CN104205359A - 光电动势元件及其制造方法、太阳能电池模块 - Google Patents

光电动势元件及其制造方法、太阳能电池模块 Download PDF

Info

Publication number
CN104205359A
CN104205359A CN201280071065.4A CN201280071065A CN104205359A CN 104205359 A CN104205359 A CN 104205359A CN 201280071065 A CN201280071065 A CN 201280071065A CN 104205359 A CN104205359 A CN 104205359A
Authority
CN
China
Prior art keywords
region
electrode layer
contact electrode
photovoltaic cell
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280071065.4A
Other languages
English (en)
Other versions
CN104205359B (zh
Inventor
松浦努
山林弘也
时冈秀忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN104205359A publication Critical patent/CN104205359A/zh
Application granted granted Critical
Publication of CN104205359B publication Critical patent/CN104205359B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

在背接触型的异质结型光电变换装置中,其目的在于,一并地制作包括p型非晶硅膜(4)正上方的电极和n型非晶硅膜(5)正上方的透明导电性氧化物的透明导电膜(6),得到接近欧姆接触的接合。包括:在n型非晶硅膜(5)上以及p型非晶硅膜(4)上一并形成氧化物电极层的工序;以及在覆盖n型非晶硅膜(5)或者p型非晶硅膜(4)中的某一方的透明导电膜(6)上配置了掩模的状态下,向露出了的透明导电膜(6)照射等离子体的工序。

Description

光电动势元件及其制造方法、太阳能电池模块
技术领域
本发明涉及在晶体硅基板的单面中配置了pn结和集电电极的、背接触型的光电动势元件及其制造方法、以及使用了该光电动势元件的太阳能电池模块。
背景技术
近年来,广泛地开发了使用了单晶硅基板、多晶硅基板的晶体硅系光电动势元件(以下,有时简称为光电动势元件)。特别地,在使用了单晶硅基板时,光电变换效率优良,伴随硅晶片的低价格化而得到普及。在设置面积被限制了的市区的住宅用途等中,要求进一步改善光电变换效率。
背接触型(背面接合型)单元是使晶体硅系光电动势元件的变换效率提高的方法之一,在受光面中不形成遮挡光的电极,而仅在背面中形成电极。光的利用效率高,所以光电变换效率优良,已经被广泛地实用化。
另外,异质结型单元是组合晶体硅基板和非晶硅薄膜而得到的,相比于一般的晶体硅系光电动势元件,开路电压高,具有高的光电变换效率。由于在晶体硅基板上形成了薄膜非晶硅,所以是被称为混合型的技术。
另外,提出了组合了这些技术的背接触型的异质结型光电动势元件(例如,参照专利文献1)。在具体的结构中,在单晶硅基板的背面形成i型非晶硅膜,在其上包括成为正极的p型非晶硅膜、背面电极以及集电极、成为负极的n型非晶硅膜、背面电极以及集电极。
专利文献1:日本特开2005-101427号公报
发明内容
在以往的背接触型的异质结型光电动势元件中,p型非晶硅膜正上的电极和n型非晶硅膜正上的电极使用欧姆接合了的透明导电性氧化物(TCO)层。在p型硅和n型硅中,离子化电势不同,所以与TCO的接合并不是始终为欧姆接合。因此,在p型硅膜上和n型硅膜上,电阻率有时显著不同。为了在p型以及n型的硅膜上确保电阻率小的接合,而制作对应于各自的适合的TCO层即可。但是,在该方法中,需要分2次进行TCO层的制膜,使制造工序变得复杂。
本发明是为了解决上述那样的课题而完成的,其目的在于得到一种光电动势元件,在一方的面具备p型半导体层的电极和n型半导体层的电极的背接触型光电动势元件中,将TCO层的制膜工序简化为1次,同时在p型半导体膜上和n型半导体膜上分别实现电阻率小的接合,导通损失小。
本发明的光电动势元件的制造方法,包括:在半导体晶体基板的一方的面的第1区域形成n型半导体层的工序;在所述一方的面的第2区域形成p型半导体层的工序;在包括n型半导体层以及p型半导体层的表面的所述一方的面,一并形成以氧化物为主成分的接触电极层的工序;调整第1区域上或者第2区域上的接触电极层的载流子浓度,以使第1区域上的接触电极层的载流子浓度大于第2区域上的接触电极层的载流子浓度的工序;以及断开第1区域上的接触电极层和第2区域上的接触电极层的工序。
根据本发明,p型以及n型的半导体层与接触电极层之间的界面以欧姆或者接近欧姆的状态接合,所以光电动势元件的串联电阻降低,其结果,光电动势元件的特性提高。
附图说明
图1是示出本发明的实施方式1的光电动势元件的背面的平面图。
图2是示出本发明的实施方式1的光电动势元件的构造的部分剖面图。
图3是示出本发明的实施方式1的光电动势元件的制造工序的剖面放大图。
图4是示出本发明的实施方式1的光电动势元件的制造工序的剖面放大图。
图5是示出本发明的实施方式1的光电动势元件的制造工序的剖面放大图。
图6是示出本发明的实施方式1的光电动势元件的制造工序的剖面放大图。
图7是示出本发明的实施方式1的光电动势元件的制造工序的剖面放大图。
图8是示出本发明的实施方式1的光电动势元件的制造工序的剖面放大图。
图9是示出本发明的实施方式1的光电动势元件的制造工序的剖面放大图。
图10是示出本发明的实施方式1的光电动势元件的制造工序的剖面放大图。
图11是示出本发明的实施方式1的光电动势元件的制造工序的流程图。
图12是透明导电膜的载流子浓度与功函数的关系。
图13是示出本发明的实施方式2的光电动势元件的制造工序的剖面放大图。
图14是示出本发明的实施方式2的光电动势元件的制造工序的剖面放大图。
图15是示出本发明的实施方式3的光电动势元件的制造工序的剖面放大图。
图16是示出本发明的实施方式3的光电动势元件的制造工序的剖面放大图。
图17是示出本发明的实施方式4的光电动势元件的制造工序的剖面放大图。
图18是示出本发明的实施方式4的光电动势元件的制造工序的剖面放大图。
图19是示出本发明的实施方式4的光电动势元件的制造工序的剖面放大图。
图20是示出本发明的实施例1的投入电力与标准化特性的关系的图表。
图21是示出本发明的实施例2的气体压力与标准化特性的关系的图表。
图22是示出本发明的实施例3的投入电力与标准化特性的关系的图表。
(符号说明)
1:单晶硅基板;2:钝化膜;3:i型非晶硅膜;4:p型非晶硅膜;5:n型非晶硅;6、6a、6b:透明导电膜;7、7a、7b:保护掩模;8、8a、8b:透明导电膜;9:金属电极层。
具体实施方式
以下,根据附图,详细说明本发明的光电动势元件及其制造方法、光电变换模块的实施方式。另外,本发明不限于以下的记述,能够在不脱离本发明的要旨的范围内适当地变更。另外,在以下所示的附图中,为了易于理解,各部件的比例尺有时与实际不同。
实施方式1.
图1是示意地示出本发明的实施方式1的晶体硅系光电动势元件的背面的平面图。以使梳齿相互咬合的方式配置了梳齿状的阴极12和阳极13。在阴极12与阳极13之间设置有微小的间隙,阴极12和阳极13的区域不具有相互重叠的部分。另一方面,与背面相对的表面是受光面,在受光面不具有特征性的构造。即,成为仅在背面设置有电极的背接触型的光电动势元件。该光电动势元件是在晶体硅表面制作带隙与晶体硅不同的非晶硅系薄膜而形成了所谓的异质结的异质结型光电动势元件。因此,与阴极12和阳极13对应地,作为n型半导体层形成有n型非晶硅的薄膜,作为p型半导体层形成有p型非晶硅的薄膜。
图2是示出本实施方式1的光电动势元件的构造的剖面图,在图1中示意地示出用线段D表示的部分的剖面。在该光电动势元件中,针对在基板的两方的表面形成了被称为纹理的凹凸构造的单晶硅基板1,在受光面侧形成钝化膜2,在背面侧依次层叠有非晶硅层、透明电极层、金属电极。非晶硅层由i型非晶硅膜3、n型非晶硅膜5以及p型非晶硅膜4构成,透明电极层由透明导电膜6a以及透明导电膜8a构成。透明电极层是以例如导电性的金属氧化物为主成分的层,在其上形成金属电极9而被电连接。从形成了钝化膜2的受光面侧入射要被光电变换的光。
图3~图10是示意地示出本发明的实施方式1的光电动势元件的制造工序的剖面放大图,示出在图1中用线段D表示的部分的剖面。以下,按照工序顺序,说明本发明的实施方式1的光电动势元件的制造工序。
首先,在受光面侧形成有钝化膜2的n型的单晶硅基板1的背面,形成i型非晶硅膜3(本征非晶硅膜)(工序1)。图3示出形成后的状态。i型非晶硅膜3除了具有单晶硅基板1的钝化作用以外,还防止在其上形成的非晶硅膜与单晶硅基板1之间掺杂物相互混入。
接下来,在i型非晶硅膜3表面的规定区域中覆盖了掩模之后,形成n型非晶硅5(工序2)。图4示出形成n型非晶硅5并去除了掩模之后的状态。接下来,在包含n型非晶硅膜5的规定区域中覆盖了掩模之后,形成p型非晶硅膜4(工序3)。图5示出形成p型非晶硅膜4并去除了掩模之后的状态。关于i型非晶硅膜3、p型非晶硅膜4、n型非晶硅5的形成方法,优选等离子体CVD法。
接下来,在p型非晶硅膜4、n型非晶硅膜5之上,一并形成透明导电膜6a(工序4)。关于透明导电膜6a的形成方法能够使用溅射蒸镀等。图6示出形成了透明导电膜6a的状态。透明导电膜6a成为被电连接到p型非晶硅膜4、n型非晶硅膜5的接触电极层。
在形成了透明导电膜6a之后,为了进行等离子体处理,以覆盖p型非晶硅膜4的方式配置保护掩模7a。图7示出形成了保护掩模7a的状态。接下来,在如图8所示覆盖了保护掩模7a的状态下,照射等离子体P(工序5)。此处,使用在真空腔内产生的氢等离子体,进行露出的透明导电膜6a的还原处理。通过该处理,非晶硅膜5上的透明导电膜6a被还原,成为载流子浓度比透明导电膜6a高的透明导电膜8a。
接下来,在去除了保护掩模7a之后,如图9所示地在透明导电膜6a的正上方形成金属电极层9(工序6)。
接下来,断开p型非晶硅膜4上的区域和n型非晶硅膜5上的区域的金属电极层,进而断开透明导电膜6a和透明导电膜8a。由此,非晶硅的p型区域和n型区域被完全分离。关于分离方法,通过例如利用激光照射的激光划片进行(工序7)。图10示出利用激光的划片后的状态。图中的箭头LB表示激光的照射位置和照射方向,在被照射的部分中形成有划片痕迹10。
图11用流程图示出上述光电动势元件的制造工序。在分离了工序7的透明导电膜的区域之后,根据需要,经由形成由包含金属粒子的厚膜构成的汇流电极、或者重叠配置集电极图案和具有连接部的布线薄片等工艺,具有背接触构造的异质结型光电动势元件(太阳能电池单元)完成。
以下,说明制造工序的详细情况。
成为基板材料的单晶硅基板1是对铸锭进行切片而得到的,在切片了之后实施吸杂处理,去除表面以及表面附近的不需要的杂质。为了降低表面的光反射率,将单晶硅基板1浸渍到KOH(氢氧化钾)、NaOH(氢氧化钠)、TMAH(四甲基氢氧化铵)等碱性水溶液,通过各向异性蚀刻法在单晶硅基板1的表面形成微细棱锥状的凹凸。进而,通过清洗去除施加了微细棱锥状凹凸的表面的金属以及有机杂质。
作为钝化膜2使用非晶质SiOx、非晶质SiNx等。通过形成钝化膜2,单晶硅基板1的界面特性改善,能够降低载流子再结合所致的电流损失。进而,也可以通过调整其膜厚而使之具有作为入射光的反射防止膜的功能。钝化膜2能够通过等离子体CVD等化学的气相法以及溅射蒸镀、离子电镀等物理的方法、热氧化等方法形成。为了最大限地得到界面特性改善效果,需要降低向单晶硅基板1的表面的损伤,所以特别优选等离子体CVD、离子电镀等形成方法。
另外,也可以在钝化膜2上进一步形成反射防止膜。在该情况下,除了SiOx、SiNx以外,也可以利用TiOx、ZnO以及In2O3等透明氧化物。
工序1的i型非晶硅膜3的形成方法优选为等离子体CVD法,在真空腔内导入SiH4(硅烷)气体以及H2(氢)气体而形成。期望在形成i型非晶硅膜3之前,用氢氟酸系溶液去除形成在单晶硅基板1上的自然氧化膜。
接下来,在i型非晶硅膜3的规定区域中覆盖了掩模之后,形成工序2的n型非晶硅5。形成方法优选等离子体CVD法,在真空腔内导入SiH4气体、H2气体以及PH3(磷化氢)气体而形成。掩模的材质有金属、石英等,但无金属汚染的石英最优选。
在工序3中,在以覆盖n型非晶硅膜5的方式覆盖了掩模之后,形成p型非晶硅膜4。形成方法优选等离子体CVD法,在真空腔内导入SiH4气体、H2气体以及B2H6(乙硼烷)气体而形成。关于p型非晶硅膜4和n型非晶硅膜5,优选设置一定的间隙以使形成区域不重叠。p型非晶硅膜4和n型非晶硅膜5的形成顺序也可以调换。
在上述光电动势元件中,通过p型非晶硅膜4和n型单晶硅基板1的pn结产生电动势。如果比较电子和空穴的扩散长度,则空穴的扩散长度比电子短。因此,在相比于n型非晶硅膜5的形成区域而p型非晶硅5的形成区域更宽时,发电效率提高。
作为工序4的透明导电膜6a的材料,优选In2O3(氧化铟)、SnO2(氧化锡)、ZnO(氧化锌)以及TiO2(氧化钛)等金属氧化物。这些氧化物具有n型半导体的性质。另外,为了在上述金属氧化物中提高导电性,也可以使用含有掺杂物的例子。作为掺杂物的种类,关于In2O3优选Sn、Ti、Zn、Zr、Hf以及W,关于SnO2优选In、Ti、Sb以及F,关于ZnO优选Al、Ga、In、Ti、B以及F,关于TiO2优选Nb、Ta以及W。作为透明导电膜6a的形成方法,有等离子体CVD等化学的气相法以及溅射、离子电镀等物理的气相法等,但在大量生产时,优选能够以流水线(in-line)方式形成的溅射蒸镀、离子电镀。另外,优选在形成透明导电膜6a之前,用氢氟酸系溶液等去除形成在非晶硅膜4以及5的表面的自然氧化膜。
覆盖p型非晶硅膜4的保护掩模7a的材质可以是金属材料、石英等。金属氧化物通过等离子体照射被还原而成为污染的原因,所以更优选为金属材料。未被保护掩模7a覆盖的区域的透明导电膜6a能够通过还原性的等离子体照射而提高载流子浓度。
关于在工序5中使用的处理用的等离子体P,能够应用大气压等离子体、真空腔内的低压等离子体。例如,优选使H2(氢)气体或者H2与Ar(氩)的混合气体电离而得到的等离子体。另外,还能够使用Ar以外的稀有气体。通过向n型非晶硅膜5上的透明导电膜6a照射等离子体,该区域被还原而载流子浓度提高。其结果,与n型非晶硅膜5的接合成为接近欧姆的状态,变化为与非晶硅膜5的接触电阻被降低了的透明导电膜8a。由此,能够使光电动势元件的曲线因子最大化。
如以下那样地说明使非晶硅和透明导电膜的接合低电阻化的原理。In2O3、ZnO等氧化物导电体是简并半导体,被认为载流子的能量状态与金属实质上相同。因此,和非晶硅的接合能够与和金属的接合同样地解释。
即,如果氧化物导电体的功函数大于n型硅的离子化电势,则产生肖特基势垒,相对于此,如果氧化物导电体的功函数小于n型硅的离子化电势,则成为欧姆接合。因此,即使形成在n型非晶硅5上的透明导电膜6a未成为欧姆接合,能够通过等离子体处理进行还原,通过提高载流子浓度而降低功函数,设为欧姆接合或者接近欧姆接合的状态。通过控制载流子浓度以成为尽可能接近欧姆接合的状态,能够降低接合部的接触电阻,得到导通损失小的光电动势元件。
图12是示出透明导电膜的载流子浓度与功函数的关系的图表。根据图12可知在In2O3和ZnO中,随着载流子浓度增加而功函数降低。能够通过紫外光电子分光法(UPS)等测定功函数。由此,通过TCO的还原处理来提高载流子浓度,从而能够向减小功函数的方向进行改质,其结果,能够减小电阻值。
在透明导电膜6a以及透明导电膜8的正上方,使用溅射蒸镀、电子束蒸镀、丝网印刷等方法形成工序6的金属电极9。透明导电膜6a以及透明导电膜8还具有作为集电电极的功能,所以也可以不必在透明导电膜6a以及透明导电膜8的整个面上形成金属电极9。在该情况下,在从光电动势元件的受光面入射了的光到达至背面侧的情况下,如果没有金属电极9,则无法利用反射光。因此,在部分性地形成了金属电极的光电动势元件完成之后,在进行模块化时,期望在背面侧设置白色板等反射部件。作为金属电极的材料,优选Ag(银)、Al(铝)、Ti(钛)、Mo(钼)、W(钨)等。
在工序7的激光划片中,能够使用YAG激光器、SHG激光器等。波长355nm、532nm等的激光能够切断非晶硅,同时透明导电膜6a也被切断。关于波长1064nm的激光,因为透射非晶硅,所以只有透明导电膜6a被切断。被划片的宽度越窄,对发电贡献的面积越大,所以划片宽度优选为100μm以下。下限由激光束的宽度决定,约50μm。另外,也可以针对激光划片后的划片槽附近的界面,进行热氧化等来形成钝化膜。
根据本实施方式的光电动势元件,在通过1次制膜得到的透明导电膜6a中,p型非晶硅膜4、n型非晶硅5中的任意一个的接合界面中的电阻都小,所以光电动势元件的串联电阻降低而曲线因子增加。其结果,光电动势元件的光电变换效率提高。
如果分2次来制作p型非晶硅膜4上的透明导电膜和n型非晶硅5上的透明导电膜,则不仅各自需要原料,而且制膜时间也将大于等于2倍,导致生产性以及成品率降低。另外,TCO如果在制膜之后被加热则特性变化,所以还产生难以得到最佳的特性的膜这样的问题。根据本实施方式,不会产生这样的问题,能够在一并地制作透明导电膜的同时,实现良好的光电变换特性和高的生产性。
实施方式2.
在本实施方式中,并非如实施方式1那样向n型非晶硅5上的透明导电膜6a照射还原性等离子体,而向p型非晶硅膜4上的透明导电膜6b照射氧化性等离子体,设为透明导电膜8b。图13、图14是示出本实施方式的光电动势元件的制造工序的剖面放大图。保护掩模7b形成于包含n型非晶硅5的区域上,通过包含氧等离子体(氧离子)的氧化性等离子体P的照射,透明导电膜6b变化为透明导电膜8b。由此,透明导电膜8b的载流子浓度减少而功函数变大。等离子体照射以后的工序与实施方式1相同,所以省略说明。
如果考虑p型硅的多数载流子是空穴,则在透明导电膜8b的功函数大于p型非晶硅膜4的离子化电势的情况下,得到欧姆接合。即,透明导电膜6b的功函数变小,所以与p型非晶硅膜4的接合状态成为欧姆接合或者接近欧姆接合的状态,电阻率降低。在本实施方式中,也能够在一并地制作透明导电膜的同时,实现良好的光电变换特性和高的生产性。
实施方式3.
将金属电极层9的p型非晶硅膜4上的区域和n型非晶硅膜5上的区域分离、进而将透明导电膜6a和透明导电膜8a分离的方法也可以不是激光划片。在本实施方式3中,替代激光划片而使用湿蚀刻。
图15、图16是示出本发明的实施方式的光电动势元件的制造工序的剖面放大图。关于图3至图9的工序,与实施方式1相同所以省略说明。与等离子体照射后的透明导电膜6、透明导电膜8上对应地,印刷含有Ag(银)、Al(铝)、Cu(铜)等金属粒子的厚膜膏并进行干燥后退火而形成集电极11。图15示出集电极11形成后的状态。
在形成集电极11之后,通过蚀刻去除存在于p型非晶硅膜4与n型非晶硅5之间的透明导电膜。在图15中,去除成为透明导电膜6的区域,图16所示那样的方式完成。
在透明导电膜6的蚀刻中,在透明导电膜6是In2O3、ITO的情况下,使用氯化铁溶液(ferric chloride solution)、碘酸水溶液(iodicacid solution)、王水(aqua regia)、草酸水溶液(oxalic acid solution)等即可。在草酸水溶液中也可以混合十二烷基苯磺酸(dodecylbenzenesulfonic acid)。
根据本实施方式3,进行1次透明导电膜的制膜,同时之后的图案形成也能够进行简便的工艺。能够在使用简便的工艺的同时,得到特性优良的背接触型的异质结光电动势元件。
另外,为了减小p型非晶硅膜4和n型非晶硅5的间隙而提高光电变换效率,也可以在形成了薄膜的金属电极层9之后,使用蚀刻抗蚀剂来进行微细的蚀刻。能够将图案化了的金属电极层9作为掩模,对透明导电膜进行蚀刻。
实施方式4.
在分离非晶硅膜上的透明导电膜时,如果i型非晶硅膜3由于激光、蚀刻液而受到损伤,则其下的单晶硅基板1的钝化变得不充分,而光电变换效率有时降低。因此,在本实施方式中,形成用于保护i型非晶硅膜3的绝缘体层。
图17~18是示出本发明的实施方式的光电动势元件的制造工序的剖面放大图。如图17所示,在i型非晶硅膜3上的p型非晶硅膜4和n型非晶硅5的间隙中形成绝缘体层12。绝缘体层12是含有氧化铝、二氧化硅等金属氧化物、氮化硼等氮化物的微粒子的厚膜或者薄膜。图18示出对n型非晶硅5上的透明导电膜6a进行了等离子体照射之后的状态,图19示出进行了激光划片之后的状态。通过绝缘体层12保护i型非晶硅膜3,所以不会损失单晶硅基板1的钝化效果,能够在制作1次透明导电膜同时,得到光电变换效率优良的光电动势元件。
另外,也可以代替在上述实施方式中使用的等离子体照射,而使用还原性气氛中的利用热处理的还原处理、氧化性气氛中的利用热处理的氧化处理。
另外,在上述实施方式中,说明了背接触型的异质结光电动势元件的情况,但在背接触型的扩散型光电动势元件的情况下也能够应用同样的方法。在扩散型光电动势元件的情况下,是通过在单晶硅基板1中直接扩散掺杂物而在基板内形成p型层、n型层的方法,在该情况下,无需制作本征半导体膜。
实施例
以下,通过实施例,具体说明本发明。
实施例1.
在该实施例1中,通过实施方式1的方法来制作具有图10所示的构造的光电动势元件,并评价了特性。作为n型单晶硅基板1而使用了晶体取向是(100)、尺寸是10cm×10cm×t200μm的正方形晶片。制作工艺如下所述。
首先,通过NaOH水溶液,在基板表面形成了棱锥状的纹理构造。在基板清洗之后,在单晶硅基板1的受光面侧通过CVD法形成了钝化膜2,在背面侧通过CVD法形成了i型非晶硅膜3、p型非晶硅膜4以及n型非晶硅膜5。表1是上述形成膜的制膜条件,是向制膜腔内导入的气体的组成、和压力、投入电力的一览。
[表1]
将p型非晶硅制膜区域4和n型非晶硅制膜区域5的宽度分别设为4mm以及2mm。将p型非晶硅制膜区域4的宽度设定得比n型非晶硅制膜区域5更宽,以实现光电动势元件的特性提高。
接下来,在背面侧,通过RF溅射蒸镀而形成了氧化铟的透明导电膜6。表2示出形成条件。
[表2]
接下来,在背面侧的p型非晶硅制膜区域正上方覆盖了保护掩模7。将保护掩模7的材质设为Al(铝)。在配置了保护掩模7之后,使用CVD的腔,在背面侧以表3的条件照射等离子体。固定使等离子体产生的气体的压力,将为了维持等离子体而投入了的电力作为参数,进行了实验。
[表3]
在照射了等离子体之后,去除保护掩模7,通过溅射在背面侧形成了金属电极层9。将金属电极层9的材料设为Ag(银),将膜厚设为300nm。
最后,在通过激光划片进行了pn分离之后,用热氧化炉在200℃下进行1小时退火而使划片痕迹氧化。
图20是示出实施例1的CVD工艺中的投入电力与标准化特性的关系的图表。将光电动势元件(太阳能电池单元)投入到太阳能模拟器而实施了测定。标准化特性是指,作为比较例1,测定不照射等离子体而制作出的光电动势元件的特性,将其表示为1。关于比较例1的制造工艺,除了不照射等离子体以外,与实施例1相同。Jsc表示标准化电流密度,FF表示标准化曲线因子,Eff表示标准化变换效率。如图20所示,随着增大等离子体的投入电力,曲线因子FF增加。这被认为是透明导电膜的载流子浓度增加而功函数变小,与n型非晶硅膜的接触电阻减少了的结果。但是,如果投入电力超过0.132W/cm2,则标准化变换效率低于1。这被认为是还同时引起与透明导电膜的还原相伴的光学特性的劣化所致的电流密度的降低。因此,单元特性相比于比较例1上升的是投入电力为0.026~0.132W/cm2的范围,在该条件下,可见通过向透明导电膜的等离子体照射而获得的特性改善效果。
另外,In2O3、ZnO等透明氧化物具有在还原气氛下去掉氧的性质。如果氧减少,则在载流子浓度增加的同时,透明氧化物发黑而透射率降低。因此,如果持续照射还原气氛的等离子体,则透射率降低,吸收穿过了单元内部的光(主要是红外光),所以作为结果而电流密度降低,光电变换效率降低。
实施例2.
在实施例2中,除了等离子体的照射条件以外全部使用了与实施例1相同的制造工艺。表4示出实施例2的等离子体的照射条件。使投入电力为恒定,将用于产生等离子体的气体压力作为参数,进行了实验。
[表4]
图21是示出本发明的实施例2的气体压力与标准化特性的关系的图表。示出实施例2中的制作出的光电动势元件的标准化电流密度Jsc、标准化曲线因子FF以及标准化变换效率Eff。关于图21的标准化特性,作为比较例2,将不照射等离子体而制作出的光电动势元件的单元特性表示为1。关于比较例2的制造工艺,设为除了不照射等离子体以外与实施例2相同。如图21所示,在等离子体产生气体的压力变化域内,实施例2的曲线因子增加。在67~800Pa之间,相比于比较例2,光电动势元件特性提高,气体压力越低特性越提高。
实施例3.
实施例3是除了等离子体照射条件和透明导电膜6的材料以外,全部与实施例1相同的制造工艺。表5示出实施例3的透明导电膜6的制膜条件。透明导电膜6是被称为所谓AZO的TCO材料,在氧化锌中掺杂了铝。表6示出实施例3的等离子体照射条件。相比于上述氧化铟的情况,被投入了更大的电力。其原因为,ZnO:Al相比于In2O3,耐等离子体还原性更强。
[表5]
[表6]
图22是示出本发明的实施例3的投入电力与标准化特性的关系的图表。示出实施例3中的制作出的光电动势元件的标准化电流密度Jsc、标准化曲线因子FF以及标准化变换效率Eff。作为比较例3,将不照射等离子体而制作出的光电动势元件的单元特性表示为1。比较例3的制造工艺除了不照射等离子体以外与实施例3相同。如图22所示,通过等离子体照射,在投入电力的变化域内,曲线因子和变换效率增加,光电动势元件的特性提高。

Claims (12)

1.一种光电动势元件的制造方法,包括:
在半导体晶体基板的一方的面的第1区域形成n型半导体层的工序;
在所述一方的面的第2区域形成p型半导体层的工序;
在包括所述n型半导体层以及所述p型半导体层的表面的所述一方的面,一并形成以氧化物为主成分的接触电极层的工序;
调整所述第1区域上或者所述第2区域上的所述接触电极层的载流子浓度,以使所述第1区域上的所述接触电极层的载流子浓度大于所述第2区域上的所述接触电极层的载流子浓度的工序;以及
断开所述第1区域上的所述接触电极层和所述第2区域上的所述接触电极层的工序。
2.根据权利要求1所述的光电动势元件的制造方法,其特征在于,
半导体晶体基板是硅晶片,
构成接触电极层的氧化物包含氧化铟、氧化钛、氧化锡以及氧化锌中的某一种。
3.根据权利要求2所述的光电动势元件的制造方法,其特征在于,
包括在半导体晶体基板的一方的面形成本征硅层的工序,
n型半导体层以及p型半导体层是非晶硅膜,
在所述本征硅层上形成所述n型半导体层以及所述p型半导体层。
4.根据权利要求1至3中的任意一项所述的光电动势元件的制造方法,其特征在于,
调整第2区域上的接触电极层的载流子浓度的工序包括:
配置覆盖第1区域上的接触电极层的保护掩模的工序;以及
向所述第2区域上的所述接触电极层照射氧化性的等离子体的工序。
5.根据权利要求1至3中的任意一项所述的光电动势元件的制造方法,其特征在于,
调整第1区域的接触电极层的载流子浓度的工序包括:
配置覆盖第2区域上的接触电极层的保护掩模的工序;以及
向所述第1区域上的所述接触电极层照射还原性的等离子体的工序。
6.根据权利要求1至5中的任意一项所述的光电动势元件的制造方法,其特征在于,
向将第1区域和第2区域隔开的第3区域上照射激光,断开第1区域上的接触电极层和第2区域上的接触电极层。
7.根据权利要求1至5中的任意一项所述的光电动势元件的制造方法,其特征在于,包括:
在第1区域上以及第2区域上的接触电极层上形成金属电极层的工序;以及
对将第1区域和第2区域隔开的第3区域的接触电极层进行湿蚀刻的工序。
8.根据权利要求6或者7所述的光电动势元件的制造方法,其特征在于,
包括在将第1区域和第2区域隔开的、本征硅层表面的第3区域配置绝缘性部件的工序。
9.一种光电动势元件,具有:
n型半导体层,形成于半导体晶体基板上的第1区域;
p型半导体层,形成于所述半导体晶体基板上的第2区域;
第1接触电极层,形成于所述n型半导体层上;
第2接触电极层,形成于所述p型半导体层上;以及
金属电极层,形成于所述第1接触电极层以及第2接触电极层上,
所述第1接触电极层以及第2接触电极层是一并地制作的导电性氧化物膜,
所述第1接触电极层的载流子浓度大于所述第2接触电极层的载流子浓度。
10.根据权利要求9所述的光电动势元件,其特征在于,
半导体晶体基板是硅晶片,
构成第1接触电极层以及第2接触电极层的氧化物包含氧化铟、氧化钛、氧化锡以及氧化锌中的某一种。
11.根据权利要求10所述的光电动势元件,其特征在于,
半导体晶体基板的一方的面包括本征硅层,
n型半导体层以及p型半导体层是形成在所述本征硅层上的非晶硅膜。
12.一种太阳能电池模块,其特征在于,
排列多个权利要求9至11中的任意一项所述的光电动势元件,电气地串联或者并联地连接而成。
CN201280071065.4A 2012-03-29 2012-03-29 光电动势元件及其制造方法、太阳能电池模块 Expired - Fee Related CN104205359B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/002185 WO2013145008A1 (ja) 2012-03-29 2012-03-29 光起電力素子およびその製造方法、太陽電池モジュール

Publications (2)

Publication Number Publication Date
CN104205359A true CN104205359A (zh) 2014-12-10
CN104205359B CN104205359B (zh) 2016-09-14

Family

ID=49258381

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280071065.4A Expired - Fee Related CN104205359B (zh) 2012-03-29 2012-03-29 光电动势元件及其制造方法、太阳能电池模块

Country Status (4)

Country Link
US (1) US9472711B2 (zh)
JP (1) JP5774204B2 (zh)
CN (1) CN104205359B (zh)
WO (1) WO2013145008A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098801A (zh) * 2016-06-23 2016-11-09 盐城普兰特新能源有限公司 一种异质结太阳能电池及其制备方法
CN106298988A (zh) * 2016-10-10 2017-01-04 江苏神科新能源有限公司 一种异质结太阳能电池及其制备方法
CN108521832A (zh) * 2015-12-31 2018-09-11 中海阳能源集团股份有限公司 一种背电极异质结太阳能电池及其制备方法
WO2019242550A1 (zh) * 2018-06-21 2019-12-26 君泰创新(北京)科技有限公司 太阳能电池及其制作方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10850076B2 (en) 2012-10-26 2020-12-01 Urotronic, Inc. Balloon catheters for body lumens
CN105659388B (zh) 2013-10-25 2018-06-12 夏普株式会社 光电转换元件、光电转换模块以及太阳光发电系统
US11121270B2 (en) * 2013-10-25 2021-09-14 Sharp Kabushiki Kaisha Photoelectric conversion element, photoelectric conversion module, and solar photovoltaic power generation system
KR101622090B1 (ko) 2013-11-08 2016-05-18 엘지전자 주식회사 태양 전지
KR101867855B1 (ko) * 2014-03-17 2018-06-15 엘지전자 주식회사 태양 전지
CN106575676B (zh) * 2014-07-17 2019-06-28 光城公司 具有叉指背接触的太阳能电池
JP6700654B2 (ja) * 2014-10-21 2020-05-27 シャープ株式会社 ヘテロバックコンタクト型太陽電池とその製造方法
JP6272391B2 (ja) * 2015-05-20 2018-01-31 エルジー エレクトロニクス インコーポレイティド 太陽電池と太陽電池モジュール
CN105070770B (zh) * 2015-07-10 2017-08-15 福建铂阳精工设备有限公司 背电极及其制作方法和电池组件
KR102523974B1 (ko) * 2016-02-15 2023-04-20 삼성전자주식회사 전하 배리어층을 포함한 광전 소자
KR102018381B1 (ko) * 2017-01-26 2019-09-04 엘지전자 주식회사 태양 전지 및 이의 제조 방법
US11302829B2 (en) 2017-03-29 2022-04-12 Kaneka Corporation Photovoltaic device and method for manufacturing photovoltaic device
JP6959795B2 (ja) * 2017-08-17 2021-11-05 株式会社カネカ バックコンタクト型太陽電池の製造方法
FR3073670B1 (fr) * 2017-11-15 2019-12-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de formation d'electrodes
GB201913533D0 (en) * 2019-09-19 2019-11-06 Univ Southampton Optical thin films and fabrication thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070297A (ja) * 1996-08-27 1998-03-10 Mitsui Petrochem Ind Ltd 太陽電池の製造方法
CN1601759A (zh) * 2003-09-24 2005-03-30 三洋电机株式会社 光生伏打元件及其制造方法
JP2008283075A (ja) * 2007-05-11 2008-11-20 Kaneka Corp 光電変換装置の製造方法
JP2009200267A (ja) * 2008-02-21 2009-09-03 Sanyo Electric Co Ltd 太陽電池
JP2010080888A (ja) * 2008-09-29 2010-04-08 Sanyo Electric Co Ltd 太陽電池の製造方法及び太陽電池
JP2011171384A (ja) * 2010-02-16 2011-09-01 Kaneka Corp 薄膜光電変換装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215081A (ja) * 1987-03-04 1988-09-07 Mitsubishi Heavy Ind Ltd アモルフアスシリコン太陽電池の製造方法
US4927770A (en) 1988-11-14 1990-05-22 Electric Power Research Inst. Corp. Of District Of Columbia Method of fabricating back surface point contact solar cells
JPH0795603B2 (ja) 1990-09-20 1995-10-11 三洋電機株式会社 光起電力装置
JP4155899B2 (ja) * 2003-09-24 2008-09-24 三洋電機株式会社 光起電力素子の製造方法
JP4511146B2 (ja) 2003-09-26 2010-07-28 三洋電機株式会社 光起電力素子およびその製造方法
FR2906406B1 (fr) * 2006-09-26 2008-12-19 Commissariat Energie Atomique Procede de realisation de cellule photovoltaique a heterojonction en face arriere.
FR2914501B1 (fr) * 2007-03-28 2009-12-04 Commissariat Energie Atomique Dispositif photovoltaique a structure a heterojonctions interdigitee discontinue
US8450141B2 (en) * 2009-06-17 2013-05-28 University Of Delaware Processes for fabricating all-back-contact heterojunction photovoltaic cells

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070297A (ja) * 1996-08-27 1998-03-10 Mitsui Petrochem Ind Ltd 太陽電池の製造方法
CN1601759A (zh) * 2003-09-24 2005-03-30 三洋电机株式会社 光生伏打元件及其制造方法
JP2008283075A (ja) * 2007-05-11 2008-11-20 Kaneka Corp 光電変換装置の製造方法
JP2009200267A (ja) * 2008-02-21 2009-09-03 Sanyo Electric Co Ltd 太陽電池
JP2010080888A (ja) * 2008-09-29 2010-04-08 Sanyo Electric Co Ltd 太陽電池の製造方法及び太陽電池
JP2011171384A (ja) * 2010-02-16 2011-09-01 Kaneka Corp 薄膜光電変換装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108521832A (zh) * 2015-12-31 2018-09-11 中海阳能源集团股份有限公司 一种背电极异质结太阳能电池及其制备方法
CN106098801A (zh) * 2016-06-23 2016-11-09 盐城普兰特新能源有限公司 一种异质结太阳能电池及其制备方法
CN106298988A (zh) * 2016-10-10 2017-01-04 江苏神科新能源有限公司 一种异质结太阳能电池及其制备方法
WO2019242550A1 (zh) * 2018-06-21 2019-12-26 君泰创新(北京)科技有限公司 太阳能电池及其制作方法

Also Published As

Publication number Publication date
US9472711B2 (en) 2016-10-18
JPWO2013145008A1 (ja) 2015-08-03
JP5774204B2 (ja) 2015-09-09
US20140373896A1 (en) 2014-12-25
WO2013145008A1 (ja) 2013-10-03
CN104205359B (zh) 2016-09-14

Similar Documents

Publication Publication Date Title
CN104205359B (zh) 光电动势元件及其制造方法、太阳能电池模块
CN107710419B (zh) 太阳能电池和太阳能电池模块
JP4660642B2 (ja) 太陽電池及びその製造方法
JP5174635B2 (ja) 太陽電池素子
JP2009152222A (ja) 太陽電池素子の製造方法
CN103999242A (zh) 晶体硅太阳能电池的制造方法、太阳能电池模块的制造方法、晶体硅太阳能电池以及太阳能电池模块
JP2010123859A (ja) 太陽電池素子および太陽電池素子の製造方法
KR101597532B1 (ko) 후면전극형 태양전지의 제조방법
EP2423974A2 (en) Solar power generation apparatus and manufacturing method thereof
JP2008034543A (ja) 光電変換素子およびその製造方法
US9761749B2 (en) Photoelectric conversion device
WO2023169245A1 (zh) 太阳能电池的制备方法及太阳能电池
JP6141670B2 (ja) 太陽電池の製造方法
US9859454B2 (en) Photoelectric conversion device and fabrication method thereof
US8852990B2 (en) Method of fabricating solar cell
JPWO2013054396A1 (ja) 光起電力装置の製造方法および光起電力装置
CN109891599A (zh) 高光电变换效率太阳能电池及高光电变换效率太阳能电池的制造方法
JP6502147B2 (ja) 太陽電池の製造方法および太陽電池モジュールの製造方法
JP5623131B2 (ja) 太陽電池素子およびその製造方法ならびに太陽電池モジュール
WO2019181834A1 (ja) 太陽電池の製造方法、および、太陽電池
CN111742416B (zh) 太阳能电池的制造方法
JP2003298090A (ja) 太陽電池素子およびその製造方法
CN111727508A (zh) 太阳能电池的制造方法
JP6294694B2 (ja) 太陽電池およびその製造方法、ならびに太陽電池モジュール
KR20120062432A (ko) 태양전지 및 그 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160914

Termination date: 20210329

CF01 Termination of patent right due to non-payment of annual fee