23
DE102015107456B4 (de) 2021-09-23
US20150333168A1 (en) 2015-11-19
US9773863B2 (en) 2017-09-26
KR101721313B1 (ko) 2017-03-29
DE102015107456A1 (de) 2015-11-19
CN110085659A (zh) 2019-08-02
US20170373140A1 (en) 2017-12-28
KR20150130934A (ko) 2015-11-24

Similar Documents

Publication Publication Date Title
CN105185821B (zh) 在边缘区域具有场电介质的半导体器件
US10374070B2 (en) Bidirectional bipolar-mode JFET driver circuitry
US11410989B2 (en) Semiconductor device having overload current carrying capability
CN105895692B (zh) 具有补偿结构的半导体器件
JP5882407B2 (ja) 逆導通igbtおよびゲートドライバ回路を有する電子回路
JP4815885B2 (ja) 半導体装置の制御方法
US9543386B2 (en) Semiconductor device with field electrode structures, gate structures and auxiliary diode structures
CN110061050A (zh) 半导体器件和具有势垒区的绝缘栅双极型晶体管
CN106206701B (zh) 控制反向导电的igbt
CN105097907B (zh) 半导体器件和有隔离源区的反向导电绝缘栅双极晶体管
CN103545352B (zh) 半导体器件
CN107564955A (zh) 具有完全耗尽的沟道区的功率半导体器件及其操作方法
US7910992B2 (en) Vertical MOSFET with through-body via for gate
EP2954557A1 (en) A bipolar junction transistor structure
JP2018032871A (ja) 集積回路のためのモノリシックセルおよび特にモノリシック転流セル
CN106328596B (zh) 包括直接邻接台面区段和场电极的接触结构的半导体器件
US9666665B2 (en) Semiconductor device with semiconductor mesa including a constriction
JP6652802B2 (ja) 半導体装置、および当該半導体装置を備えるインバータ装置
WO2015127673A1 (zh) 一种双向igbt器件
JP2019102759A (ja) 半導体装置およびその製造方法
US11257914B2 (en) Semiconductor die, semiconductor device and IGBT module
CN113053992B (zh) 一种碳化硅mosfet器件的元胞结构及功率半导体器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant